JPH05135767A - Reversible electrode - Google Patents

Reversible electrode

Info

Publication number
JPH05135767A
JPH05135767A JP3295484A JP29548491A JPH05135767A JP H05135767 A JPH05135767 A JP H05135767A JP 3295484 A JP3295484 A JP 3295484A JP 29548491 A JP29548491 A JP 29548491A JP H05135767 A JPH05135767 A JP H05135767A
Authority
JP
Japan
Prior art keywords
sulfur
bond
atom
electrode
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3295484A
Other languages
Japanese (ja)
Inventor
Yasushi Uemachi
裕史 上町
Yoshiko Sato
佳子 佐藤
Tadashi Tonomura
正 外邨
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3295484A priority Critical patent/JPH05135767A/en
Publication of JPH05135767A publication Critical patent/JPH05135767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the oxidation/reduction reaction speed of an organic compound used for an electrochemical element such as a battery, an electro- chromic display element, a sensor, and a memory. CONSTITUTION:A compound introduced with a disulfide compound into a conducting polymer is used as an electrode. When the disulfide compound is used as the electrode of a battery, a secondary battery having a large energy density of 150wh/kg or above can be constituted. The oxidation/reduction reaction of the disulfide compound is slow, a large current is difficult to be extracted by the disulfide compound alone, when it is combined with the conducting polymer, the oxidation/reduction reaction of the disulfide compound is accelerated by the electrode catalyst action of the conducting polymer, the practical contact area with an electrolyte is also remarkably increased, thus an electrolysis (charge/discharge) with a large current can be performed at the room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサー、メモリー等の電気化学素子
に用いられる有機化合物よりなる可逆性電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible electrode made of an organic compound used in electrochemical devices such as batteries, electrochromic display devices, sensors and memories.

【0002】[0002]

【従来の技術】1971年に白川らにより導電性のポリ
アセチレンが発見されて以来、導電性高分子を電極材料
に用いると軽量で高エネルギー密度の電池や、大面積の
エレクトロクロミック素子、微小電極を用いた生物化学
センサー等の電気化学素子の実現が期待できることか
ら、導電性高分子電極が盛んに検討されている。しかし
ながらポリアセチレンは空気中の水分や酸素に対して化
学的に不安定であり、電気化学素子に用いる電極として
実用性に乏しいという問題点を有していた。この問題点
を克服するため他のπ電子共役系導電性高分子が検討さ
れ、ポリアニリン、ポリピロール、ポリアセン、ポリチ
オフェン等の比較的安定な高分子が見いだされ、これら
を正極に用いたリチウム二次電池が開発されるに及んで
いる。
2. Description of the Prior Art Since the discovery of conductive polyacetylene by Shirakawa et al. In 1971, the use of conductive polymers as electrode materials has led to the production of lightweight, high energy density batteries, large-area electrochromic devices, and microelectrodes. Conducting polymer electrodes are being actively studied because they can be expected to realize electrochemical devices such as biochemical sensors. However, polyacetylene has a problem in that it is chemically unstable with respect to moisture and oxygen in the air and is not practical as an electrode used in an electrochemical device. In order to overcome this problem, other π-electron conjugated conductive polymers have been investigated, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been found, and lithium secondary batteries using these as the positive electrode. Is being developed.

【0003】これらの高分子電極は、電極反応に際して
カチオンのみならず電解質中のアニオンを取り込みむた
め、電解質はイオンの移動媒体として作用するだけでな
く電池反応に関与し、そのため電池容量に見合う量の電
解質を電池内に供給する必要がある。そして、その分電
池のエネルギー密度は20〜50Wh/kg程度で、ニッケ
ルカドミウム蓄電池、鉛蓄電池等の通常の二次電池に較
べ2分の1程度と小さくなるという問題を有している。
Since these polymer electrodes take in not only cations but also anions in the electrolyte during the electrode reaction, the electrolyte not only acts as a transfer medium for the ions but also participates in the battery reaction, and therefore, an amount commensurate with the battery capacity. It is necessary to supply this electrolyte into the battery. Then, the energy density of the battery is about 20 to 50 Wh / kg, which is a problem that it is smaller than that of a normal secondary battery such as a nickel-cadmium storage battery or a lead storage battery by about one half.

