JPH04272659A - Reversible electrode - Google Patents

Reversible electrode

Info

Publication number
JPH04272659A
JPH04272659A JP3032683A JP3268391A JPH04272659A JP H04272659 A JPH04272659 A JP H04272659A JP 3032683 A JP3032683 A JP 3032683A JP 3268391 A JP3268391 A JP 3268391A JP H04272659 A JPH04272659 A JP H04272659A
Authority
JP
Japan
Prior art keywords
electrode
compound
reaction
electrolyte
reversible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032683A
Other languages
Japanese (ja)
Inventor
Yoshiko Sato
佳子 佐藤
Yasushi Uemachi
裕史 上町
Teruhisa Kanbara
神原 輝寿
Tadashi Tonomura
正 外邨
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3032683A priority Critical patent/JPH04272659A/en
Publication of JPH04272659A publication Critical patent/JPH04272659A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enable electrolysis at large current by composing a reversible electrode mainly of a conductive macromolecule obtained by polymerization of a compound into which groups expressed by specific formulas are introduced. CONSTITUTION:A reversible electrode is composed mainly of an ion-electron mixed conductor macromolecule obtained by polymerization of a compound into which groups expressed by the formulas I, II are introduced. Thus the conductive macromolecule acts as an electrode touching body which reduces activation energy of a reaction during electron transfer process, while having the action of increasing an effective reaction area of the electrode for an electrolyte; i.e., the potential difference between oxidation reaction and reduction reaction, which is more than IV when disulfide compound unit is used is reduced below 0.1V by the interaction of the disulfide group expressed by the formula II and the ion-electron mixed conductive macromolecule. Therefore, electrode reactions are accelerated and the effect of an increase in the substantial contact area of the electrode with the electrolyte is combined with that of the acceleration so as to enable electrolysis (charge and discharge) with large current at room temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサー、メモリーなどの電気化学素
子に用いられる導電性高分子を主体とする可逆性電極に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible electrode mainly composed of a conductive polymer used in electrochemical devices such as batteries, electrochromic display devices, sensors, and memories.

【0002】0002

【従来の技術】1971年に白川らにより導電性のポリ
アセチレンが発見されて以来、導電性高分子を電極材料
に用いると軽量で高エネルギー密度の電池や、大面積の
エレクトロクロミック素子、微小電極を用いた生物化学
センサーなどの電気化学素子の実現が期待できることか
ら、導電性高分子電極の実用化が盛んに検討されている
。しかし、ポリアセチレンは空気中の水分や酸素との反
応性に富み、化学的に不安定であり、電気化学素子に用
いる電極として実用性に乏しいという問題を有していた
。この問題を克服するため他のπ電子共役系導電性高分
子が検討され、ポリアニリン、ポリピロール、ポリアセ
ン、ポリチオフェンなどの比較的安定な高分子が見いだ
され、これらを正極に用いたリチウム二次電池が開発さ
れるに及んでいる。
[Prior Art] Since the discovery of conductive polyacetylene by Shirakawa et al. in 1971, the use of conductive polymers as electrode materials has led to the creation of lightweight, high-energy-density batteries, large-area electrochromic devices, and microelectrodes. The practical application of conductive polymer electrodes is being actively studied, as it is expected that electrochemical devices such as biochemical sensors will be realized using them. However, polyacetylene has a problem in that it is highly reactive with moisture and oxygen in the air and is chemically unstable, making it impractical as an electrode for use in electrochemical devices. To overcome this problem, other π-electron conjugated conductive polymers were investigated, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene were discovered, and lithium secondary batteries using these as positive electrodes were developed. It is being developed.

