JPH09306477A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09306477A
JPH09306477A JP8114539A JP11453996A JPH09306477A JP H09306477 A JPH09306477 A JP H09306477A JP 8114539 A JP8114539 A JP 8114539A JP 11453996 A JP11453996 A JP 11453996A JP H09306477 A JPH09306477 A JP H09306477A
Authority
JP
Japan
Prior art keywords
negative electrode
particle
particles
carbon material
scaly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8114539A
Other languages
Japanese (ja)
Inventor
Hide Koshina
秀 越名
Masaki Kitagawa
雅規 北川
Kaoru Inoue
薫 井上
Takashi Takeuchi
崇 竹内
Masaya Okochi
正也 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8114539A priority Critical patent/JPH09306477A/en
Publication of JPH09306477A publication Critical patent/JPH09306477A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To hold high capacity despite of efficiency discharge and reduce the cost by orientating a hexagonal surface of a particle of a scaly black lead for a negative electrode or a material coated with a carbon material having crystallinity lower than the black lead, in relation to a positive electrode by a prescribed angle. SOLUTION: A hexagonal surface of a carbon of scaly black lead used for a negative carbon material possible of occlusion/emission of lithium is orientated to an opposed positive electrode vertically or ±45 deg. from the vertical. It is all right that a material coated with a carbon material having cystallinity lower than the black lead is used as substitute for the scaly black lead. The particle side part, where the lithium ion can be inserted/released, is thus oriented in the counter electrode side so that a shielding rate by other particles is reduced and the route length of the lithium ion can be shortened. A particle having the ratio T/D of the particle side part T to the mean particle size D, 1/3 or less is preferable. For example, when a negative electrode mix paste is squeezed out from the tip projecting port 7 of a rectangular coated nozzle of a coater, the plane side of the particles is aligned in parallel by projecting pressure so as to be oriented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
の、とくにその高エネルギー密度化及び充放電特性の向
上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to high energy density and improvement of charge / discharge characteristics thereof.

【0002】[0002]

【従来の技術】従来より非水電解液二次電池では正極活
物質にコバルト酸リチウム(LiCoO2)、ニッケル
酸リチウム(LiNiO2)、リチウムマンガン複合酸
化物(LiMn24)、二硫化モリブデン(Mo
2)、二硫化チタン(TiS2)、二酸化マンガン(M
nO2)、五酸化バナジウム(V25)などの遷移金属
硫化物、もしくは酸化物が用いられている。一方、負極
活物質には金属リチウム、リチウム−アルミニウム合金
やリチウム−ウッド合金などの金属材料とともに近年で
はリチウムイオンの吸蔵・放出が可能な非金属性材料、
例えば天然黒鉛、人造黒鉛やこれらより結晶化度の低い
非晶質カーボンなどの炭素材料が用いられている。さら
に、リチウムイオンの吸蔵・放出が可能な新規な非金属
性材料として、酸化鉄(FeO2等)、酸化タングステ
ン(WO2)などの金属化合物、あるいは各種の無機層
状化合物(LiN3、BC2N等)、高分子化合物(ポリ
チオフェン、ポリアセチレン等)などの負極活物質が提
案されている。
2. Description of the Related Art Conventionally, in non-aqueous electrolyte secondary batteries, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese composite oxide (LiMn 2 O 4 ), molybdenum disulfide are used as positive electrode active materials. (Mo
S 2 ), titanium disulfide (TiS 2 ), manganese dioxide (M
Transition metal sulfides or oxides such as nO 2 ) and vanadium pentoxide (V 2 O 5 ) are used. On the other hand, for the negative electrode active material, metallic lithium, a metal material such as a lithium-aluminum alloy or a lithium-wood alloy, and a non-metallic material capable of absorbing and releasing lithium ions in recent years,
For example, carbon materials such as natural graphite, artificial graphite and amorphous carbon having a lower crystallinity than these are used. Furthermore, as novel non-metallic materials capable of inserting and extracting lithium ions, metal compounds such as iron oxide (FeO 2 etc.) and tungsten oxide (WO 2 ) or various inorganic layered compounds (LiN 3 , BC 2). N, etc.), polymer compounds (polythiophene, polyacetylene, etc.), and other negative electrode active materials have been proposed.

