JPH09306539A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09306539A
JPH09306539A JP8148462A JP14846296A JPH09306539A JP H09306539 A JPH09306539 A JP H09306539A JP 8148462 A JP8148462 A JP 8148462A JP 14846296 A JP14846296 A JP 14846296A JP H09306539 A JPH09306539 A JP H09306539A
Authority
JP
Japan
Prior art keywords
solvent
secondary battery
carbonate
aqueous electrolyte
sulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8148462A
Other languages
Japanese (ja)
Inventor
Maruo Jinno
丸男 神野
Nobumichi Nishida
伸道 西田
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8148462A priority Critical patent/JPH09306539A/en
Publication of JPH09306539A publication Critical patent/JPH09306539A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with high charging/discharging cycle characteristics and high charge a shelf life characteristics by using the specified sulfite as a solvent of a nonaqueous electrolyte. SOLUTION: A sulfite represented by formula: R<1> OSOOR<2> (R<1> and R<2> are the same or different alkyl groups having 1-4 carbon atoms) is used as a solvent of a nonaqueous electrolyte. The solvent of the nonaqueous electrolyte is the mixed solvent of the sulfite and at least one kind of cyclic carbonates selected from the group comprising ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate in a volume ratio of 20:80-80:20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係わり、詳しくは充放電サイクル特性及び充電状態で
の保存特性(以下、「充電保存特性」と称する)に優れ
た非水電解液二次電池を提供することを目的とした、非
水電解液の溶媒の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more specifically to a non-aqueous electrolysis having excellent charge-discharge cycle characteristics and storage characteristics in a charged state (hereinafter referred to as "charge storage characteristics"). The present invention relates to improvement of a solvent for a non-aqueous electrolytic solution for the purpose of providing a liquid secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池に代表される非水電解液二次電池が、
従前のアルカリ二次電池に代わる新たな二次電池とし
て、注目されている。電解液の溶媒として非水溶媒を使
用する非水電解液二次電池では、アルカリ水溶液を使用
するアルカリ二次電池と異なり水の分解電圧を考慮する
必要がなく、このため正極及び負極の材料を適宜選ぶこ
とにより、高電圧、高エネルギー密度な電池を得ること
ができる。
2. Description of the Related Art In recent years,
A non-aqueous electrolyte secondary battery typified by a lithium secondary battery,
It is attracting attention as a new secondary battery that replaces the conventional alkaline secondary battery. In a non-aqueous electrolyte secondary battery that uses a non-aqueous solvent as the solvent of the electrolytic solution, unlike alkaline secondary batteries that use an alkaline aqueous solution, it is not necessary to consider the decomposition voltage of water, and therefore the materials for the positive and negative electrodes are By selecting appropriately, a battery with high voltage and high energy density can be obtained.

【0003】ところで、従来は、非水電解液の溶媒とし
て、主に、エチレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート、ビニレンカーボネート、
スルホラン、γ−ブチロラクトン、ジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキエタン、
テトラヒドロフラン、1,3−ジオキソラン又はこれら
の混合物が用いられていた。
Conventionally, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate,
Sulfolane, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, 1,2-dimethoethane,
Tetrahydrofuran, 1,3-dioxolane or mixtures thereof have been used.

【0004】しかしながら、これらの溶媒を用いた従来
の非水電解液二次電池には、充放電サイクル特性及び保
存特性、とりわけ充電保存特性が良くないという問題が
あった。
However, the conventional non-aqueous electrolyte secondary batteries using these solvents have a problem that the charge / discharge cycle characteristics and the storage characteristics, especially the charge storage characteristics are not good.

【0005】本発明は、この問題を解決するべくなされ
たものであって、充放電サイクル特性及び充電保存特性
に優れた非水電解液二次電池を提供することを目的とす
る。
The present invention has been made to solve this problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and charge storage characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液二次電池(本発明電池)にお
いては、式:R1 OSOOR2 (R1 及びR2 は、互い
に同一又は異なって、炭素数1〜4のアルキル基)で表
される亜硫酸エステルが非水電解液の溶媒として用いら
れている。
In a non-aqueous electrolyte secondary battery according to the present invention (a battery according to the present invention) for achieving the above object, the formula: R 1 OSOOR 2 (R 1 and R 2 are mutually The same or different, a sulfite ester represented by an alkyl group having 1 to 4 carbon atoms) is used as a solvent for the non-aqueous electrolyte.