【0003】これらの高分子電極は、電極反応に際して
カチオンのみならず電解質中のアニオンをも取り込むた
め、電解質はイオンの移動媒体として作用するだけでな
く、電池反応にも関与する。そのため電池容量に見合う
量の電解質を電池内に保持する必要がある。そして、そ
の保持電解質分だけ電池のエネルギー密度が低下して2
0〜50Wh/kg程度になり、ニッケルカドミウム蓄
電池や鉛蓄電池などの通常の二次電池に較べ2分の1程
度のエネルギー密度に小さくなるという問題を有してい
る。
[0003] These polymer electrodes take in not only cations but also anions in the electrolyte during the electrode reaction, so the electrolyte not only acts as an ion transfer medium but also participates in the battery reaction. Therefore, it is necessary to maintain an amount of electrolyte within the battery that corresponds to the battery capacity. Then, the energy density of the battery decreases by the amount of retained electrolyte.
The problem is that the energy density is about 0 to 50 Wh/kg, which is about half that of ordinary secondary batteries such as nickel-cadmium storage batteries and lead-acid batteries.

【0004】これに対し、高エネルギー密度が期待でき
る有機材料として、米国特許第4,833,048号に
ジスルフィド系化合物が開示されている。この化合物は
、最も簡単にはR−S−S−Rと表される(Rは脂肪族
あるいは芳香族の有機基、Sは硫黄)。S−S結合は電
解還元により開裂し、電解浴中のカチオン(M+)とで
R−Sー・M+で表される塩を生成し、またこの塩は、
電解酸化により再び元のR−S−S−Rに戻るという性
質を持つものである。また、カチオン(M+)を供給、
捕捉する金属Mとジスルフィド系化合物を組み合わせた
金属ーイオウ二次電池が上記の米国特許に提案されてお
り、エネルギー密度が150Wh/Kg以上と、通常の
二次電池に匹敵するか、あるいはそれ以上のエネルギー
密度が期待できる。
On the other hand, disulfide compounds are disclosed in US Pat. No. 4,833,048 as organic materials that are expected to have high energy density. This compound is most simply represented as R-S-S-R (R is an aliphatic or aromatic organic group and S is sulfur). The S-S bond is cleaved by electrolytic reduction and forms a salt represented by R-S-M+ with the cation (M+) in the electrolytic bath, and this salt is
It has the property of returning to the original R-S-S-R by electrolytic oxidation. In addition, cations (M+) are supplied,
A metal-sulfur secondary battery that combines a trapping metal M and a disulfide compound is proposed in the above-mentioned US patent, and has an energy density of 150Wh/Kg or more, which is comparable to or higher than ordinary secondary batteries. You can expect high energy density.

【0005】なお、電極触媒をジスルフィド系化合物電
極に導入することは、前述の米国特許第4833048
号あるいはJ.Electrochem Soc., 
Vol.136, p.2570−2575(1989
)に述べられているが、電極触媒としては有機金属化合
物が開示されているのみである。その効果については具
体的に示されていないばかりか、イオン電子混合伝導体
高分子がジスルフィド系化合物の電解に際し電極触媒と
して作用することは全く示されていない。
[0005] Introducing an electrocatalyst into a disulfide compound electrode is described in the above-mentioned US Pat. No. 4,833,048.
No. or J. Electrochem Soc. ,
Vol. 136, p. 2570-2575 (1989
), but only organometallic compounds are disclosed as electrode catalysts. Not only is this effect not specifically demonstrated, but there is also no indication that the ion-electronic mixed conductor polymer acts as an electrocatalyst in the electrolysis of disulfide compounds.

【0006】[0006]

【発明が解決しょうとする課題】しかし、このような従
来のジスルフィド系化合物は、米国特許第4,833,
048号の発明者らがJ.Electrochem.S
oc, Vol.136, No.9, p.2570
〜2575(1989)で報告しているように、例えば
[(C2H5)2NCSS−]2 の電解では、酸化と
還元の電位が1volt以上離れており、電極反応論に
よればこのような材料における電気化学反応は、その電
子移動過程が極めて小さい。従って室温付近では実用可
能な大きな電流、例えば1mA/cm2 以上の電流を
取り出すことが困難であり、100−200℃の高温で
の使用に限られるという課題を有していた。
[Problems to be Solved by the Invention] However, such conventional disulfide compounds are
The inventors of No. 048 J. Electrochem. S
oc, Vol. 136, No. 9, p. 2570
~2575 (1989), for example, in the electrolysis of [(C2H5)2NCSS-]2, the oxidation and reduction potentials are separated by more than 1 volt, and according to electrode reaction theory, the electric potential in such materials is In chemical reactions, the electron transfer process is extremely small. Therefore, it is difficult to extract a practically large current, for example, 1 mA/cm2 or more, near room temperature, and the problem is that use is limited to high temperatures of 100-200°C.