【0004】これに対し、高エネルギー密度が期待でき
る有機材料として,ヨーロッパ特許415856号明細書にジ
スルフィド系化合物が提案されている,一般式X-S-R-S-
(S-R-S)n-S-R-S-X'で表される化合物を用いることがで
きる。但し、n:0あるいは1以上の整数、X,X':金属M
を含む金属か、水素か、末端有機基、S:硫黄、R:ジチ
オールの硫黄原子Sを1個以上結合する炭素原子を含む2
官能価の環式有機基をあらわす.S−S結合は電解還元
により開裂し、電解浴中のカチオン(M+)とでR−Sー
・M+で表される塩を生成し、またこの塩は、電解酸化
により再び元のR−S−S−Rに戻るという性質を持つ
ものである。また、カチオン(M+)を供給、捕捉する
金属Mとジスルフィド系化合物を組み合わせた金属ーイ
オウ二次電池が前述のヨーロッパ特許に提案されてお
り、1000Wh/Kg以上と、通常の一次電池に匹敵あるいは
それ以上のエネルギー密度が期待できる。
On the other hand, as an organic material which can be expected to have a high energy density, a disulfide compound has been proposed in European Patent 415856, which has a general formula XSRS-.
A compound represented by (SRS) nSRS-X ′ can be used. However, n: 0 or an integer of 1 or more, X, X ': metal M
A metal containing hydrogen, a terminal organic group, S: sulfur, R: a sulfur atom of dithiol, which contains a carbon atom that bonds one or more S 2
Represents a functional cyclic organic group. The S—S bond is cleaved by electrolytic reduction to form a salt represented by R—S− · M + with the cation (M +) in the electrolytic bath, and this salt is again converted to the original R by electrolytic oxidation. It has the property of returning to -S-S-R. In addition, a metal-sulfur secondary battery in which a metal M that supplies and captures a cation (M +) and a disulfide compound is combined is proposed in the above-mentioned European patent, and is 1000 Wh / Kg or more, which is comparable to or more than a normal primary battery. The above energy density can be expected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、提案さ
れているジスルフィド系化合物は、ヨーロッパ特許第41
5856号明細書の実施例で報告しているように、例えば
[(C2H5)2NCSS-]2 を用いて組み立てた電池の充放電にお
いて、放電電流が13μA/cm2,充電電流6.5μA/cm2がと
小さい。電極反応論の教えるところによればこのような
材料における電気化学反応は、その電子移動過程が極め
て遅く、従って室温付近では実用に見合う大きな電流、
例えば1mA/cm2 以上の電流を取り出すことが困難であ
り、100−200℃の高温での使用に限られるという
課題を有していた。
[Problems to be Solved by the Invention] However, the proposed disulfide compound is disclosed in European Patent No. 41.
As reported in the examples of 5856, for example
When the battery assembled using [(C 2 H 5 ) 2 NCSS-] 2 was charged and discharged, the discharge current was as small as 13 μA / cm 2 and the charging current was 6.5 μA / cm 2 . According to the teaching of electrode reaction theory, the electrochemical reaction in such a material has an extremely slow electron transfer process, and therefore a large current suitable for practical use near room temperature,
For example, it is difficult to extract a current of 1 mA / cm 2 or more, and there is a problem that it is limited to use at a high temperature of 100 to 200 ° C.