【0003】また、電解液にはリチウム塩を溶解したプ
ロピレンカーボネイト(PC)、エチレンカーボネイト
(EC)、ガンマブチロラクトン(GBL)、ジエチル
カーボネイト(DEC)、2−メチルテトラヒドロフラ
ン(MTHF)などがよく使われている。
Also, as the electrolyte, propylene carbonate (PC), ethylene carbonate (EC), gamma butyrolactone (GBL), diethyl carbonate (DEC), 2-methyltetrahydrofuran (MTHF), etc. in which a lithium salt is dissolved are often used. ing.

【0004】近年、これらの正・負極及び電解液を用い
た非水電解液二次電池の中で放電平均電圧が約3.6V
の高電圧を示し高エネルギー密度を有する電池系が各種
電子機器用電源として注目を集めている。これらの電池
系の正極活物質にはLiCoO2、LiNiO2やLiM
24などのリチウム複合酸化物が用いられており、負
極活物質には黒鉛質や非晶質の炭素材料が用いられてい
る。
In recent years, among non-aqueous electrolyte secondary batteries using these positive and negative electrodes and electrolyte, the average discharge voltage is about 3.6V.
The battery system having high voltage and high energy density has been attracting attention as a power source for various electronic devices. The positive electrode active materials of these battery systems include LiCoO 2 , LiNiO 2 and LiM.
A lithium composite oxide such as n 2 O 4 is used, and a graphite or amorphous carbon material is used as the negative electrode active material.

【0005】しかし、非晶質炭素材料を負極に用いた電
池の放電電圧曲線は黒鉛質炭素材を負極とした場合より
も斜めになり、ポータブル電子機器などのモータードラ
イブ用電源や定出力時には向かない。
However, the discharge voltage curve of a battery using an amorphous carbon material as a negative electrode becomes more oblique than that of a graphitic carbon material as a negative electrode, which is suitable for a motor drive power source of a portable electronic device or the like and a constant output. It doesn't.

【0006】黒鉛質炭素材料は電池電圧を高電圧で維持
することができるが、その結晶配列や形状により負極板
としたときの特性が変化する。特に充放電の電流の大き
さに影響がある。例えば、メソフェーズ小球体や、メソ
フェーズ繊維を黒鉛化したものは黒鉛構造の配列が中心
点配向し、粒子表面全体にリチウムイオンが挿入・脱離
できる炭素六角平面の端面が出ているため、非常に電池
の充放電電流が取れやすい。しかしながら、これらの材
料は高価であり、かつ点配向であるため、結晶中乱層構
造をもつためその分の容量ロスがあり、非常に結晶が発
達している天然黒鉛と比較すると20%ほどリチウムイ
オンが入る容量が少ない。一方、安価な材料の天然黒鉛
や人造黒鉛はほとんどの形が粉砕により鱗片状である。
鱗片状粒子は平面部と側面部からなり、平面部は炭素六
角網からなり、結晶配列は平面部と並行に配列してい
る。リチウムイオンの挿入・脱離が可能なのは鱗片状粒
子の側面部のみである。かつ極板にしたときには従来の
負極合剤ペーストをドクターブレード法で金属芯材に塗
工した場合など、芯材にペーストが接するところで芯材
に並行に粒子の平面部が配向してしまうため、芯材上の
粒子の平面部が対極に向かい合ってしまう。従って、電
流自体が取り出せにくい粒子形状であり、かつ極板とな
る。
The graphite carbon material can maintain the battery voltage at a high voltage, but the characteristics of the negative electrode plate change depending on the crystal arrangement and shape. In particular, the magnitude of charge / discharge current is affected. For example, mesophase spherules and graphitized mesophase fibers have a graphite-structured array oriented at the central point, and a hexagonal carbon end face where lithium ions can be inserted and desorbed is formed on the entire particle surface, which is extremely Easy to get the charge / discharge current of the battery. However, since these materials are expensive and have a point orientation, they have a volume disorder due to the disordered crystal structure, which is about 20% of lithium compared with natural graphite in which crystals are very developed. There is little ion capacity. On the other hand, most of the inexpensive materials, natural graphite and artificial graphite, are scaly due to pulverization.
The scaly particles are composed of a flat surface portion and side surface portions, the flat surface portion is formed of a carbon hexagonal net, and the crystal arrangement is arranged in parallel with the flat surface portion. It is only on the side surface of the scale-like particles that lithium ions can be inserted and desorbed. And when the electrode plate is a conventional negative electrode mixture paste when applied to a metal core material by a doctor blade method, for example, since the plane portion of the particles is oriented parallel to the core material when the paste contacts the core material, The plane portion of the particles on the core material faces the opposite electrode. Therefore, it has a particle shape that makes it difficult for the electric current itself to be taken out, and becomes an electrode plate.