【0007】[0007]

【発明の実施の形態】本発明における亜硫酸エステル
(サルファイト)の具体例としては、CH3 OSOOC
3 、CH3 OSOOC2 5 、CH3 OSOOC3
7 、CH3 OSOOC4 9 、C2 5 OSOOC2
5 、C2 5 OSOOC3 7 、C2 5 OSOOC4
9 、C3 7 OSOOC3 7 、C3 7 OSOOC
4 9 、C4 9 OSOOC4 9 が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Specific examples of the sulfite (sulfite) in the present invention include CH 3 OSOC.
H 3 , CH 3 OSOC 2 H 5 , CH 3 OSOC 3 H
7 , CH 3 OSOC 4 H 9 , C 2 H 5 OSOC 2 H
5 , C 2 H 5 OSOC 3 H 7 , C 2 H 5 OSOC 4
H 9 , C 3 H 7 OSOC 3 H 7 , C 3 H 7 OSOC
4 H 9, C 4 H 9 OSOOC 4 H 9 and the like.

【0008】上記亜硫酸エステルは、一種単独を使用し
てもよく、必要に応じて二種以上を混合使用してもよ
い。また、本発明における亜硫酸エステルは、これを単
独使用してもよいが、エチレンカーボネート、プロピレ
ンカーボネート、ブチレンカーボネート、ビニレンカー
ボネートなどの環状炭酸エステル(高誘電率溶媒)の一
種又は二種以上との混合形態で使用した方が、非水電解
液の電導度(イオン伝導度)が高くなるので好ましい。
混合形態で使用する場合の亜硫酸エステルと環状炭酸エ
ステルとの好適な混合比は、体積比で20:80〜8
0:20である。環状炭酸エステルの比率が80体積%
より高くなると、非水電解液の粘度が高くなり、一方、
環状炭酸エステルの比率が20体積%より低くなると、
非水電解液の誘電率が低くなる。
The above sulfites may be used alone or in combination of two or more if necessary. Further, the sulfite ester in the present invention may be used alone, but mixed with one or more cyclic carbonates (high dielectric constant solvent) such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate. It is preferable to use it in the form because the electric conductivity (ionic conductivity) of the non-aqueous electrolyte becomes higher.
When used in a mixed form, the preferable mixing ratio of the sulfite ester and the cyclic carbonic acid ester is 20:80 to 8 by volume.
It is 0:20. 80% by volume of cyclic carbonic acid ester
The higher, the higher the viscosity of the non-aqueous electrolyte, while
When the ratio of cyclic carbonic acid ester is lower than 20% by volume,
The dielectric constant of the non-aqueous electrolyte becomes low.

【0009】本発明電池の負極材料は特に限定されな
い。負極材料としては、金属(金属リチウムなど)、合
金(リチウム−アルミニウム合金、リチウム−錫合金、
リチウム−鉛合金など)、黒鉛型結晶構造を有する炭素
材料(黒鉛、コークス、有機物焼成体など)が例示され
る。充放電サイクル特性に特に優れた非水電解液二次電
池を得るためには、格子面(002)の面間隔
(d002 )が3.35〜3.37Åであり、且つc軸方
向の結晶子の大きさ(Lc)が150Å以上である黒鉛
型結晶構造を有する炭素材料を使用することが好まし
い。
The negative electrode material of the battery of the present invention is not particularly limited. Examples of the negative electrode material include metals (metal lithium, etc.), alloys (lithium-aluminum alloys, lithium-tin alloys,
Examples thereof include a lithium-lead alloy) and a carbon material having a graphite type crystal structure (graphite, coke, organic material fired body, etc.). In order to obtain a non-aqueous electrolyte secondary battery with particularly excellent charge / discharge cycle characteristics, the lattice spacing ( 002 ) has a surface spacing (d 002 ) of 3.35 to 3.37 Å and a crystal in the c-axis direction. It is preferable to use a carbon material having a graphite type crystal structure having a child size (Lc) of 150 Å or more.

【0010】本発明をリチウム二次電池に適用する場合
の非水電解液の溶質としては、LiPF6 、LiB
4 、LiClO4 、LiCF3 SO3 、LiAs
6 、LiN(CF3 SO2 2 、LiSO3 (C
2 3 CF3 、LiSbF6 及びLiN(C2 5
2 2 が例示されるが、特にこれらに限定されない。
When the present invention is applied to a lithium secondary battery, the solute of the non-aqueous electrolyte is LiPF 6 , LiB.
F 4 , LiClO 4 , LiCF 3 SO 3 , LiAs
F 6 , LiN (CF 3 SO 2 ) 2 , LiSO 3 (C
F 2 ) 3 CF 3 , LiSbF 6 and LiN (C 2 F 5 S
O 2 ) 2 is exemplified, but not limited thereto.