【0006】[0006]

【課題を解決するための手段】本発明は電解還元により
硫黄−硫黄結合が開裂することにより硫黄−金属イオン
(プロトンを含む)結合を生成し、かつ電解酸化により
前記硫黄−金属イオン結合が前記硫黄−硫黄結合に再生
する基を導入した導電性高分子を主たる構成成分とする
可逆性電極に関するものである。本発明により,室温付
近では実用に見合う大きな電流、例えば1mA/cm2 以上
の電流を取り出すことを可能とする。導電性高分子に導
入する基は電解酸化状態で、X-S-R-S-(S-R-S)n-S-R-S-
X'の形の鎖によって特徴付けられる少なくとも一つの硫
黄有機化合物のポリマ(但し、n:0あるいは1以上の整
数、X,X':金属Mか、水素か、末端有機基、S:硫黄、R:ジ
チオールの硫黄原子Sを1個以上結合している炭素原子を
含む環式有機基で、前記炭素原子は、S-S結合が破壊さ
れて-S-R-SM基により両端で終了する短い鎖が生成さ
れ、電解還元状態にある時に、少なくとも一個の窒素原
子と化学的に結合し、S-C=N<->S=C-N-のタイプの共役結
合により負電荷を非局在化し、硫黄Sの原子の可逆的な
電気化学的還元を可能にする炭素原子である)を生成す
るものである。導電性高分子としては窒素原子を含み、
その窒素原子が炭素原子と共役する単量体よりなるもの
である。
According to the present invention, a sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including a proton) bond, and electrolytic oxidation causes the sulfur-metal ion bond to become The present invention relates to a reversible electrode containing a conductive polymer having a sulfur-sulfur bond regenerated group introduced therein as a main component. According to the present invention, it is possible to extract a large current that is practically suitable near room temperature, for example, a current of 1 mA / cm 2 or more. The group introduced into the conductive polymer is in the electrolytic oxidation state, XSRS- (SRS) nSRS-
A polymer of at least one sulfur organic compound characterized by a chain of the form X ', where n: 0 or an integer greater than or equal to 1, X, X': metal M or hydrogen, a terminal organic group, S: sulfur, R: a cyclic organic group containing a carbon atom having at least one sulfur atom S of dithiol bonded thereto, wherein the carbon atom has a short chain in which the SS bond is destroyed and the SR-SM group terminates at both ends. When it is in the electrolytic reduction state, it chemically bonds with at least one nitrogen atom, delocalizes the negative charge by a conjugate bond of the type SC = N <-> S = CN-, and It is a carbon atom that enables reversible electrochemical reduction). The conductive polymer contains a nitrogen atom,
The nitrogen atom is composed of a monomer conjugated with a carbon atom.

【0007】[0007]

【作用】本発明は、ジスルフィド系化合物を電池の電極
として用いるとき高エネルギー密度を有するという特徴
を損なわず、かつ室温でも大電流充放電が可能で可逆性
に優れた電極を提供するものである。
The present invention provides an electrode which does not impair the feature of having a high energy density when a disulfide compound is used as an electrode of a battery, is capable of charging and discharging a large current even at room temperature and is excellent in reversibility. ..

【0008】[0008]