【0007】[0007]

【発明が解決しようとする課題】上記従来例にも示した
ように、安価でかつリチウムイオンの挿入・脱離できる
容量の大きな天然黒鉛や人造黒鉛はリチウムイオン電池
の負極炭素材として有望な材料であるが、天然黒鉛や人
造黒鉛はほとんどの形が粉砕により鱗片状である。鱗片
状粒子は平面部と側面部からなり、平面部は炭素六角網
からなり、結晶配列は平面部と並行に配列している。リ
チウムイオンの挿入・脱離が可能なのは鱗片状粒子の側
面部のみであり、かつ極板にしたときには粒子平面部が
対極に向きやすい形状である。従って、電流自体が取り
出せにくい粒子形状であり、かつ極板となる。
As shown in the above conventional examples, natural graphite and artificial graphite, which are inexpensive and have a large capacity for lithium ion insertion / desorption, are promising materials for the negative electrode carbon material of lithium ion batteries. However, most of natural graphite and artificial graphite are scaly due to pulverization. The scaly particles are composed of a flat surface portion and side surface portions, the flat surface portion is formed of a carbon hexagonal net, and the crystal arrangement is arranged in parallel with the flat surface portion. Lithium ions can be inserted / desorbed only on the side surface of the scale-like particle, and when formed into an electrode plate, the flat surface of the particle has a shape that easily faces the counter electrode. Therefore, it has a particle shape that makes it difficult for the electric current itself to be taken out, and serves as an electrode plate.

【0008】[0008]

【課題を解決するための手段】本発明は鱗片状の天然黒
鉛や人造黒鉛粒子を負極として用いる非水電解液二次電
池における上記課題を解決するため、負極炭素材が鱗片
状黒鉛もしくは鱗片状黒鉛の表面に黒鉛よりも結晶化度
が低い炭素材を被覆しているものからなり、それらの鱗
片状黒鉛の炭素の六角平面が、対向している正極に対し
て垂直もしくは垂直から±45度の角度以内であるよう
に粒子配向された極板を負極として用いるものである。
Means for Solving the Problems In order to solve the above problems in a non-aqueous electrolyte secondary battery using scaly natural graphite or artificial graphite particles as a negative electrode, the present invention uses a scaly graphite or scaly carbonaceous material for the negative electrode. The surface of graphite is coated with a carbon material having a lower crystallinity than graphite, and the hexagonal plane of carbon of the flake graphite is perpendicular to the facing positive electrode or ± 45 degrees from the perpendicular. The electrode plate in which the particles are oriented so that the angle is within the angle is used as the negative electrode.

【0009】[0009]

【発明の実施の形態】本発明では、安価でかつリチウム
イオンの挿入・脱離できる容量の大きい天然黒鉛や人造
黒鉛を使うことができ、従来の非晶質炭素材やメソフェ
ーズ小球体黒鉛化物、メソフェーズ繊維黒鉛化物の負極
を用いる電池に対して、より安価に、かつより高容量の
非水電解液二次電池を提供することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, natural graphite or artificial graphite, which is inexpensive and has a large capacity for insertion / desorption of lithium ions, can be used, and conventional amorphous carbon materials or mesophase microsphere graphitized products, It is possible to provide a non-aqueous electrolyte secondary battery that is cheaper and has a higher capacity than a battery that uses a negative electrode of mesophase fiber graphitized material.