【0007】本発明は、このような課題を解決するもの
で、ジスルフィド系化合物を電池の電極として用いると
き高エネルギー密度という特徴を損なわず、かつ室温で
大電流の充放電が可能で、可逆性に優れた電極を提供す
ることを目的とするものである。
The present invention solves these problems, and when a disulfide compound is used as a battery electrode, it does not impair the characteristic of high energy density, can be charged and discharged with a large current at room temperature, and is reversible. The purpose of this research is to provide an excellent electrode.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
に本発明は、一般式(化3)および(化4)で示される
基を導入した化合物を重合して得られるイオン電子混合
伝導性高分子を主体として可逆性電極を構成したもので
ある。
[Means for Solving the Problems] In order to solve this problem, the present invention provides mixed ionic and electronic conductivity obtained by polymerizing compounds into which groups represented by general formulas (3) and (4) are introduced. The reversible electrode is mainly made of polymer.

【0009】[0009]

【化3】[Chemical formula 3]

【0010】0010

【化4】[C4]

【0011】[0011]

【作用】一般式(化3)で示す基を導入した化合物を重
合して得られるイオン電子混合伝導体高分子を主体とし
て可逆性電極を構成することにより、導電性高分子が電
子移動過程における反応の活性化エネルギーを低減する
電極触媒として作用し、同時に電解質に対する有効反応
面積を増大させる作用を有する。つまり、ジスルフィド
系化合物単独では1ボルト以上であった酸化反応と還元
反応との電位差を、一般式(化4)で示されるジスルフ
ィド基とイオン電子混合伝導体高分子の相互作用により
、これを0.1ボルトあるいはそれ以下までに小さくし
、これにより電極反応が促進され、また同時に電解質と
の実質的な接触面積が格段に増大される効果と相まって
、室温で大電流での電解(充放電)が可能となる。
[Function] By configuring a reversible electrode mainly using an ion-electronic mixed conductor polymer obtained by polymerizing a compound into which a group represented by the general formula (Chemical formula 3) has been introduced, the conductive polymer can react in the electron transfer process. It acts as an electrocatalyst to reduce the activation energy of the electrolyte, and at the same time has the effect of increasing the effective reaction area for the electrolyte. In other words, the potential difference between the oxidation reaction and the reduction reaction, which was 1 volt or more with the disulfide compound alone, can be reduced to 0.0 by the interaction between the disulfide group represented by the general formula (Chemical formula 4) and the ionic/electronic mixed conductor polymer. By reducing the voltage to 1 volt or less, this accelerates the electrode reaction, and at the same time, the effective contact area with the electrolyte is greatly increased, making it possible to conduct electrolysis (charging and discharging) at large currents at room temperature. It becomes possible.