【実施例】本発明の化合物としては、ヨーロッパ特許第
415856号明細書に述べられてる一般式X-S-R-S-(S-R-S)n
-S-R-S-X'で表される化合物を用いることができる。但
し、n:0あるいは1以上の整数、X,X':金属M,水素あ
るいは末端有機基、S:硫黄、R:ジチオールの硫黄原子
Sを1個以上結合する炭素原子を含む2官能価の環式有機
基をあらわす。例えば、C22S(SH)2で表される
2,5−ジメルカプト−1,3,4−チアジアゾール
や、C3333で表されるS−トリアジン−2,4,
6−トリチオールなどが用いられ、さらにこれら化合物
を導電性高分子を製造可能な化合物に導入する。Journa
l of the American Chemical Society, Vol97, NO11, p
3235-3238,(1975)でジスルフィド化合物の酸化反応が含
窒素共役系有機化合物であるフラビンを加えることで促
進されることが述べられ、ジスルフィド化合物の硫黄原
子が含窒素共役系有機化合物の窒素原子に結合すること
で反応が促進すると述べられている。しかしながら、上
記文献では、反応速度について論じているのみでジスル
フィド化合物に対する含窒素共役系有機化合物の酸化促
進現象を電気化学的アプローチから測定、解釈してはい
ない。ましてや、ジスルフィド化合物とその酸化還元反
応を促進する含窒素共役系有機化合物を用いれば、有機
溶媒中、室温でも大電流充放電が可能で可逆性に優れた
電極を作成出来ることを全くのべていない。発明者らは
ジスルフィド化合物、その酸化還元反応を促進する含窒
素共役系有機化合物を用いれば、有機溶媒中、室温でも
大電流充放電が可能で可逆性に優れた電極を作成出来る
ことを見いだした。導電作用も有する含窒素共役系有機
化合物として、ポリアニリン等の導電性高分子が最適で
あることを見いだした。本発明の導電性高分子の代表例
としては、アニリン,o-ジアミノベンゼン,o-ジアミノ
ナフタレンなどの含窒素共役系有機物の単量体及びその
誘導体の重合物が用いられる。ポリフェニレンジアミン
等の一部の導電性高分子は酸の存在下でのみ導電性を発
現する。この場合、電極に塩酸,硫酸,硝酸,酢酸,パ
ラトルエンスルフォン酸等の酸を含有することで電極触
媒作用を促進させることができる。
The compounds of the present invention are described in European Patent No.
No. 415856 describes the general formula XSRS- (SRS) n
A compound represented by -SRS-X 'can be used. However, n: 0 or an integer of 1 or more, X, X ': metal M, hydrogen or terminal organic group, S: sulfur, R: sulfur atom of dithiol
Represents a bifunctional cyclic organic group containing a carbon atom that binds at least one S. For example, 2,5-dimercapto-1,3,4-thiadiazole represented by C 2 N 2 S (SH) 2 and S-triazine-2,4 represented by C 3 H 3 N 3 S 3 .
6-trithiol or the like is used, and these compounds are further introduced into a compound capable of producing a conductive polymer. Journa
l of the American Chemical Society, Vol97, NO11, p
3235-3238, (1975) described that the oxidation reaction of a disulfide compound is promoted by adding flavin, which is a nitrogen-containing conjugated organic compound, and the sulfur atom of the disulfide compound is a nitrogen atom of the nitrogen-containing conjugated organic compound. It is said that the reaction is promoted by binding to. However, in the above-mentioned document, only the reaction rate is discussed, and the oxidation promotion phenomenon of the nitrogen-containing conjugated organic compound with respect to the disulfide compound is not measured or interpreted from the electrochemical approach. Furthermore, it is completely stated that a disulfide compound and a nitrogen-containing conjugated organic compound that promotes its redox reaction can be used to produce an electrode having excellent reversibility capable of charging and discharging a large current even at room temperature in an organic solvent. Absent. The inventors have found that by using a disulfide compound and a nitrogen-containing conjugated organic compound that promotes its redox reaction, it is possible to create an electrode having excellent reversibility capable of charging and discharging a large current in an organic solvent even at room temperature. .. It was found that a conductive polymer such as polyaniline is the most suitable as a nitrogen-containing conjugated organic compound that also has a conductive action. As a representative example of the conductive polymer of the present invention, a polymer of a nitrogen-containing conjugated organic monomer such as aniline, o-diaminobenzene, or o-diaminonaphthalene, or a derivative thereof is used. Some conductive polymers such as polyphenylene diamine develop conductivity only in the presence of acid. In this case, the electrode catalyst action can be promoted by containing an acid such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, or paratoluenesulfonic acid in the electrode.