【0010】[0010]

【実施例】【Example】

(実施例1)本発明のリチウム二次電池の負極を作製す
るために、図1のような負極合剤ペースト塗工機を用い
た。負極合剤ペーストは負極合剤ペーストタンク3から
ポンプ2で吸い上げられるとともに加圧され、焼き入れ
鉄製塗着ノズル1から負極芯材の銅箔フープ4上の片面
に塗着され、乾燥炉6でペーストを脱水乾燥したものが
負極塗着済みフープ5として巻き取られる。片面に塗着
したフープは再度4に取り付けられ塗着していない芯材
面に上記同様に塗着され両面塗着の負極となる。
(Example 1) In order to produce a negative electrode for a lithium secondary battery of the present invention, a negative electrode mixture paste coating machine as shown in Fig. 1 was used. The negative electrode mixture paste is sucked up and pressurized by the pump 2 from the negative electrode mixture paste tank 3, is applied from the quenching iron coating nozzle 1 to one surface of the copper foil hoop 4 of the negative electrode core material, and is dried in the drying furnace 6. The paste dehydrated and dried is wound up as the negative electrode-coated hoop 5. The hoop coated on one side is attached again to 4 and is coated on the surface of the uncoated core material in the same manner as described above to form a negative electrode coated on both sides.

【0011】図1の負極合剤ペースト塗工機の塗着ノズ
ル1の拡大図を図2に示す。ノズル1の先端突出口7は
長方形であり、ノズルの内部のペースト溜め8から負極
ペーストを先端突出口7から押し出す仕組みになってい
る。ノズルの内部から負極ペーストを押し出すとき、突
出圧力で長方形の突出口の長辺側に負極合剤ペースト中
の鱗片状粒子の炭素六角平面側が並行に整列するような
仕組みになっている。
FIG. 2 shows an enlarged view of the coating nozzle 1 of the negative electrode mixture paste coating machine of FIG. The tip protrusion port 7 of the nozzle 1 has a rectangular shape, and the negative electrode paste is pushed out from the tip protrusion port 7 from the paste reservoir 8 inside the nozzle. When the negative electrode paste is extruded from the inside of the nozzle, the carbon hexagonal plane side of the scale-like particles in the negative electrode mixture paste is aligned in parallel with the long side of the rectangular projecting opening by the projecting pressure.

【0012】負極合剤ペーストは鱗片状黒鉛粒子として
ここではロンザ社製KS15(平均粒径6μm)の10
0重量部に対して3重量部のスチレンブタジエンゴムと
1重量部のカルボキシメチルセルロース(CMC)、ペ
ーストの含水率は30%とした。比較のために鱗片状黒
鉛粒子の代わりにメソフェーズ黒鉛小球体(大阪ガス社
製MCMB,平均粒径6μm、黒鉛化2800℃)を用
いた負極合剤ペーストも上記と同様の成分組成で作製し
た。
The negative electrode mixture paste is flake graphite particles, and here, 10 of KS15 (average particle size 6 μm) manufactured by Lonza Co., Ltd. is used.
3 parts by weight of styrene-butadiene rubber, 1 part by weight of carboxymethyl cellulose (CMC), and 0% by weight of the paste had a water content of 30%. For comparison, a negative electrode mixture paste using mesophase graphite microspheres (MCMB manufactured by Osaka Gas Co., average particle size 6 μm, graphitized 2800 ° C.) instead of the flaky graphite particles was also prepared with the same component composition as above.

【0013】塗着厚みは長方形のペースト突出口の長辺
の長さで調整し、乾燥後の片面の合剤厚みが100μm
になった。鱗片状や球状などの形状によらず黒鉛粒子の
含有密度は単位体積当たりほぼ1.4g/ccになって
いた。なお、乾燥炉6の乾燥温度は140℃としてい
た。
The coating thickness is adjusted by the length of the long side of the rectangular paste projecting opening, and the thickness of the mixture on one side after drying is 100 μm.
Became. The content density of the graphite particles was about 1.4 g / cc per unit volume regardless of the shape such as scaly or spherical. The drying temperature of the drying furnace 6 was 140 ° C.