【0012】0012

【実施例】本発明の導電性高分子に導入する基としては
、米国特許第4833048号に述べられてる一般式〔
R(S)y〕nで表される基を用いることができる。R
は脂肪族基、芳香族基、Sは硫黄、yは1以上の整数、
nは2以上の整数である。例えば、C2N2S(SH)
2で表される2,5−ジメルカプト−1,3,4−チア
ジアゾールや、C3H3N3S3で表されるS−トリア
ジン−2,4,6−トリチオールなどが用いられる。 
 本発明の導電性高分子を構成することができる化合物
としては、チオフェン、ピロール、アニリン、フランや
ベンゼンなどが用いられ、これらの導電性高分子にヨー
素などのアニオンをドープしたものなどが有効に用いら
れる。 また、多孔性のフィブリル構造をとることができる重合
条件のものが有効に用いられる。
[Example] The group introduced into the conductive polymer of the present invention has the general formula [
A group represented by R(S)y]n can be used. R
is an aliphatic group, an aromatic group, S is sulfur, y is an integer of 1 or more,
n is an integer of 2 or more. For example, C2N2S(SH)
2,5-dimercapto-1,3,4-thiadiazole represented by 2, S-triazine-2,4,6-trithiol represented by C3H3N3S3, etc. are used.
Examples of compounds that can constitute the conductive polymer of the present invention include thiophene, pyrrole, aniline, furan, and benzene, and these conductive polymers doped with anions such as iodine are effective. used for. In addition, polymerization conditions that allow a porous fibril structure to be formed are effectively used.

【0013】ジスルフィド化合物が還元され塩を形成す
る際の金属イオンには、上記の米国特許に開示されてい
るアルカリ金属イオン、アルカリ土類金属イオンに加え
て、プロトンを用いることもできる。アルカリ金属イオ
ンとしてリチウムイオンを用いる場合は、リチウムイオ
ンを供給および捕捉する電極として金属リチウムあるい
はリチウムーアルミニウムなどのリチウム合金を用い、
リチウムイオンを伝導する電解質を用いると電圧が3〜
4ボルトの電池を構成することができる。また同様に上
記の金属イオンとしてプロトンを用い、プロトンを供給
および捕捉する電極として LaNi5などの金属水素
化物を用い、プロトンを伝導する電解質を用いると電圧
が1〜2ボルトの電池を構成することもできる。
[0013] In addition to the alkali metal ions and alkaline earth metal ions disclosed in the above-mentioned US patents, protons can also be used as metal ions when the disulfide compound is reduced to form a salt. When using lithium ions as alkali metal ions, metallic lithium or a lithium alloy such as lithium-aluminum is used as an electrode for supplying and capturing lithium ions.
If an electrolyte that conducts lithium ions is used, the voltage will be 3~
A 4 volt battery can be constructed. Similarly, if protons are used as the metal ions mentioned above, a metal hydride such as LaNi5 is used as the electrode for supplying and capturing protons, and an electrolyte that conducts protons is used, a battery with a voltage of 1 to 2 volts can be constructed. can.

【0014】以下に、具体的実施例を詳しく説明する。   84g(1mol)のチオフェンと100mlの四
塩化炭素を混合し、0℃に冷却した。これに、500g
(3.1mol)の臭素を300mlの四塩化炭素に溶
解したものを徐々に加えた。全てを混合したのち、四塩
化炭素を留去し、15gの水酸化ナトリウムを加えて4
時間蒸気浴上で加熱した。アルカリ層と分離し乾燥した
のち、蒸留によって1置換と2置換と3置換の臭化チオ
フェンの混合物を得た。この混合物をキシレンに溶解し
、シリカゲルのカラムで分別し、2,2,3−トリブロ
モチオフェンを30g得た。
[0014] Specific examples will be explained in detail below. 84 g (1 mol) of thiophene and 100 ml of carbon tetrachloride were mixed and cooled to 0°C. Add this to 500g
(3.1 mol) of bromine dissolved in 300 ml of carbon tetrachloride was gradually added. After mixing everything, carbon tetrachloride was distilled off, and 15 g of sodium hydroxide was added.
Heat on a steam bath for an hour. After separating from the alkali layer and drying, a mixture of mono-, di- and tri-substituted thiophene bromides was obtained by distillation. This mixture was dissolved in xylene and fractionated using a silica gel column to obtain 30 g of 2,2,3-tribromothiophene.

【0015】このようにして得られる32g(0.1m
ol)の2,3,5−トリブロモチオフェンと6.5g
(0.2mol)の金属亜鉛と6g(0.2mol)の
酢酸を反応させ、3−ブロモチオフェンを得た。
32 g (0.1 m
ol) of 2,3,5-tribromothiophene and 6.5 g
(0.2 mol) of metallic zinc and 6 g (0.2 mol) of acetic acid were reacted to obtain 3-bromothiophene.