【0011】また、本発明をリチウム二次電池に適用す
る場合の正極活物質としては、LiCoO2 、LiNi
2 、LiMnO2 、LiMn2 4 、LiVO2 、L
iNbO2 が例示されるが、これも特に限定されない。
When the present invention is applied to a lithium secondary battery, positive electrode active materials include LiCoO 2 and LiNi.
O 2 , LiMnO 2 , LiMn 2 O 4 , LiVO 2 , L
Although iNbO 2 is exemplified, this is not particularly limited.

【0012】本発明電池は、特定の亜硫酸エステルを非
水電解液の溶媒として使用しているので、充電保存特性
及び充放電サイクル特性の両方に優れる。充電保存特性
に優れるのは、亜硫酸エステルの安定性がよいため、ま
た充放電サイクル特性に優れるのは、充放電時に正極及
び負極で起こる不可逆反応を亜硫酸エステルが抑制する
ため、と考えられる。
Since the battery of the present invention uses a specific sulfite ester as a solvent for the non-aqueous electrolyte, it is excellent in both charge storage characteristics and charge / discharge cycle characteristics. It is considered that the excellent charge storage characteristics are due to the good stability of the sulfite ester, and the excellent charge / discharge cycle characteristics are due to the inhibition of the irreversible reaction that occurs in the positive electrode and the negative electrode during charge / discharge.

【0013】本発明の適用対象の代表例はリチウム二次
電池であるが、本発明は広く非水電解液二次電池に適用
可能である。
A typical example of the application target of the present invention is a lithium secondary battery, but the present invention is widely applicable to non-aqueous electrolyte secondary batteries.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲で適宜変更して
実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0015】(実施例1〜12) 〔正極の作製〕正極活物質としての平均粒径5μmのL
iCoO2 粉末90重量部と、導電剤としての人造黒鉛
粉末5重量部と、PVdF(ポリフッ化ビニリデン)5
重量部のNMP(N−メチル−2−ピロリドン)溶液と
を混練してスラリーを調製した。このスラリーをドクタ
ーブレード法により正極集電体としてのアルミニウム箔
の両面に塗布し、150°Cで2時間真空乾燥して、各
面に厚さ50μmの正極合剤層を有する極板を作製し
た。この極板を圧延して、厚さ0.100mm、幅40
mm、長さ280mmの帯状の正極を作製した。
Examples 1 to 12 [Preparation of positive electrode] L having an average particle size of 5 μm as a positive electrode active material
90 parts by weight of iCoO 2 powder, 5 parts by weight of artificial graphite powder as a conductive agent, and PVdF (polyvinylidene fluoride) 5
A slurry was prepared by kneading with a part by weight of an NMP (N-methyl-2-pyrrolidone) solution. This slurry was applied on both sides of an aluminum foil as a positive electrode current collector by the doctor blade method, and vacuum dried at 150 ° C. for 2 hours to prepare an electrode plate having a positive electrode mixture layer with a thickness of 50 μm on each side. . This electrode plate is rolled to a thickness of 0.100 mm and a width of 40.
A band-shaped positive electrode having a size of mm and a length of 280 mm was produced.

【0016】〔負極の作製〕平均粒径20μmの天然黒
鉛粉末(Lc>1000Å;d002 =3.35Å)95
重量部とPVdF5重量部のNMP溶液とを混練してス
ラリーを調製した。このスラリーをドクターブレード法
により負極集電体としての銅箔の両面に塗布し、150
°Cで2時間真空乾燥して、各面に厚さ50μmの負極
合剤層を有する極板を作製した。これらの極板を圧延し
て、厚さ0.100mm、幅42mm、長さ300mm
の帯状の負極を作製した。
[Production of Negative Electrode] Natural graphite powder having an average particle size of 20 μm (Lc>1000Å; d 002 = 3.35Å) 95
By weight, an NMP solution containing 5 parts by weight of PVdF was kneaded to prepare a slurry. This slurry was applied on both sides of a copper foil as a negative electrode current collector by the doctor blade method,
It was vacuum dried at ° C for 2 hours to prepare an electrode plate having a negative electrode mixture layer with a thickness of 50 µm on each surface. These electrode plates are rolled to a thickness of 0.100 mm, a width of 42 mm, and a length of 300 mm.
A strip-shaped negative electrode was prepared.

【0017】〔非水電解液の調製〕エチレンカーボネー
ト(EC)と表1に示す亜硫酸エステルとの体積比1:
1の混合溶媒に、LiPF6 (ヘキサフルオロリン酸リ
チウム)を1M(モル/リットル)溶かして、非水電解
液を調製した。
[Preparation of Non-Aqueous Electrolyte] Volume ratio of ethylene carbonate (EC) to sulfite shown in Table 1:
LiPF 6 (lithium hexafluorophosphate) was dissolved in 1M (mol / liter) in the mixed solvent of 1 to prepare a non-aqueous electrolytic solution.

【0018】[0018]

【表1】 [Table 1]

【0019】〔リチウム二次電池の作製〕上記した正
極、負極及び非水電解液を用いて、正極容量が負極容量
よりも小さいAAサイズのリチウム二次電池(本発明電
池)A1〜A12を作製した。但し、電池A12だけ
は、負極として金属リチウム箔を使用したものである。
なお、セパレータは、いずれの電池においてもイオン透
過性を有するポリプロピレン製の微多孔膜を使用した。
[Production of Lithium Secondary Battery] Using the above positive electrode, negative electrode and non-aqueous electrolyte, AA size lithium secondary batteries (invention batteries) A1 to A12 having a positive electrode capacity smaller than the negative electrode capacity were prepared. did. However, only the battery A12 uses a metallic lithium foil as the negative electrode.
As the separator, a polypropylene microporous film having ion permeability was used in all the batteries.

【0020】(比較例1)非水電解液の溶媒として、エ
チレンカーボネートとジエチルカーボネートとの体積比
1:1の混合溶媒を使用したこと以外は実施例1(負極
材料:天然黒鉛)と同様にして、比較電池B1を作製し
た。
(Comparative Example 1) The same as Example 1 (negative electrode material: natural graphite) except that a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used as a solvent for the non-aqueous electrolyte. Thus, a comparative battery B1 was produced.

【0021】(比較例2)非水電解液の溶媒として、エ
チレンカーボネートとジエチルカーボネートとの体積比
1:1の混合溶媒を使用したこと以外は実施例12(負
極材料:金属リチウム)と同様にして、比較電池B2を
作製した。
(Comparative Example 2) The same as Example 12 (negative electrode material: metallic lithium) except that a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used as a solvent of the non-aqueous electrolytic solution. Then, a comparative battery B2 was manufactured.

【0022】〈各電池の充放電サイクル特性〉各電池に
ついて、室温(25°C)にて、200mAで4.2V
まで充電した後、500mAで2.75Vまで放電する
工程を1サイクルとする充放電サイクル試験を行い、充
放電サイクル特性を調べた。結果を先の表1及び図1に
示す。表1には、各電池の初期の放電容量(mAh)及
び500サイクル目の放電容量(mAh)を示した。図
1には、各電池の充放電サイクル特性を示した。図1
は、縦軸に放電容量(mAh)をとり、横軸に充放電サ
イクル(回)をとって示したグラフである。
<Charge / Discharge Cycle Characteristics of Each Battery> For each battery, 4.2 V at 200 mA at room temperature (25 ° C.)
The charging / discharging cycle characteristics of the charging / discharging cycle test are as follows. The results are shown in Table 1 and FIG. 1 above. Table 1 shows the initial discharge capacity (mAh) and the 500th cycle discharge capacity (mAh) of each battery. FIG. 1 shows the charge / discharge cycle characteristics of each battery. FIG.
Is a graph in which the vertical axis represents discharge capacity (mAh) and the horizontal axis represents charge / discharge cycles (times).

【0023】表1及び図1より、本発明電池A1〜A1
2は、比較電池B1,B2に比べて、充放電サイクル特
性に優れていることが分かる。
From Table 1 and FIG. 1, the batteries of the present invention A1 to A1
It can be seen that No. 2 is superior to the comparative batteries B1 and B2 in charge / discharge cycle characteristics.

【0024】〈各電池の充電保存特性〉本発明電池A1
〜A11及び比較電池B1を、室温(25°C)にて、
200mAで4.2Vまで充電した後、200mAで
2.75Vまで放電して、それぞれの保存前の放電容量
C1を求めた。次いで、これらの放電後の各電池を、2
00mAで4.2Vまで充電し、60°Cで20日間保
存した後、200mAで2.75Vまで放電して、保存
後の放電容量C2を求めた。保存前の放電容量C1及び
保存後の放電容量C2を、下式に代入して、容量残存率
を求めた。結果を表2に示す。
<Charge storage characteristics of each battery> Battery A1 of the present invention
~ A11 and comparative battery B1 at room temperature (25 ° C),
After being charged to 4.2 V at 200 mA, it was discharged to 2.75 V at 200 mA to determine the discharge capacity C1 before each storage. Then, after each of these discharged cells,
The battery was charged to 4.2 V at 00 mA, stored at 60 ° C. for 20 days, and then discharged at 200 mA to 2.75 V to obtain the discharge capacity C2 after storage. The discharge capacity C1 before storage and the discharge capacity C2 after storage were substituted into the following formula to determine the capacity remaining rate. Table 2 shows the results.