【0014】(実施例2)図1の負極合剤ペースト塗工
機を用いたが、図2に示すノズル先端の突出口の形状を
ノズルの底辺に対して角度θを30、45、60、75
度の平行四辺形としたノズルを作製し、実施例1と同様
に鱗片状黒鉛粒子、メソフェーズ黒鉛小球体の負極合剤
ペーストを塗着した。また角度θを0度として突出口の
格子を取り去ったノズルを用いての塗着も行った。なお
鱗片状黒鉛粒子合剤ペーストの塗着乾燥後の負極合剤断
面を走査型電子顕微鏡で観察した結果、鱗片状粒子の角
度はほぼ設定したノズル突出口の平行四辺形の角度と同
様であった。以上の実施例1及び実施例2を下記の(表
1)にまとめ、それぞれ極板の記号を付した。
(Embodiment 2) The negative electrode mixture paste coating machine of FIG. 1 was used, but the shape of the projecting port at the tip of the nozzle shown in FIG. 75
A parallelogram-shaped nozzle was prepared, and the negative electrode mixture paste of scaly graphite particles and mesophase graphite microspheres was applied in the same manner as in Example 1. Further, coating was also performed using a nozzle in which the angle θ was set to 0 degree and the lattice of the projecting ports was removed. As a result of observing the cross section of the negative electrode mixture after the coating and drying of the scale-like graphite particle mixture paste with a scanning electron microscope, the angle of the scale-like particles was almost the same as the angle of the parallelogram of the nozzle protruding port that was set. It was The above Examples 1 and 2 are summarized in the following (Table 1), and the symbols of the electrode plates are respectively attached.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例3)実施例1及び実施例2で作製
した負極板を用いて円筒形電池を試作した。図3はその
円筒形電池の縦断面図である。電池サイズは直径が17
mm、高さが50mmである。
(Example 3) A cylindrical battery was experimentally manufactured using the negative electrode plates produced in Examples 1 and 2. FIG. 3 is a vertical sectional view of the cylindrical battery. Battery size is 17 in diameter
mm and height is 50 mm.

【0017】負極板1はポリエチレン製セパレータ2を
介して正極板3と渦巻き状に捲回してあり、ニッケル製
負極リード4によりニッケルメッキした鉄製ケース5底
面に溶着固定されている。正極板3も同様にアルミニウ
ム製正極リード7により正極端子8に接続されている。
The negative electrode plate 1 is spirally wound with the positive electrode plate 3 via the polyethylene separator 2, and is welded and fixed to the bottom surface of the nickel-plated iron case 5 by the nickel negative electrode lead 4. Similarly, the positive electrode plate 3 is connected to the positive electrode terminal 8 by the aluminum positive electrode lead 7.

【0018】正極はコバルト酸リチウム(LiCo
2)100重量部に対して、カーボンブラック3重量
部、4フッ化エチレン樹脂(PTFE)7重量部の組成
である。正極の寸法は幅38mm、長さ350mm、厚
みはAからLの負極板とセパレータとを実際に捲回し、
電池ケースに挿入できる極板厚みにした。
The positive electrode is lithium cobalt oxide (LiCo
The composition is 3 parts by weight of carbon black and 7 parts by weight of tetrafluoroethylene resin (PTFE) with respect to 100 parts by weight of O 2 ). The positive electrode has a width of 38 mm, a length of 350 mm, and a thickness of A to L, and the negative electrode plate and the separator are actually wound,
The thickness of the electrode plate allows it to be inserted into the battery case.

【0019】電解液は六フッ化燐酸リチウム(LiPF
6)を1モル/リットルの濃度で有機溶媒エチレンカー
ボネート(EC)とジメチルカーボネート(DMC)の
体積比率1:3の混合溶媒に溶解したものを用いた。
The electrolytic solution is lithium hexafluorophosphate (LiPF
6 ) was dissolved at a concentration of 1 mol / liter in a mixed solvent of an organic solvent ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 3.

【0020】実施例1および実施例2の負極AからFは
MCMBの容量300mAh/gとなるように幅40m
m、長さ400mm、厚み0.21mmに調整されてい
る。また実施例1および実施例2の負極GからLはKS
15の容量340mAh/gとなるように幅40mm、
長さ400mm、厚み0.17mmに調整されている。
The negative electrodes A to F in Examples 1 and 2 had a width of 40 m so that the capacity of MCMB was 300 mAh / g.
m, length 400 mm, thickness 0.21 mm. The negative electrodes G to L of Examples 1 and 2 are KS.
Width of 40 mm so that the capacity of 15 is 340 mAh / g,
The length is adjusted to 400 mm and the thickness is adjusted to 0.17 mm.