【0009】g/AgCl電極に対して0〜±1.0voltで可
逆性の高い酸化還元反応を起こす導電性高分子が有効に
用いられる。また、多孔性のフィブリル構造をとること
ができ、細孔中にジスルフィド化合物を保持できるもの
が好ましい。ジスルフィド化合物が還元され塩を形成す
る際の金属イオンには、前述のヨーロッパ特許に述べら
れているようにアルカリ金属イオン,アルカリ土類金属
イオン,二価の遷移金属,プロトンを用いることもでき
る。アルカリ金属イオンとしてリチウムイオンを用いる
場合は、リチウムイオンを供給および捕捉する電極とし
て金属リチウムあるいはリチウムーアルミニウム等のリ
チウム合金を用い、リチウムイオンを伝導する電解質を
用いると電圧が3〜4ボルトの電池が構成できる。また
同様に前述の金属イオンとしてプロトンを用い、プロト
ンを供給および捕捉する電極として LaNi5,MmNi3.55Mn
0.4Al0.3Co0.75(Mm:ミシュメタル)などの金属水素化物
を用い、プロトンを伝導する電解質を用いると電圧が1
から2ボルトの電池を構成することもできる。
A conductive polymer that causes a highly reversible redox reaction at 0 to ± 1.0 volt with respect to a g / AgCl electrode is effectively used. Further, those having a porous fibril structure and capable of retaining the disulfide compound in the pores are preferable. As the metal ion when the disulfide compound is reduced to form a salt, an alkali metal ion, an alkaline earth metal ion, a divalent transition metal or a proton can be used as described in the above-mentioned European Patent. When lithium ions are used as the alkali metal ions, a lithium alloy such as metallic lithium or lithium-aluminum is used as an electrode for supplying and capturing the lithium ions, and a battery having a voltage of 3 to 4 volts is used when an electrolyte that conducts the lithium ions is used. Can be configured. Similarly, protons are used as the above-mentioned metal ions, and LaNi 5 , MmNi 3.55 Mn are used as electrodes for supplying and trapping protons.
When a metal hydride such as 0.4 Al 0.3 Co 0.75 (Mm: misch metal) is used and an electrolyte that conducts protons is used, the voltage is 1
It is also possible to construct a 2-volt battery.

【0010】具体的実施例 ベンゼン溶媒中で1,2ジクロロエタン9.7g(0.1mol)とo-
アミノフェノール11g(0.1mol)を反応させることでアニ
リンの2位の側鎖にエチレンクロライドを有するアニリ
ン誘導体A4.7g(0.03mol)を得た。この様にして得られ
たアニリン誘導体A1mol/cm3および5mol/cm3を溶解し
たpH=1.0の硫酸酸性水溶液中で、飽和カロメル参照電極
に対し1.2〜1.5 voltで定電位電解することで、厚さ約
20μmのフィブリル構造を有するポリアニリン誘導体
膜を黒鉛電極上に形成した。このようにして得たポリア
ニリン誘導体膜を有する黒鉛電極を80℃で一昼夜真空
乾燥後、アニリン誘導体A薄膜1g(0.01mol)にチオ尿素
0.8g(0.01mol)を反応させてメルカプト基を導入し、さ
らに,5-シ゛メルカフ゜ト-1,3,4-チアシ゛アソ゛ール(0.01mol)を反応させ
て図のようなジスルフィドを導入したポリアニリン電極
を得た。この電極を、室温で、LiClO4を1M溶解したジ
メチルホルムアミド中でAg/AgCl参照電極に対し-0.7〜+
0.2 volt の間で電位を 50 mV/secの速度で直線的に増
減させ電解したところ図1の曲線(a)で示される電流
電圧特性を得た。また、比較例として、黒鉛電極を用い
て2,5-シ゛メルカフ゜トー1、3、4ーチアシ゛アソ゛ールを0.05mol/cm3、LiClO
4を0.5mol/cm3溶解したジメチルホルムアミド中でAg/Ag
Cl参照電極に対し+0.8voltで定電位電解しポリアニリン
を有さない電極を同様に電解したところ図1の曲線
(b)で示される電流電圧特性を得た。さらに、アニリ
ン薄膜のみを有する黒鉛電極についても同様な電解を行
い図1の曲線(c)で示される電流電圧特性を得た。曲
線(a)は、ポリアニリンのみを有する黒鉛電極の電流
電圧曲線(c)と、2,5-シ゛メルカフ゜ト-1,3,4-チアシ゛アソ゛ールの酸
化還元に対応する電流ピークとが重なった電流電圧特性
を与えている。2,5-シ゛メルカフ゜ト-1,3,4-チアシ゛アソ゛ールの酸化還
元に対応する電流ピークのうち特に還元反応に対応する
電流ピーク位置が-0.6 voltから-0.2 volt付近まで移動
し、ポリアニリンの存在で2,5-シ゛メルカフ゜ト-1,3,4-チアシ゛アソ゛
ールの酸化還元が促進されていることがわかる。これに対
し、ポリアニリン薄膜を有しない黒鉛電極で得られた曲
線(b)では、2,5-シ゛メルカフ゜ト-1,3,4-チアシ゛アソ゛ールの酸化還
元に対応する電流ピークが得られるが、酸化ピークと還
元ピークとの電位差が 0.6 volt近くに及び、酸化還元
は準可逆で反応の速度は遅く、この電極を電池の正極に
用いると、充電と放電の電圧差が 0.6 volt以上に大き
くなるとともに、大電流での充放電では効率低下の大き
い電池となる。
Specific Example 9.7 g (0.1 mol) of 1,2 dichloroethane and o-in a benzene solvent
By reacting 11 g (0.1 mol) of aminophenol, 4.7 g (0.03 mol) of aniline derivative A having ethylene chloride on the 2-position side chain of aniline was obtained. The aniline derivative A thus obtained was dissolved in 1 mol / cm3 and 5 mol / cm3 of a sulfuric acid aqueous solution of pH = 1.0 and subjected to constant potential electrolysis with a saturated calomel reference electrode at 1.2 to 1.5 volt to obtain a thickness of about A polyaniline derivative film having a 20 μm fibril structure was formed on a graphite electrode. The graphite electrode having the polyaniline derivative film thus obtained was vacuum-dried at 80 ° C. for one day, and then 1 g (0.01 mol) of aniline derivative A thin film was added to thiourea.
0.8 g (0.01 mol) was reacted to introduce a mercapto group, and further, 5-dimercapto-1,3,4-thiadiazole (0.01 mol) was reacted to obtain a polyaniline electrode having a disulfide introduced as shown in the figure. .. This electrode was used at room temperature in dimethylformamide in which 1M LiClO4 was dissolved to -0.7 ~ + against Ag / AgCl reference electrode.
When the potential was linearly increased and decreased at a rate of 50 mV / sec between 0.2 volt and electrolysis was performed, the current-voltage characteristics shown by the curve (a) in FIG. 1 were obtained. In addition, as a comparative example, a graphite electrode was used and 0.05 mol / cm3 of 2,5-dimercapto 1,3,4-thiadiazole, LiClO 3 was used.
Ag / Ag in dimethylformamide dissolved in 0.5mol / cm3
When a constant potential electrolysis was performed at +0.8 volt with respect to the Cl reference electrode and an electrode having no polyaniline was electrolyzed in the same manner, the current-voltage characteristic shown by the curve (b) in FIG. 1 was obtained. Further, the same electrolysis was performed on the graphite electrode having only the aniline thin film to obtain the current-voltage characteristic shown by the curve (c) in FIG. The curve (a) shows the current-voltage characteristic in which the current-voltage curve (c) of the graphite electrode having only polyaniline and the current peak corresponding to the oxidation-reduction of 2,5-dimercaptop-1,3,4-thiadiazole overlap. I'm giving. Among the current peaks corresponding to the redox of 2,5-dimercapto-1,3,4-thiadiazole, the position of the current peak particularly corresponding to the reduction reaction moves from -0.6 volt to around -0.2 volt, and in the presence of polyaniline, 2 It can be seen that the redox of 1,5-dimercapto-1,3,4-thiadiazole is promoted. On the other hand, in the curve (b) obtained with the graphite electrode having no polyaniline thin film, a current peak corresponding to the redox of 2,5-dimercaptop-1,3,4-thiadiazole is obtained, but it is not the oxidation peak. The potential difference from the reduction peak was close to 0.6 volt, the oxidation-reduction was quasi-reversible and the reaction rate was slow.When this electrode was used for the positive electrode of the battery, the voltage difference between charging and discharging was increased to 0.6 volt or more, and A battery with a large decrease in efficiency is obtained by charging and discharging with electric current.

【0011】本実施例においては導電性高分子として、
アニリンを用いた場合を説明したが他の導電性高分子に
おいても同様の効果がある。また、一般式X-S-R-S-(S-R
-S)n-S-R-S-X'で表される化合物のRにチアジアゾ−ル
を用いた場合を説明したが、Rがウラシル、トリアジン
あるいはピラリジンでも同様の効果がある。
In this embodiment, as the conductive polymer,
The case of using aniline has been described, but the same effect can be obtained with other conductive polymers. In addition, the general formula XSRS- (SR
Although the case where thiadiazole is used as R in the compound represented by -S) nSRS-X 'has been described, the same effect can be obtained even when R is uracil, triazine or pyraridine.

【0012】[0012]

【発明の効果】以上のように本発明においては、従来の
ジスルフィド系化合物のみでは困難であった大電流での
電解が可能となる。そして、この電極を正極に用い、金
属リチウムを負極に用いることで大電流充放電が期待で
きる高エネルギー密度二次電池を構成することができ
る。さらに、本発明は電池の他に、発色・退色速度の速
いエレクトロクロミック素子、応答速度の早いグルコー
スセンサー等の生物化学センサーを得ることができる、
さらに、書き込み・読出速度の速い電気化学アナログメ
モリーを構成することもできる。
INDUSTRIAL APPLICABILITY As described above, the present invention enables electrolysis at a large current, which has been difficult with conventional disulfide compounds alone. Then, by using this electrode for the positive electrode and metallic lithium for the negative electrode, a high energy density secondary battery in which large-current charging / discharging can be expected can be constructed. Furthermore, the present invention can obtain a biochemical sensor such as an electrochromic device having a fast coloring / fading rate and a glucose sensor having a fast response speed in addition to the battery.
Further, an electrochemical analog memory having a high writing / reading speed can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の複合電極および比較例にお
ける電極の電流ー電圧特性図
FIG. 1 is a current-voltage characteristic diagram of a composite electrode of an example of the present invention and an electrode of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Takeyama Inventor Kenichi Takeyama 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電解還元により硫黄−硫黄結合が開裂する
ことにより硫黄−金属イオン(プロトンを含む)結合を
生成し、かつ電解酸化により前記硫黄−金属イオン結合
が前記硫黄−硫黄結合に再生する性質を有する基を導入
した導電性高分子を主たる構成成分とする可逆性電極。
1. A sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion (including a proton) bond, and electrolytic oxidation regenerates the sulfur-metal ion bond into the sulfur-sulfur bond. A reversible electrode containing a conductive polymer into which a functional group is introduced as a main component.
【請求項2】導電性高分子に導入した基が電解酸化状態
で、X-S-R-S-(S-R-S)n-S-R-S-X'の形の鎖によって特徴
付けられる少なくとも一つの硫黄有機化合物のポリマ
(但し、n:0あるいは1以上の整数、X,X':金属Mか、
水素か、末端有機基、S:硫黄、R:ジチオールの硫黄原
子Sを1個以上結合している炭素原子を含む環式有機基
で、前記炭素原子は、S-S結合が破壊されて-S-R-SM基に
より両端で終了する短い鎖が生成され、電解還元状態に
ある時に、少なくとも一個の窒素原子と化学的に結合
し、S-C=N<->S=C-N-のタイプの共役結合により負電荷を
非局在化し、硫黄Sの原子の可逆的な電気化学的還元を
可能にする炭素原子である)を生成するものであること
を特徴とする請求項1記載の可逆性電極。
2. A polymer of at least one sulfur organic compound characterized by a chain of the form XSRS- (SRS) nSRS-X 'in which the groups introduced into the conductive polymer are in the electrooxidation state, provided that n: 0. Or an integer of 1 or more, X, X ': metal M,
Hydrogen or a terminal organic group, S: sulfur, R: a cyclic organic group containing a carbon atom having at least one sulfur atom S of dithiol bonded thereto, wherein the carbon atom is -SR- When the SM group produces a short chain terminating at both ends, it chemically bonds to at least one nitrogen atom when it is in an electroreduction state, and it has a negative charge due to a conjugate bond of the type SC = N <-> S = CN-. Is a carbon atom that enables the reversible electrochemical reduction of the sulfur S atom) to produce a reversible electrode according to claim 1.
【請求項3】R基が複素環式基であって、この複素環式
基に結合したそれぞれの硫黄原子が複素環式基の少なく
とも一個の窒素原子と共役結合を形成する請求項1の可
逆性電極。
3. The reversible compound of claim 1, wherein the R group is a heterocyclic group and each sulfur atom attached to the heterocyclic group forms a conjugated bond with at least one nitrogen atom of the heterocyclic group. Sex electrode.
【請求項4】一部又は全面的に電解酸化した時、SRSM基
により両端で終了する短い鎖の形を取る(S,R,Mは請求項
1に定義の通り)基を導入する請求項1の可逆性電極。
4. When it is partially or wholly electrolytically oxidized, it takes the form of a short chain terminated by SRSM groups at both ends.
The reversible electrode according to claim 1, wherein a group (as defined in 1) is introduced.
【請求項5】導電性高分子がジスルフィト゛化合物に対して酸
化還元反応を促進することを特徴とする請求項1記載の
可逆性電極。
5. The reversible electrode according to claim 1, wherein the conductive polymer promotes a redox reaction with respect to the disulfite compound.
【請求項6】導電性高分子が窒素原子を含み、その窒素
原子が炭素原子と共役する単量体よりなる請求項5記載
の可逆性電極。
6. The reversible electrode according to claim 5, wherein the conductive polymer contains a nitrogen atom, and the nitrogen atom is composed of a monomer conjugated with a carbon atom.
JP3295484A 1991-11-12 1991-11-12 Reversible electrode Pending JPH05135767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295484A JPH05135767A (en) 1991-11-12 1991-11-12 Reversible electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295484A JPH05135767A (en) 1991-11-12 1991-11-12 Reversible electrode

Publications (1)

Publication Number Publication Date
JPH05135767A true JPH05135767A (en) 1993-06-01

Family

ID=17821210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295484A Pending JPH05135767A (en) 1991-11-12 1991-11-12 Reversible electrode

Country Status (1)

Country Link
JP (1) JPH05135767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050914A1 (en) * 1999-04-26 2000-11-08 Matsushita Electric Industrial Co., Ltd. Positive electrode, method of producing the same and lithium battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050914A1 (en) * 1999-04-26 2000-11-08 Matsushita Electric Industrial Co., Ltd. Positive electrode, method of producing the same and lithium battery using the same
US6576370B1 (en) 1999-04-26 2003-06-10 Matsushita Electric Industrial Co., Ltd. Positive electrode and lithium battery using the same

Similar Documents

Publication Publication Date Title
JP2715778B2 (en) Reversible electrode material
US6743877B1 (en) Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
US5324599A (en) Reversible electrode material
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
JP3116451B2 (en) Reversible electrode
JPH05135769A (en) Reversible electrode
Ye et al. Electrochemical and in situ spectroelectrochemical study on polypyrrole/disulfide composite electrode
JPH05135767A (en) Reversible electrode
JP3239374B2 (en) Electrode composition
JP3089707B2 (en) Solid electrode composition
JP3115153B2 (en) Electrochemical devices and secondary batteries
JPH04264363A (en) Reversible compound electrode
JPH06163049A (en) Electrode
JPH05135768A (en) Reversible composite electrode
JP3047492B2 (en) Solid electrode composition
JP2993272B2 (en) Reversible electrode
JP3111506B2 (en) Reversible electrode
WO2000045451A9 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
US10355277B2 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
JPH05135800A (en) Lithium secondary battery
JPH056708A (en) Reversible electrode
JPH04272659A (en) Reversible electrode
JPH08321307A (en) Electrode for battery
Su et al. A Novel Conducting Polymer with OSSO Bonds for Positive Material: Poly (2, 2′-Diaminobenzyloxydisulfide)
JPH05135801A (en) Lithium secondary battery