【0025】 容量残存率(%)=(C2/C1)×100Capacity remaining rate (%) = (C2 / C1) × 100

【0026】[0026]

【表2】 [Table 2]

【0027】表2より、本発明電池A1〜A11は、比
較電池B1に比べて、容量残存率が高く、充電保存特性
に優れていることが分かる。
It can be seen from Table 2 that the batteries A1 to A11 of the present invention have a higher remaining capacity ratio and excellent charge storage characteristics as compared with the comparative battery B1.

【0028】[0028]

【発明の効果】本発明電池は、非水電解液の溶媒として
特定の亜硫酸エステルを用いているので、充放電サイク
ル特性及び充電保存特性に優れる。
EFFECTS OF THE INVENTION Since the battery of the present invention uses a specific sulfite ester as the solvent of the non-aqueous electrolyte, it has excellent charge-discharge cycle characteristics and charge storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池及び比較電池の充放電サイクル特性
を示したグラフである。
FIG. 1 is a graph showing charge / discharge cycle characteristics of a battery of the present invention and a comparative battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非水電解液の溶媒として、式:R1 OSO
OR2 (R1 及びR2 は、互いに同一又は異なって、炭
素数1〜4のアルキル基)で表される亜硫酸エステルが
用いられていることを特徴とする非水電解液二次電池。
1. A solvent of a non-aqueous electrolyte, represented by the formula: R 1 OSO
A non-aqueous electrolyte secondary battery in which a sulfite represented by OR 2 (R 1 and R 2 are the same or different from each other and is an alkyl group having 1 to 4 carbon atoms) is used.
【請求項2】前記非水電解液の溶媒が、前記亜硫酸エス
テルと、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート及びビニレンカーボネートよ
りなる群から選ばれた少なくとも一種の環状炭酸エステ
ルとの体積比20:80〜80:20の混合溶媒である
請求項1記載の非水電解液二次電池。
2. The solvent of the non-aqueous electrolytic solution, the volume ratio of the sulfite and at least one cyclic carbonate selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate is 20:80. The non-aqueous electrolyte secondary battery according to claim 1, which is a mixed solvent of about 80:20.
【請求項3】負極材料として、格子面(002)の面間
隔(d002 )が3.35〜3.37Åであり、且つc軸
方向の結晶子の大きさ(Lc)が150Å以上である黒
鉛型結晶構造を有する炭素材料が用いられている請求項
1又は2記載の非水電解液二次電池。
3. As a negative electrode material, the lattice spacing ( 002 ) has an interplanar spacing (d 002 ) of 3.35 to 3.37Å and a crystallite size (Lc) in the c-axis direction of 150Å or more. The non-aqueous electrolyte secondary battery according to claim 1, wherein a carbon material having a graphite type crystal structure is used.
JP8148462A 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery Pending JPH09306539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8148462A JPH09306539A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8148462A JPH09306539A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09306539A true JPH09306539A (en) 1997-11-28

Family

ID=15453299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8148462A Pending JPH09306539A (en) 1996-05-16 1996-05-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09306539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022799A2 (en) * 1999-01-25 2000-07-26 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
EP1174940A1 (en) * 2000-07-17 2002-01-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
CN100394634C (en) * 2001-08-29 2008-06-11 三菱化学株式会社 Electrolyte for lithium battery, and lithium battery containing electrolyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022799A2 (en) * 1999-01-25 2000-07-26 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
EP1022799A3 (en) * 1999-01-25 2000-08-02 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
US6350542B1 (en) 1999-01-25 2002-02-26 Wilson Greatbatch Ltd. Sulfite additives for nonaqueous electrolyte rechargeable cells
EP1174940A1 (en) * 2000-07-17 2002-01-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
US6958198B2 (en) * 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
CN100394634C (en) * 2001-08-29 2008-06-11 三菱化学株式会社 Electrolyte for lithium battery, and lithium battery containing electrolyte

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3316412B2 (en) Lithium secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2003203674A (en) Nonaqueous electrolyte secondary cell
JP4319025B2 (en) Non-aqueous electrolyte secondary battery
JP3444243B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP3831550B2 (en) Non-aqueous electrolyte battery
JPH09147910A (en) Lithium secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000021448A (en) High polymer electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JPH09306539A (en) Nonaqueous electrolyte secondary battery
JPH09306542A (en) Nonaqueous electrolyte secondary battery
JP3373978B2 (en) Non-aqueous electrolyte secondary battery