【0021】これら種々の負極を用いた電池の符号を負
極の符号と同様にそれぞれA′からL′とした。これら
A′からL′の電池の充電条件は4.1Vの定電圧・定
電流(最大電流500mA)とし、2時間充電した。放
電は本発明の効果を見るために電池容量約700mAh
に対し、1.4Aの電流とし、電池電圧が3Vになるま
で電流を流した。その結果を図4に示した。ちなみに放
電レート特性に依存しない低い電流100mAで放電し
た場合、すなわち電池の公称容量は電池A′〜F′が7
00mAh、電池G′〜L′は850mAhであった。
The symbols of the batteries using these various negative electrodes were changed from A'to L ', similarly to the symbols of the negative electrodes. The charging conditions of the batteries A'to L'were set to 4.1V constant voltage / current (maximum current 500 mA) and charged for 2 hours. In order to see the effect of the present invention, the discharge is performed with a battery capacity of about 700 mAh.
On the other hand, the current was 1.4 A, and the current was passed until the battery voltage became 3V. The result is shown in FIG. By the way, when discharged at a low current of 100 mA which does not depend on the discharge rate characteristic, that is, the nominal capacity of the batteries is 7 for batteries A'-F '.
00 mAh, batteries G'-L 'were 850 mAh.

【0022】図4中、負極炭素材にMCMBを用い、塗
着時の突出口形状の平行四辺形の角度が0から90度の
A′〜F′はその角度によらず放電電圧曲線の変化が見
られず良好な放電特性を示した。一方、鱗片状黒鉛粒子
のKS15を用いたものは塗着時の突出口形状の平行四
辺形の角度を変えたG′〜L′で非常に放電特性が変化
することがわかった。ちなみに本発明としているのは放
電特性がMCMBと同様の放電曲線形状を示し、電池の
放電容量の大きいI′〜L′である。これらの電池G′
〜L′の放電特性が変化するのは、前述しているように
鱗片状黒鉛粒子の六角炭素網平面が対極の正極に対し平
行に近い角度であるG′、H′ではリチウムイオンの挿
入・脱離する鱗片側面部が他の鱗片状粒子によりリチウ
ムイオンの流れを遮蔽されているためと考えられる。言
い換えると、対極からリチウムイオンが移動する時の経
路の長さが他の粒子の鱗片状の形状のため長くなってし
まっているためである。ところが同じ鱗片状黒鉛粒子を
用いた電池I′〜L′では粒子自体の反応面である鱗片
状側面部が対極側に配向しているため、他の鱗片状黒鉛
粒子の遮蔽度が少なく、リチウムイオンの経路長が短く
なった効果であると考えている。
In FIG. 4, when MCMB is used as the negative electrode carbon material and the parallelogram of the projecting mouth shape at the time of coating has an angle of 0 to 90 degrees A'to F ', the discharge voltage curve changes regardless of the angle. No discharge was observed, indicating good discharge characteristics. On the other hand, it was found that in the case of using the flake graphite particles KS15, the discharge characteristics were significantly changed by G'-L 'in which the angle of the parallelogram of the projecting opening shape during coating was changed. By the way, what is defined as the present invention is I'-L 'in which the discharge characteristic shows the same discharge curve shape as MCMB and the discharge capacity of the battery is large. These batteries G '
As described above, the discharge characteristics of L'to L'change because the hexagonal carbon mesh plane of the flake graphite particles is an angle close to parallel to the positive electrode of the counter electrode. It is considered that the side surface of the detached scale is shielded from the flow of lithium ions by other scale-like particles. In other words, the length of the path when lithium ions move from the counter electrode is long due to the scale-like shape of other particles. However, in the batteries I ′ to L ′ using the same scaly graphite particles, since the scaly side surface portion, which is the reaction surface of the particles themselves, is oriented to the counter electrode side, the degree of shielding of other scaly graphite particles is small, and the lithium flake graphite particles are We believe that this is the effect of shortening the ion path length.

【0023】同様な形状である天然黒鉛粒子、KS以外
の人造黒鉛粒子や鱗片状黒鉛粒子の表面に黒鉛よりも結
晶化度が低い炭素材を被覆しているものについても同様
な効果が得られる。これらの粒子形状の傾向から粒度分
布で測定された平均粒径Dと電子顕微鏡で得られた粒子
側面部(粒子厚み)Tの比T/Dが1/3以下のもので
効果が得られることがわかった。
The same effect can be obtained with natural graphite particles having a similar shape, artificial graphite particles other than KS, and scaly graphite particles whose surface is coated with a carbon material having a lower crystallinity than graphite. . From the tendency of the particle shape, the effect can be obtained when the ratio T / D of the average particle diameter D measured by the particle size distribution and the particle side surface (particle thickness) T obtained by the electron microscope is 1/3 or less. I understood.

【0024】比較例のMCMBはリチウムイオンの挿入
・脱離する反応面がほぼ全面に配列している結晶配列を
しているため、かつ粒子形状が球または塊状であるた
め、このような極板にしたときの粒子配向が見られず、
電池容量の90%の放電が可能である。しかしながら、
炭素材自体のリチウムイオンの挿入・脱離の容量が鱗片
状黒鉛粒子例えば天然黒鉛(NG−7)やKSよりも1
0〜20%小さく、高価である。
Since the MCMB of the comparative example has a crystal arrangement in which the reaction surfaces for insertion / desorption of lithium ions are arranged almost all over the surface and the particle shape is spherical or lumpy, such an electrode plate is used. Particle orientation is not seen when set to
It is possible to discharge 90% of the battery capacity. However,
The capacity of lithium ion insertion / desorption of the carbon material itself is more than that of scaly graphite particles such as natural graphite (NG-7) or KS.
0-20% smaller and expensive.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
は負極炭素材が粒度分布で測定された平均粒径Dと電子
顕微鏡で得られた粒子側面部(粒子厚み)Tの比T/D
が1/3以下の鱗片状黒鉛もしくは鱗片状黒鉛の表面に
黒鉛よりも結晶化度が低い炭素材を被覆している粒子で
あり、それらの鱗片状黒鉛粒子の炭素の六角平面が対向
している正極に対して垂直もしくは垂直から±45度の
角度以内で粒子配向させた負極を用いた非水電解液二次
電池は高率放電においても高容量を維持し、かつ従来よ
りも安価に製造することができ、工業的価値の高いもの
である。
As is apparent from the above description, in the present invention, the ratio T / of the average particle diameter D of the negative electrode carbon material measured by the particle size distribution and the side surface portion (particle thickness) T of the particle obtained by the electron microscope T / D
Is 1/3 or less of scaly graphite or particles in which the surface of scaly graphite is coated with a carbon material having a lower crystallinity than graphite, and the hexagonal planes of carbon of these scaly graphite particles face each other. A non-aqueous electrolyte secondary battery using a negative electrode in which particles are oriented vertically or within ± 45 degrees from the vertical with respect to the positive electrode maintains high capacity even at high rate discharge, and is manufactured at a lower cost than before. It has high industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】負極合剤ペースト塗工機の概略図FIG. 1 is a schematic view of a negative electrode mixture paste coating machine.

【図2】塗着ノズルの拡大図[Fig. 2] Enlarged view of the coating nozzle

【図3】電池縦断面図[Fig. 3] Vertical sectional view of the battery

【図4】電池の放電曲線を示す図FIG. 4 is a diagram showing a discharge curve of a battery.

【符号の説明】[Explanation of symbols]

1 塗着ノズル 2 ポンプ 3 ペーストタンク 4 負極芯材フープ 5 負極塗着済みフープ 6 乾燥炉 7 負極ペースト突出口 8 負極ペースト溜め 9 負極板 10 セパレータ 11 正極板 DESCRIPTION OF SYMBOLS 1 Coating nozzle 2 Pump 3 Paste tank 4 Negative electrode core material hoop 5 Negative electrode coated hoop 6 Drying furnace 7 Negative electrode paste protruding port 8 Negative electrode paste reservoir 9 Negative electrode plate 10 Separator 11 Positive electrode plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 崇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大河内 正也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Takeuchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masaya Okochi, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】再充電可能な正極とセパレータを介してリ
チウムの吸蔵・放出が可能な炭素材を主成分とする負極
の極板群を備え、非水電解液を用いる非水電解液二次電
池において、負極炭素材が鱗片状黒鉛もしくは鱗片状黒
鉛の表面に黒鉛よりも結晶化度が低い炭素材を被覆して
いるものからなり、負極はそれらの鱗片状黒鉛粒子の炭
素の六角平面が、対向している正極に対して垂直もしく
は垂直から±45度の角度以内で粒子配向している非水
電解液二次電池。
1. A non-aqueous electrolyte secondary using a non-aqueous electrolyte, comprising a rechargeable positive electrode and a negative electrode plate group containing a carbon material as a main component capable of inserting and extracting lithium through a separator. In the battery, the negative electrode carbon material is composed of scaly graphite or a scaly graphite surface coated with a carbon material having a lower crystallinity than graphite, and the negative electrode has a hexagonal plane of carbon of those scaly graphite particles. , A non-aqueous electrolyte secondary battery in which particles are oriented perpendicularly or within an angle of ± 45 degrees from the perpendicular to the facing positive electrode.
JP8114539A 1996-05-09 1996-05-09 Nonaqueous electrolyte secondary battery Pending JPH09306477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114539A JPH09306477A (en) 1996-05-09 1996-05-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114539A JPH09306477A (en) 1996-05-09 1996-05-09 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09306477A true JPH09306477A (en) 1997-11-28

Family

ID=14640300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114539A Pending JPH09306477A (en) 1996-05-09 1996-05-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09306477A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134797A (en) * 1996-10-25 1998-05-22 Pilot Precision Co Ltd Film electrode and manufacture thereof
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
JP2005056645A (en) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
US7326497B2 (en) 2001-12-21 2008-02-05 Samsung Sdi Co., Ltd. Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
WO2012111161A1 (en) * 2011-02-18 2012-08-23 トヨタ自動車株式会社 Lithium-ion secondary cell and method for manufacturing same
WO2013018180A1 (en) * 2011-07-29 2013-02-07 トヨタ自動車株式会社 Lithium ion secondary battery
WO2013094037A1 (en) * 2011-12-21 2013-06-27 トヨタ自動車株式会社 Lithium secondary battery
JP2014198368A (en) * 2013-03-29 2014-10-23 平田機工株式会社 Transfer robot and control method
CN110612624A (en) * 2017-03-05 2019-12-24 纳米技术仪器公司 Aluminum secondary battery having cathode capable of high capacity and high rate and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134797A (en) * 1996-10-25 1998-05-22 Pilot Precision Co Ltd Film electrode and manufacture thereof
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US6803150B1 (en) 1998-08-27 2004-10-12 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US7326497B2 (en) 2001-12-21 2008-02-05 Samsung Sdi Co., Ltd. Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
JP2005056645A (en) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP4713068B2 (en) * 2003-08-01 2011-06-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5601550B2 (en) * 2011-02-18 2014-10-08 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
WO2012111161A1 (en) * 2011-02-18 2012-08-23 トヨタ自動車株式会社 Lithium-ion secondary cell and method for manufacturing same
JPWO2013018180A1 (en) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 Lithium ion secondary battery
CN103733390A (en) * 2011-07-29 2014-04-16 丰田自动车株式会社 Lithium ion secondary battery
WO2013018180A1 (en) * 2011-07-29 2013-02-07 トヨタ自動車株式会社 Lithium ion secondary battery
CN103733390B (en) * 2011-07-29 2016-08-17 丰田自动车株式会社 Lithium rechargeable battery
WO2013094037A1 (en) * 2011-12-21 2013-06-27 トヨタ自動車株式会社 Lithium secondary battery
JPWO2013094037A1 (en) * 2011-12-21 2015-04-27 トヨタ自動車株式会社 Lithium secondary battery
JP2014198368A (en) * 2013-03-29 2014-10-23 平田機工株式会社 Transfer robot and control method
CN110612624A (en) * 2017-03-05 2019-12-24 纳米技术仪器公司 Aluminum secondary battery having cathode capable of high capacity and high rate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
JP5005877B2 (en) Lithium ion secondary battery or battery, protection circuit thereof, electronic device, and charging device
JP4748949B2 (en) Nonaqueous electrolyte secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP4657403B2 (en) Nonaqueous electrolyte secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP4752085B2 (en) Negative electrode for lithium secondary battery
JP3132281B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JPH09306477A (en) Nonaqueous electrolyte secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2000058066A (en) Secondary battery
KR102244226B1 (en) Silicon Composite Anode Active Material including Network of Conductive Fibers, Manufacturing method thereof and Lithium Secondary Battery Comprising the Same
JP2001110424A (en) Conductive material for positive electrode of lithium secondary battery and positive electrode for the lithium secondary battery using the conductive material
JP2002025626A (en) Aging method for lithium secondary battery
JP3329162B2 (en) Non-aqueous electrolyte secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
JP2792373B2 (en) Non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery