JP3239374B2 - Electrode composition - Google Patents

Electrode composition

Info

Publication number
JP3239374B2
JP3239374B2 JP13400691A JP13400691A JP3239374B2 JP 3239374 B2 JP3239374 B2 JP 3239374B2 JP 13400691 A JP13400691 A JP 13400691A JP 13400691 A JP13400691 A JP 13400691A JP 3239374 B2 JP3239374 B2 JP 3239374B2
Authority
JP
Japan
Prior art keywords
electrode
battery
activated carbon
electrode composition
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13400691A
Other languages
Japanese (ja)
Other versions
JPH04359861A (en
Inventor
正 外邨
佳子 佐藤
裕史 上町
輝寿 神原
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13400691A priority Critical patent/JP3239374B2/en
Publication of JPH04359861A publication Critical patent/JPH04359861A/en
Application granted granted Critical
Publication of JP3239374B2 publication Critical patent/JP3239374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電極組成物に関し、特
に電池,エレクトロクロミック表示素子,センサー,メ
モリー等の電気化学素子に用いられる有機化合物を有す
る電極組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode composition, and more particularly to an electrode composition having an organic compound used for electrochemical devices such as batteries, electrochromic display devices, sensors, and memories.

【0002】[0002]

【従来の技術】1971年に白川らにより導電性のポリ
アセチレンが発見されて以来、導電性高分子を電極材料
に用いると軽量で高エネルギー密度の電池や、大面積の
エレクトロクロミック素子,微小電極を用いた生物化学
センサー等の電気化学素子が期待できることから、導電
性高分子電極が盛んに検討されている。ポリアセチレン
は不安定で電極としては実用性に乏しいことから他のπ
電子供役系導電性高分子が検討され、ポリアニリン,ポ
リピロール,ポリアセン,ポリチオフェンといった比較
的安定な高分子が開発され、これらを正極に用いたリチ
ウム二次電池が開発されるに及んでいる。これらの高分
子電極は、電極反応に際してカチオンのみならず電解質
中のアニオンを取り込むので、電池内にあった電解質は
イオンの移動媒体として作用するだけでなく電池反応に
関与するため、電池容量に見合う量の電解質を電池内に
供給する必要がある。そして、その分電池のエネルギー
密度が小さくなるという問題を有している。エネルギー
密度は、20〜50Wh/kg程度でニッケルカドミウム
蓄電池,鉛蓄電池等の通常の二次電池に較べ2分の1程
度と小さい。これに対し、高エネルギー密度が期待でき
る有機材料として、米国特許第4,833,048号に
ジスルフィド系化合物が提案されている。この化合物
は、最も簡単にはR−S−S−Rと表される(Rは脂肪
族あるいは芳香族の有機基、Sは硫黄)。S−S結合は
電解還元により開裂し、電解浴中のカチオン(M+)と
でR−S-・M+で表される塩を生成する。この塩は、電
解酸化により元のR−S−S−Rに戻る。カチオン(M
+)を供給,補促する金属Mとジスルフィド系化合物を
組み合わせた金属−硫黄二次電池が前述の米国特許に提
案されている。150Wh/kg以上と、通常の二次電池
に匹敵あるいはそれ以上のエネルギー密度が期待でき
る。
2. Description of the Related Art Since the discovery of conductive polyacetylene by Shirakawa et al. In 1971, the use of a conductive polymer as an electrode material has made it possible to use lightweight, high energy density batteries, large-area electrochromic devices, and microelectrodes. Since an electrochemical element such as a biochemical sensor used can be expected, conductive polymer electrodes are being actively studied. Polyacetylene is unstable and is not practical as an electrode.
Electron conducting conductive polymers have been studied, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been developed, and lithium secondary batteries using these as a positive electrode have been developed. These polymer electrodes take in not only cations but also anions in the electrolyte during the electrode reaction, so that the electrolyte in the battery not only acts as a transfer medium for ions but also participates in the battery reaction, so it matches the battery capacity. It is necessary to supply a quantity of electrolyte into the battery. In addition, there is a problem that the energy density of the battery is reduced accordingly. The energy density is about 20 to 50 Wh / kg, which is about half that of a normal secondary battery such as a nickel cadmium storage battery or a lead storage battery. On the other hand, US Pat. No. 4,833,048 proposes a disulfide compound as an organic material which can be expected to have a high energy density. This compound is most simply represented as R-S-S-R (R is an aliphatic or aromatic organic group and S is sulfur). S-S bond is cleaved by electrolytic reduction, de R-S and cations in the electrolyte bath (M +) - to produce the salt represented by · M +. This salt returns to the original RSSR by electrolytic oxidation. Cation (M
A metal-sulfur secondary battery combining a metal M and a disulfide-based compound for supplying and promoting + ) is proposed in the aforementioned U.S. Patent. With an energy density of 150 Wh / kg or more, an energy density comparable to or higher than that of a normal secondary battery can be expected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、提案さ
れているジスルフィド系化合物は、米国特許第4,83
3,048号の発明者らがJ.Electroche
m.Soc,Vol.136,No.9,p.2570
〜2575(1989)で報告しているように、例えば
[(C252NCSS−]2の電解では、酸化と還元の
電位が1volt以上離れており電極反応論の教えると
ころに依れば電子移動過程は極めて遅い。従って、室温
付近では実用に見合う大きな電流、例えば1mA/cm2
以上の電流を取り出すことが困難であり、100−20
0℃の高温での使用に限られるという問題があった。
However, the proposed disulfide compound is disclosed in U.S. Pat.
No. 3,048, J. J. Electroche
m. Soc, Vol. 136, No. 9, p. 2570
As reported in 252575 (1989), for example, in the electrolysis of [(C 2 H 5 ) 2 NCSS-] 2 , the potentials for oxidation and reduction are separated by 1 volt or more, and this depends on the teaching of electrode reaction theory. The electron transfer process is extremely slow. Therefore, near room temperature, a large current suitable for practical use, for example, 1 mA / cm 2
It is difficult to extract the above current, and 100-20
There is a problem that the use at a high temperature of 0 ° C. is limited.

【0004】本発明は、このような問題を解決し、ジス
ルフィド系化合物の高エネルギー密度という特徴をそこ
なわずかつ室温でも大電流電解(充放電)が可能な可逆
性に優れた電極を提供することを目的とする。
[0004] The present invention solves such a problem and provides an electrode having excellent reversibility capable of performing high-current electrolysis (charge / discharge) even at a slight temperature even at room temperature due to the high energy density of the disulfide compound. The purpose is to:

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
本発明の電極組成物は、ジスルフィド系化合物と活性炭
とを複合化した複合電極である。
Means for Solving the Problems To solve this problem, the electrode composition of the present invention is a composite electrode in which a disulfide compound and activated carbon are combined.

【0006】[0006]

【作用】この構成により本発明の電極組成物は、ジスル
フィド系化合物と複合化した活性炭は、ジスルフィド系
化合物の電解酸化・還元に際して電極触媒として作用す
る。1volt以上であった酸化反応と還元反応の電位
差を0.5voltあるいはそれ以下に小さくし、電極
反応を促進し、室温でも大電流での電解(充放電)を可
能とする。電極触媒をジスルフィド系化合物電極に導入
することは、前述の米国特許第4,833,048号あ
るいはJ.Electrochem.Soc,Vol.
136,p.2570〜2575(1989)に述べら
れているが、電極触媒としては有機金属化合物が開示さ
れているのみである。その効果については具体的に示さ
れてないにばかりか、活性炭がジスルフィド系化合物の
電解に際し電極触媒として作用することは全く示されて
いない。
With this structure, in the electrode composition of the present invention, the activated carbon complexed with the disulfide compound acts as an electrode catalyst during the electrolytic oxidation and reduction of the disulfide compound. The potential difference between the oxidation reaction and the reduction reaction, which was 1 volt or more, was reduced to 0.5 volt or less to promote the electrode reaction and enable electrolysis (charge / discharge) with a large current even at room temperature. Introducing an electrocatalyst into a disulfide-based compound electrode is described in the aforementioned U.S. Pat. Electrochem. Soc, Vol.
136, p. 2570-2575 (1989), only an organometallic compound is disclosed as an electrode catalyst. Not only that effect is not specifically shown, but it is not shown at all that activated carbon acts as an electrode catalyst in electrolysis of a disulfide compound.