【0016】このようにして得た3−ブロモチオフェン
0.5molにテトラエチレングリコール0.5mol
を反応させ、脱臭素酸を行いテトラエチレングリコール
とチオフェンのエーテル化合物(以下チオフェン誘導体
1と称する)を得た。このようにして一般式(化3)で
表される基を導入した。
To 0.5 mol of 3-bromothiophene thus obtained, 0.5 mol of tetraethylene glycol was added.
were reacted and debromic acid was performed to obtain an ether compound of tetraethylene glycol and thiophene (hereinafter referred to as thiophene derivative 1). In this way, a group represented by the general formula (Chemical formula 3) was introduced.

【0017】さらにもう一度臭素化を行い、チオフェン
誘導体の4−ブロモ置換体を得た。このようにして得た
4−ブロモチオフェン誘導体0.05molに4gのチ
オ尿素をアセトニトリル中で反応させ、4−メルカプト
チオフェン誘導体0.01molを得た。この4−メル
カプトチオフェン誘導体を塩素中で2,5−ジメルカプ
ト−1,3,4−チアジアゾール0.01molと反応
させ、一般式(化4)で表されるジスルフィド基を導入
したチオフェンのテトラエチレングリコールエーテル誘
導体(以下チオフェン誘導体2と称する)を得た。
Bromination was carried out once more to obtain a 4-bromo substituted thiophene derivative. 0.05 mol of the 4-bromothiophene derivative thus obtained was reacted with 4 g of thiourea in acetonitrile to obtain 0.01 mol of 4-mercaptothiophene derivative. This 4-mercaptothiophene derivative was reacted with 0.01 mol of 2,5-dimercapto-1,3,4-thiadiazole in chlorine, and tetraethylene glycol of thiophene was introduced with a disulfide group represented by the general formula (Chemical formula 4). An ether derivative (hereinafter referred to as thiophene derivative 2) was obtained.

【0018】このようにして得られたチオフェン誘導体
(1mol/l)をモノマーとしてプロピレンカーボネ
ート中で過塩素酸リチウムを支持電解質として飽和カロ
メル参照電極に対し 1.2〜1.5 Vで定電位電解
することで、厚さ約20μmのフィブリル構造を有する
チオフェン誘導体重合膜を黒鉛電極上に形成した。この
電極を、室温で、LiClO4を1mol/l溶解した
ジメチルホルムアミド中でAg/AgCl参照電極に対
し−0.7〜+0.2 V の間で電位を 50 mV
/sec の速度で直線的に増減させ電解したところ図
1の曲線Aで示される電流電圧特性を得た。また、比較
例として、2,5−シ゛メルカフ゜トー1、3、4ーチ
アシ゛アソ゛ールを0.05mol/l、LiClO4
を0.5mol/l溶解したジメチルホルムアミド中で
Ag/AgCl参照電極に対し+0.8Vで定電位電解
しチオフェン誘導体重合物を有しない黒鉛電極を用いて
同様に電解したところ図1の曲線Bで示される電流電圧
特性を得た。さらに、チオフェン誘導体重合膜のみを有
する黒鉛電極についても同様な電解を行い図1の曲線C
で示される電流電圧特性を得た。曲線Aは、チオフェン
誘導体重合膜のみを有する黒鉛電極の電流電圧曲線Cと
、2,5−シ゛メルカフ゜ト−1,3,4−チアシ゛ア
ソ゛ールの酸化還元に対応する電流ピークとが重なった
電流電圧特性を与えている。2,5−シ゛メルカフ゜ト
−1,3,4−チアシ゛アソ゛ールの酸化還元に対応す
る電流ピークのうち特に還元反応に対応する電流ピーク
位置が−0.6 Vから−0.2 V付近まで移動し、
イオン電子混合伝導体高分子であるチオフェン誘導体重
合物の存在で2,5−シ゛メルカフ゜ト−1,3,4−
チアシ゛アソ゛ールの酸化還元が促進されていることが
わかる。これに対し、重合物を有しない黒鉛電極で得ら
れた曲線Bでは、2,5−シ゛メルカフ゜ト−1,3,
4−チアシ゛アソ゛ールの酸化還元に対応する電流ピー
クが得られるが、酸化ピークと還元ピークとの電位差が
 0.6 V近くに及び、酸化還元反応は準可逆で反応
の速度は遅く、この電極を電池の正極に用いると、充電
と放電の電圧差が 0.6 V以上に大きくなるととも
に、この電池を大電流で充放電すると充放電効率が低下
する。
The thus obtained thiophene derivative (1 mol/l) was used as a monomer and subjected to constant potential electrolysis at 1.2 to 1.5 V with respect to a saturated calomel reference electrode in propylene carbonate with lithium perchlorate as a supporting electrolyte. In this way, a thiophene derivative polymer film having a fibril structure with a thickness of about 20 μm was formed on the graphite electrode. The electrode was placed at a potential of 50 mV between -0.7 and +0.2 V relative to the Ag/AgCl reference electrode in dimethylformamide containing 1 mol/l of LiClO4 at room temperature.
When electrolysis was carried out by increasing and decreasing the amount linearly at a rate of /sec, the current-voltage characteristics shown by curve A in FIG. 1 were obtained. In addition, as a comparative example, 0.05 mol/l of 2,5-dimercapto 1, 3, 4-acyasol, LiClO4
When electrolyzed at a constant potential of +0.8 V with respect to the Ag/AgCl reference electrode in dimethylformamide containing 0.5 mol/l of thiophene derivative polymer, electrolysis was carried out in the same manner using a graphite electrode without a thiophene derivative polymer. The current-voltage characteristics shown were obtained. Furthermore, similar electrolysis was performed using a graphite electrode having only a thiophene derivative polymer film, and curve C in Figure 1 was used.
The current-voltage characteristics shown are obtained. Curve A gives a current-voltage characteristic in which the current-voltage curve C of a graphite electrode having only a thiophene derivative polymerized film overlaps with the current peak corresponding to the redox of 2,5-dimercapte-1,3,4-thiadiasol. ing. Among the current peaks corresponding to the redox of 2,5-dimercaphyte-1,3,4-thiasiasol, the current peak position particularly corresponding to the reduction reaction moves from -0.6 V to around -0.2 V,
Due to the presence of a thiophene derivative polymer, which is an ionic and electronic mixed conductor polymer, 2,5-dimercaphte-1,3,4-
It can be seen that the redox of thiasyl is promoted. On the other hand, in curve B obtained with a graphite electrode that does not contain a polymer, 2,5-shimerkaft-1,3,
Although a current peak corresponding to the redox of 4-thiacyasol is obtained, the potential difference between the oxidation peak and the reduction peak is close to 0.6 V, and the redox reaction is semi-reversible and the reaction rate is slow, making it difficult to use this electrode in a battery. When used as the positive electrode of a battery, the voltage difference between charging and discharging increases to 0.6 V or more, and when this battery is charged and discharged with a large current, the charging and discharging efficiency decreases.

【0019】なお、本実施例ではチオフェンを用いた場
合について説明したが、本発明はこれに限定されるもの
ではなく、他の導電性高分子を用いても同様の効果が得
られる。さらに、本発明の重合膜を粉砕し、集電体と混
合して用いても同様の効果が得られる。
[0019] In this example, the case where thiophene is used has been described, but the present invention is not limited thereto, and similar effects can be obtained by using other conductive polymers. Furthermore, the same effect can be obtained by crushing the polymer membrane of the present invention and mixing it with a current collector.

【0020】[0020]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明によれば、ジスルフィド系化合物を導入した化
合物を重合してえられる導電性化合物を主体とする電極
では、従来のジスルフィド系化合物のみで構成された電
極では困難であった大電流での電解が可能となる。そし
て、この電極を正極に用い、金属リチウムを負極に用い
ることで大電流での充放電が可能な高エネルギー密度二
次電池を構成することができる。
Effects of the Invention As is clear from the explanation of the above embodiments, according to the present invention, an electrode mainly composed of a conductive compound obtained by polymerizing a compound into which a disulfide compound is introduced is different from the conventional disulfide compound. Electrolysis with large currents, which was difficult with electrodes made only of compounds, becomes possible. By using this electrode as a positive electrode and metallic lithium as a negative electrode, a high energy density secondary battery capable of charging and discharging at a large current can be constructed.

【0021】なお、本発明は電池の他に、電極を対極に
用いることで発色・退色速度の速いエレクトロクロミッ
ク素子や応答速度の早いグルコースセンサーなどの生物
化学センサーを得ることができるし、また、書き込み・
読み出し速度の速い電気化学的アナログメモリーを構成
することもできる。
[0021] In addition to batteries, the present invention can provide biochemical sensors such as electrochromic elements with fast color development and fading speed and glucose sensors with fast response speed by using the electrode as a counter electrode. write·
It is also possible to construct an electrochemical analog memory with a fast readout speed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の複合電極および比較例の電
極の電流ー電圧特性を示すグラフ
FIG. 1 is a graph showing the current-voltage characteristics of a composite electrode according to an example of the present invention and an electrode according to a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一般式(化1)および(化2)で示さ
れる基を導入した化合物を重合して得られる導電性高分
子を主体とする可逆性電極。 【化1】 【化2】
1. A reversible electrode mainly composed of a conductive polymer obtained by polymerizing a compound into which groups represented by formulas (1) and (2) are introduced. [Chemical formula 1] [Chemical formula 2]
JP3032683A 1991-02-27 1991-02-27 Reversible electrode Pending JPH04272659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032683A JPH04272659A (en) 1991-02-27 1991-02-27 Reversible electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032683A JPH04272659A (en) 1991-02-27 1991-02-27 Reversible electrode

Publications (1)

Publication Number Publication Date
JPH04272659A true JPH04272659A (en) 1992-09-29

Family

ID=12365677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032683A Pending JPH04272659A (en) 1991-02-27 1991-02-27 Reversible electrode

Country Status (1)

Country Link
JP (1) JPH04272659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879834A (en) * 1995-08-23 1999-03-09 Nec Moli Energy (Canada) Ltd. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879834A (en) * 1995-08-23 1999-03-09 Nec Moli Energy (Canada) Ltd. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries

Similar Documents

Publication Publication Date Title
JP4259617B2 (en) Electrochemical storage battery comprising at least one electrode prepared from a fluorophenylthiophene polymer
US5690702A (en) Method of making electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
JP2715778B2 (en) Reversible electrode material
JPH11506799A (en) Electroactive high storage capacity polyacetylene-co-polysulfur material and electrolytic cell containing same
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
JP3116451B2 (en) Reversible electrode
JP3089707B2 (en) Solid electrode composition
JP3239374B2 (en) Electrode composition
JP2940198B2 (en) Solid electrode composition
JPH04272659A (en) Reversible electrode
JPH04264363A (en) Reversible compound electrode
JPH06310173A (en) Electrochemical device and secondary battery
JP2993272B2 (en) Reversible electrode
JP3111506B2 (en) Reversible electrode
US10355277B2 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
WO2000045451A1 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
JPH05135769A (en) Reversible electrode
JP3047492B2 (en) Solid electrode composition
JPH056708A (en) Reversible electrode
JPH0831449A (en) High-capacity battery for secondary battery
JPH06150932A (en) Electrode
JPH06231752A (en) Reversible combination electrode and lithium secondary battery using it
JPH05135767A (en) Reversible electrode
JPS6139463A (en) Manufacture of cell
JPH05135768A (en) Reversible composite electrode