【0007】[0007]

【実施例】以下本発明の実施例の電極組成物について図
面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrode compositions of the embodiments of the present invention will be described below with reference to the drawings.

【0008】本実施例のジスルフィド系化合物として
は、米国特許第4,833,048号に述べられている
一般式(R(S)ynで表される化合物を用いることが
できる。Rは脂肪族基、芳香族基、Sは硫黄、yは1以
上の整数、nは2以上の整数である。C22S(SH)
2で表される2,5−ジメルカプト−1,3,4−チア
ジアゾール,C3333で表されるs−トリアジン−
2,4,6−トリチオール等が用いられる。
As the disulfide compound of the present embodiment, a compound represented by the general formula (R (S) y ) n described in US Pat. No. 4,833,048 can be used. R is an aliphatic group, an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more. C 2 N 2 S (SH)
Represented by 2 2,5-dimercapto-1,3,4-thiadiazole represented by C 3 H 3 N 3 S 3 s- triazine -
2,4,6-trithiol and the like are used.

【0009】本実施例の活性炭は、椰子殻等の天然物あ
るいはフェーノール樹脂等の合成物を賦活することで得
られるもので、比表面積が1000m2/g、細孔容積
が0.5ml/g程度の粉末状あるいは繊維状のものが
好ましく用いられる。細孔中にジスルフィド系化合物お
よび電解質を保持できるものが好ましい。
The activated carbon of this embodiment is obtained by activating a natural product such as a coconut shell or a synthetic product such as a phenol resin, and has a specific surface area of 1000 m 2 / g and a pore volume of 0.5 ml / g. A powdery or fibrous material of a certain degree is preferably used. Those capable of holding a disulfide compound and an electrolyte in the pores are preferred.

【0010】ジスルフィド系化合物が還元して塩を形成
する際の金属イオンには、前述の米国特許に述べられて
いるアルカリ金属イオン,アルカリ土類金属イオンに加
えて、プロトンも用いることができる。アルカリ金属イ
オンとしてリチウムイオンを用いる場合は、リチウムイ
オンを供給および補促する電極として金属リチウムある
いはリチウム−アルミニウム等のリチウム合金を用い、
リチウムイオンを伝導する電解質を用いると電圧が3〜
4voltの電池が構成できる。プロトンを用い、プロ
トンを供給および補捉する電極としてLaNi5等の金
属水素化物を用い、プロトンを伝導する電解質を用いる
と電圧が1から2voltの電池が構成できる。
As the metal ions when the disulfide compound is reduced to form a salt, protons can be used in addition to the alkali metal ions and alkaline earth metal ions described in the aforementioned US patents. When using lithium ions as alkali metal ions, use lithium metal or a lithium alloy such as lithium-aluminum as an electrode for supplying and promoting lithium ions,
When an electrolyte that conducts lithium ions is used, the voltage becomes 3 to
A 4-volt battery can be configured. When a proton is used, a metal hydride such as LaNi 5 is used as an electrode for supplying and capturing the proton, and an electrolyte that conducts the proton is used, a battery having a voltage of 1 to 2 volts can be formed.

【0011】ジスルフィド系化合物と活性炭との複合化
は、混合,含浸,共折,重ね塗り等公知の方法により行
うことができる。例えば、ジスルフィド系化合物の塩の
溶液を活性炭の細孔内に含浸することで複合電極を得る
ことができる。また、ジスルフィド系化合物粒子および
活性炭を溶媒中に分散したのち溶媒を除くことで、ジス
ルフィド系化合物粒子の表面に活性炭の層を形成あるい
はその逆に活性炭の上にジスルフィド化合物の層を形成
して複合化してもよい。
The compounding of the disulfide compound with the activated carbon can be performed by a known method such as mixing, impregnation, co-folding, and recoating. For example, a composite electrode can be obtained by impregnating a solution of a salt of a disulfide compound into the pores of activated carbon. Also, by dispersing the disulfide-based compound particles and activated carbon in a solvent and removing the solvent, a layer of activated carbon is formed on the surface of the disulfide-based compound particles, or vice versa, and a layer of disulfide compound is formed on the activated carbon to form a composite. It may be.

【0012】必要に応じ、電解質を複合電極に添加する
ことができる。このような電解質としては、酸,アルカ
リ,あるいは塩を、水あるいは有機溶媒に溶解した電解
液あるいは電解液ゲル,固体電解質,高分子電解質を用
いることができる。中でも、ポリエチレンオキサイドに
塩を溶解した高分子電解質や有機溶媒電解液をポリアク
リロニトリル等の樹脂でゲル化したゲル電解質等が好ま
しく用いられる。
[0012] If necessary, an electrolyte can be added to the composite electrode. As such an electrolyte, an electrolytic solution or an electrolytic solution gel in which an acid, an alkali, or a salt is dissolved in water or an organic solvent, a solid electrolyte, or a polymer electrolyte can be used. Among them, a polymer electrolyte in which a salt is dissolved in polyethylene oxide, a gel electrolyte in which an organic solvent electrolyte is gelled with a resin such as polyacrylonitrile, or the like is preferably used.

【0013】(実施例1)トリフルオロスルホン酸リチ
ウム3.58g,プロピレンカーボネート10.47
g,エチレンカーボネート7.86gを混合し、120
℃に加熱して均一溶液を得た。この溶液に、分子量5万
のポリアクリロニトリル粉末3gを混合し、密封した1
00mlの三角フラスコ中で150℃に加熱し、共重合
体粉末を完全に溶解し粘ちょうな透明の液体を得た。こ
の液体にアセトニトリルを30g添加し希釈溶液を得
た。
Example 1 3.58 g of lithium trifluorosulfonate and 10.47 of propylene carbonate
g, 7.86 g of ethylene carbonate, and
Heated to ℃ to obtain a homogeneous solution. 3 g of polyacrylonitrile powder having a molecular weight of 50,000 was mixed with this solution, and the mixture was sealed.
The mixture was heated to 150 ° C. in a 00 ml Erlenmeyer flask to completely dissolve the copolymer powder to obtain a viscous transparent liquid. 30 g of acetonitrile was added to this liquid to obtain a diluted solution.

【0014】2,5−ジメルカプト−1,3,4−チア
ジアゾール(DMTD)粉末2.0gとクレハケミカル
製平均粒径が3.5μmのPB−25活性炭粉末0.5
g(比表面積:2000m2/g,細孔容積:0.8m
l/g)とを乳鉢で混合して得た混合粉末と希釈溶液1
0gとを混合して電極スラリーを得た。電極スラリーを
直径が90mmのガラスシャーレに流延し、40℃の乾燥
アルゴン気流中で1時間乾燥しさらに80℃で5時間真
空乾燥することで、厚さ約260μmの可撓性のあるシ
ート状の電極組成物Aを得た。
2.0 g of 2,5-dimercapto-1,3,4-thiadiazole (DMTD) powder and 0.5 powder of PB-25 activated carbon having an average particle size of 3.5 μm manufactured by Kureha Chemical
g (specific surface area: 2000 m 2 / g, pore volume: 0.8 m
1 / g) in a mortar and a diluted solution 1
And 0 g to obtain an electrode slurry. The electrode slurry is cast on a glass Petri dish having a diameter of 90 mm, dried for 1 hour in a dry argon stream at 40 ° C., and further vacuum-dried at 80 ° C. for 5 hours to form a flexible sheet having a thickness of about 260 μm. The electrode composition A was obtained.

【0015】この電極を、室温で、LiClO4を1M
溶解したジメチルホルムアミド中でAg/AgCl参照
電極に対し−0.7〜+0.2voltの間で電位を5
0mV/secの速度で直線的に増減させ電解したとこ
ろ図1の曲線(a)で示される電流電圧特性を得た。ま
た、比較例として、活性炭に代えて黒鉛粉末を用いた電
極組成物Bについて同様に電解したところ図1の曲線
(b)で示される電流電圧特性を得た。さらに、活性炭
と固形電解質のみを含む電極組成物Cについても同様な
電解を行い図1の曲線(c)で示される電流電圧特性を
得た。
At room temperature, LiClO 4 was
In a dissolved dimethylformamide, a potential of 5 to -0.7 to +0.2 volts with respect to an Ag / AgCl reference electrode.
When the electrolysis was performed by linearly increasing and decreasing at a speed of 0 mV / sec, a current-voltage characteristic shown by a curve (a) in FIG. 1 was obtained. Further, as a comparative example, when the electrode composition B using graphite powder instead of activated carbon was similarly electrolyzed, the current-voltage characteristics shown by the curve (b) in FIG. 1 were obtained. Further, the same electrolysis was performed on the electrode composition C containing only the activated carbon and the solid electrolyte to obtain a current-voltage characteristic shown by a curve (c) in FIG.

【0016】曲線(a)は、2,5−ジメルカプト−
1,3,4−チアジゾールの酸化還元に対応する電流ピ
ークのうち特に還元反応に対応する電流ピーク位置が−
0.6voltから−0.3volt付近まで移動し、
活性炭により2,5−ジメルカプト−1,3,4−チア
ジアゾールの酸化還元が促進されていることがわかる。
これに対し、曲線(b)では、2,5−ジメカプト−
1,3,4−チアジアゾールの酸化還元に対応する電流
ピークが得られるが、酸化ピークと還元ピークとの電位
差が0.6volt近くに及び、酸化還元は準可逆で反
応の速度は遅く、この電極を例えば電池の正極に用いる
と、充電と放電の電圧差が0.6volt以上に大きく
なるとともに、大電流での充放電では効率低下の大きい
電池となる。
The curve (a) shows 2,5-dimercapto-
Among the current peaks corresponding to the oxidation-reduction of 1,3,4-thiazol, the position of the current peak particularly corresponding to the reduction reaction is −
Move from 0.6 volt to around -0.3 volt,
It can be seen that the activated carbon promotes the redox of 2,5-dimercapto-1,3,4-thiadiazole.
On the other hand, in the curve (b), the 2,5-dimect
A current peak corresponding to the redox of 1,3,4-thiadiazole is obtained. However, the potential difference between the oxidation peak and the reduction peak is close to 0.6 volt, the redox is quasi-reversible, and the reaction speed is slow. For example, when is used for the positive electrode of a battery, the voltage difference between charging and discharging becomes greater than or equal to 0.6 volt, and the charging and discharging with a large current results in a battery with a large decrease in efficiency.

【0017】(実施例2)分子量が3000のポリエチ
レントリオール1重量部をメチルエチルケトン20重量
部に溶解してポリエチレントリオール溶液中に、ポリア
クリロニトリル繊維を賦活して造った繊維径が10μ
m、長さ1mmの活性炭短繊維1重量部と2,5−ジメル
カプト−1,3,4−チアジアゾール粉末4重量部を分
散した。この分散液に、ポリエチレントリオールと等モ
ル量のトリレンジイソシアネートを添加混合し、80℃
で2時間反応後、直径90mmのシャーレに流延し、真空
中80℃で24時間保持することで厚さ240μmの電
極組成物Dを得た。また、ポリエチレントリオール溶液
に等モル量のトリレンジイソシアネートを添加混合し、
80℃で2時間反応後、直径90mmのシャーレに流延
し、真空中80℃で24時間保持することで厚さ約30
0μmの高分子電解質膜を得た。このようにして得られ
た電極組成物Dを正極とし、高分子電解質を電解質膜と
し、金属リチウムを負極とする大きさが28×28mmの
固形の電池Dを構成した。この電池を、室温で、4.0
ボルトの一定電圧で17時間充電後、30℃で1μA,
5μA,10μA,20μA,50μA,100μA,
の電流で各々3秒間放電し、その際の電池電圧を記録す
ることで電流電圧特性を評価した。結果を図2の曲線
(d)で示す。また、比較例として、同様の方法で、活
性炭の代わりに黒鉛粉末を含む厚さ250μmの電極組
成物Eを用いて電池Eを造った。この電池の電流電圧特
性を図2の曲線(e)で示す。
(Example 2) 1 part by weight of polyethylene triol having a molecular weight of 3000 was dissolved in 20 parts by weight of methyl ethyl ketone, and a polyacrylonitrile fiber was activated in a polyethylene triol solution.
m, 1 part by weight of activated carbon short fiber having a length of 1 mm and 4 parts by weight of 2,5-dimercapto-1,3,4-thiadiazole powder were dispersed. To this dispersion, polyethylenetriol and an equimolar amount of tolylene diisocyanate were added and mixed.
After 2 hours, the mixture was cast on a petri dish having a diameter of 90 mm, and kept at 80 ° C. in a vacuum for 24 hours to obtain an electrode composition D having a thickness of 240 μm. Also, an equimolar amount of tolylene diisocyanate was added to the polyethylene triol solution and mixed,
After reacting at 80 ° C. for 2 hours, the mixture is cast on a Petri dish having a diameter of 90 mm, and kept in vacuum at 80 ° C. for 24 hours to obtain a thickness of about 30 mm.
A 0 μm polymer electrolyte membrane was obtained. A solid battery D having a size of 28 × 28 mm was prepared using the electrode composition D thus obtained as a positive electrode, a polymer electrolyte as an electrolyte membrane, and metal lithium as a negative electrode. The battery was charged at room temperature to 4.0
After charging for 17 hours at a constant voltage of volts, 1 μA at 30 ° C.,
5 μA, 10 μA, 20 μA, 50 μA, 100 μA,
Was discharged for 3 seconds, and the battery voltage at that time was recorded to evaluate current-voltage characteristics. The results are shown by curve (d) in FIG. In addition, as a comparative example, a battery E was manufactured in the same manner using the electrode composition E having a thickness of 250 μm containing graphite powder instead of activated carbon. The current-voltage characteristics of this battery are shown by curve (e) in FIG.

【0018】実施例2に従う電極組成物Dを有する電池
Dは比較例の電極組成物Eを有する電池Eに較べると分
極が小さく、大きな電流が得られる。
The battery D having the electrode composition D according to Example 2 has a smaller polarization and a larger current than the battery E having the electrode composition E of the comparative example.

【0019】[0019]

【発明の効果】以上の実施例の説明で明らかなように本
実施例の電極組成物によれば、ジスルフィド系化合物と
活性炭とを複合化した電極では、従来のジスルフィド系
化合物のみでは困難であった大電流での電解が可能とな
る。そして、この複合電極を正極に用い、金属リチウム
あるいは水素吸蔵合金を負極に用いることで大電流充放
電が期待できる高エネルギー密度二次電池を構成するこ
とができる。
As is apparent from the above description of the embodiment, according to the electrode composition of this embodiment, it is difficult to form an electrode in which a disulfide compound and an activated carbon are combined with only a conventional disulfide compound. Electrolysis with a large current becomes possible. Then, by using this composite electrode as the positive electrode and using lithium metal or a hydrogen storage alloy as the negative electrode, a high energy density secondary battery in which a large current charge / discharge can be expected can be formed.

【0020】なお、実施例として電極組成物を用いた電
池のみを示したが、電池の他に、本発明の電極組成物を
対極に用いることで発色・退色速度の早いエレクトロク
ロミック素子、応答速度の早いグルコースセンサー等の
生物化学センサーを得ることができるし、また、書き込
み・読み出し速度の速い電気化学アナログメモリーを構
成することもできる。
Although only a battery using an electrode composition was shown as an example, in addition to a battery, an electrochromic device having a high color-forming / fading speed by using the electrode composition of the present invention as a counter electrode, and a response speed It is possible to obtain a biochemical sensor such as a glucose sensor having a high speed, and to constitute an electrochemical analog memory having a high writing / reading speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の複合電極および比較例の電
極の電流−電圧特性を示すグラフ
FIG. 1 is a graph showing current-voltage characteristics of a composite electrode of Example 1 of the present invention and an electrode of a comparative example.

【図2】本発明の実施例2の電極組成物を正極に用いた
電池および比較例の電極を正極に用いた電池の電流−電
圧特性を示すグラフ
FIG. 2 is a graph showing current-voltage characteristics of a battery using the electrode composition of Example 2 of the present invention for the positive electrode and a battery using the electrode of Comparative Example for the positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神原 輝寿 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−93169(JP,A) 特開 昭63−301462(JP,A) 米国特許4833048(US,A) 国際公開91/6132(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/36 - 10/40 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Teruju Kamihara 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kenichi Takeyama 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-3-93169 (JP, A) JP-A-63-301462 (JP, A) US Patent 4833048 (US, A) WO 91/6132 (WO, A1) (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/36-10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解還元により硫黄−硫黄結合が開裂
し、硫黄−金属イオン(プロトンを含む)結合を生成
し、電解酸化により前記硫黄−金属イオン結合が元の前
記硫黄−硫黄結合を再生する有機化合物と活性炭とを有
する電極組成物。
1. A sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion (including proton) bond, and the sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation. An electrode composition having an organic compound and activated carbon.
JP13400691A 1991-06-05 1991-06-05 Electrode composition Expired - Fee Related JP3239374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13400691A JP3239374B2 (en) 1991-06-05 1991-06-05 Electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13400691A JP3239374B2 (en) 1991-06-05 1991-06-05 Electrode composition

Publications (2)

Publication Number Publication Date
JPH04359861A JPH04359861A (en) 1992-12-14
JP3239374B2 true JP3239374B2 (en) 2001-12-17

Family

ID=15118179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13400691A Expired - Fee Related JP3239374B2 (en) 1991-06-05 1991-06-05 Electrode composition

Country Status (1)

Country Link
JP (1) JP3239374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100636A (en) * 2012-12-27 2015-09-02 소니 주식회사 Electrode material for secondary batteries, method for producing same, and secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396492B1 (en) * 2001-10-17 2003-09-02 삼성에스디아이 주식회사 Positive active material for lithium-sulfur battery and method of preparing positive active material composition comprising same
JP2012041220A (en) * 2010-08-17 2012-03-01 Fukuoka Univ Sulfur complex active carbon and method of producing the same
JP6314382B2 (en) * 2013-07-25 2018-04-25 株式会社村田製作所 Electrode material for lithium-sulfur secondary battery, lithium-sulfur secondary battery, and method for producing electrode material for lithium-sulfur secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100636A (en) * 2012-12-27 2015-09-02 소니 주식회사 Electrode material for secondary batteries, method for producing same, and secondary battery
US20150349331A1 (en) * 2012-12-27 2015-12-03 Sony Corppration Electrode material for secondary batteries and manufacturing method thereof, and secondary battery
US10147938B2 (en) * 2012-12-27 2018-12-04 Murata Manufacturing Co., Ltd. Electrode material for secondary batteries and manufacturing method thereof, and secondary battery
KR102170616B1 (en) * 2012-12-27 2020-10-27 가부시키가이샤 무라타 세이사쿠쇼 Electrode material for secondary batteries, method for producing same, and secondary battery

Also Published As

Publication number Publication date
JPH04359861A (en) 1992-12-14

Similar Documents

Publication Publication Date Title
JP2715778B2 (en) Reversible electrode material
US5324599A (en) Reversible electrode material
US5690702A (en) Method of making electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
EP0569037B1 (en) A reversible electrode
JP3239374B2 (en) Electrode composition
JP3116451B2 (en) Reversible electrode
Oyama et al. Organosulfur polymer batteries with high energy density
JP3089707B2 (en) Solid electrode composition
JP2940198B2 (en) Solid electrode composition
JP3115153B2 (en) Electrochemical devices and secondary batteries
JP3038945B2 (en) Lithium secondary battery
JPH04264363A (en) Reversible compound electrode
JP2993272B2 (en) Reversible electrode
JP3047492B2 (en) Solid electrode composition
JPH0567477A (en) Battery
JP2955177B2 (en) Composite electrode, method for producing the same, and lithium secondary battery
Changzhi et al. A wound-type lithium/polyaniline secondary cell
JPH05135769A (en) Reversible electrode
JPH0821430B2 (en) Secondary battery
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JP3111506B2 (en) Reversible electrode
JPH05135800A (en) Lithium secondary battery
JPH04272659A (en) Reversible electrode
JPH06150932A (en) Electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees