JPH09303954A - Method and device for liquefying hydrogen by using neon - Google Patents

Method and device for liquefying hydrogen by using neon

Info

Publication number
JPH09303954A
JPH09303954A JP8117437A JP11743796A JPH09303954A JP H09303954 A JPH09303954 A JP H09303954A JP 8117437 A JP8117437 A JP 8117437A JP 11743796 A JP11743796 A JP 11743796A JP H09303954 A JPH09303954 A JP H09303954A
Authority
JP
Japan
Prior art keywords
neon
hydrogen
liquefied
expansion
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8117437A
Other languages
Japanese (ja)
Other versions
JP3660748B2 (en
Inventor
Kazuho Iwamoto
一帆 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP11743796A priority Critical patent/JP3660748B2/en
Publication of JPH09303954A publication Critical patent/JPH09303954A/en
Application granted granted Critical
Publication of JP3660748B2 publication Critical patent/JP3660748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant

Abstract

PROBLEM TO BE SOLVED: To effectively and economically produce liquefied hydrogen by a method wherein after compressed and cooled low temperature high pressure hydrogen is further cooled by the latent heat of liquefied neon, the hydrogen is expanded for liquefaction. SOLUTION: Hydrogen compressed by a hydrogen compressor 14 is cooled by a heat-exchanger 15a and a liquefied nitrogen reservoir 16 and converted into approximate 17% parahydrogen concentration by an ortho-paraconverter 17. Further, the hydrogen flows through, in order, heat-exchangers 15b-15e filled with an ortho-para conversion catalyst and is cooled to approximate 28K and converted to approximate 95% hydrogen concentration. Further, after the hydrogen is expanded by a hydrogen expansion turbine 18 to generate cold, it is introduced to an ortho-paraconverter 19 in a liquefied neon reservoir 51 and converted to approximate 99% para-hydrogen concentration and simultaneously cooled to a value approximately equal to 25K. Thereafter, by effecting flashing of the hydrogen by a hydrogen J-T valve 20, the hydrogen is introduced to a liquefied hydrogen storage tank 21. Gas and liquid are separated to extract liquefied hydrogen from a product extraction route 22. Since the high feed pressure of a neon circulation cycle is effectively utilized, the efficiency of a process is improved and hydrogen is effectively and economically liquefied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ネオンを用いた水
素液化方法及び装置に関し、詳しくは、ネオンを発生寒
冷原として利用して水素を液化する方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for liquefying hydrogen using neon, and more particularly to a method and an apparatus for liquefying hydrogen by using neon as a cold source for generation.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】水素を
液化して液化水素を得る方法として、特公平3−194
71号公報に記載された水素液化方法が知られている。
この方法では、発生寒冷源をネオンの循環サイクルに設
置した膨張タービンと、水素液化直前に設置した濃縮流
体エクスパンダーと称する膨張機にのみ依存して行われ
ていた。
2. Description of the Related Art As a method for liquefying hydrogen to obtain liquefied hydrogen, Japanese Patent Publication No. 3-194
The hydrogen liquefaction method described in Japanese Patent No. 71 is known.
This method has been carried out only by relying on an expansion turbine in which a generation cold source is installed in a neon circulation cycle and an expander called a concentrated fluid expander installed immediately before hydrogen liquefaction.

【0003】しかし、上述のものでは、ネオンの常圧に
おける沸点が約27Kであるのに対し、水素の沸点が約
20Kと低く、ネオン循環サイクルの発生寒冷源を、膨
張タービンにのみ依存した場合、原料水素の冷却可能温
度がネオンの沸点温度27K付近までと制限されてしま
い、液化直前での上記膨張機入口温度が高くなり、フラ
ッシュロスの増大を招く結果となっていた。
However, in the above-mentioned one, when the boiling point of neon is about 27K at normal pressure, the boiling point of hydrogen is as low as about 20K, and when the cold source for generating the neon circulation cycle depends only on the expansion turbine. However, the temperature at which the raw material hydrogen can be cooled is limited to around the boiling point temperature of neon of 27 K, and the inlet temperature of the expander becomes high immediately before liquefaction, resulting in an increase in flash loss.

【0004】そこで本発明は、ネオンの潜熱を利用して
水素を冷却することにより、より効果的かつ経済的に液
化水素を得ることができるネオンを用いた水素液化方法
及び装置を提供すること目的としている。
Therefore, the present invention aims to provide a hydrogen liquefaction method and apparatus using neon, by which liquefied hydrogen can be obtained more effectively and economically by cooling hydrogen by utilizing the latent heat of neon. I am trying.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明のネオンを用いた水素液化方法は、水素を圧
縮,冷却して膨張させることにより液化する方法におい
て、前記圧縮,冷却した低温高圧水素を、ネオンを圧
縮,冷却して膨張させて得た液化ネオンの潜熱で更に冷
却した後、膨張させて液化することを特徴とし、さら
に、前記液化ネオンが減圧状態にあること、前記圧縮,
冷却した低温高圧ネオンを断熱膨張させて液化するに際
し、その膨張後の温度が少なくともその膨張後の圧力に
おける沸点温度よりも高い温度に設定して膨張タービン
又は超臨界膨張タービンで膨張させること、該超臨界膨
張タービンでの膨張は、その吐出圧力(膨張後の圧力)
がそのタービン流体の臨界圧力以上であることを特徴と
している。
In order to achieve the above object, a hydrogen liquefaction method using neon according to the present invention is a method of liquefying hydrogen by compressing, cooling and expanding the hydrogen. High-pressure hydrogen is characterized in that it is further cooled by the latent heat of liquefied neon obtained by compressing, cooling and expanding neon, and then expanding and liquefying, and that the liquefying neon is in a reduced pressure state, ,
When liquefying the cooled low-temperature high-pressure neon by adiabatic expansion, the temperature after expansion is set to a temperature higher than the boiling point temperature at least after the expansion and expanded by an expansion turbine or a supercritical expansion turbine, The expansion pressure in the supercritical expansion turbine is the discharge pressure (pressure after expansion)
Is above the critical pressure of the turbine fluid.

【0006】また、本発明のネオンを用いた水素液化装
置は、液化する水素を圧縮する水素圧縮機と、圧縮した
水素を冷却する熱交換器と、冷却後の低温高圧水素を膨
張させて一部を液化する膨張手段と、膨張により生成し
た液化水素を貯蔵する液化水素貯槽と、液化しなかった
水素を前記熱交換器の冷却源とし、冷却源として用いた
後の水素を前記水素圧縮機の吸入側に戻して循環させる
水素循環経路と、ネオンを圧縮するネオン圧縮機と、圧
縮したネオンを冷却する熱交換器と、冷却後の低温ネオ
ンを膨張させて一部を液化する膨張手段と、膨張により
生成した液化ネオンを貯蔵する液化ネオン溜めと、前記
圧縮したネオンの一部を膨張させて寒冷を発生させる膨
張タービンと、前記膨張手段での膨張で液化しなかった
ネオン及び前記液化ネオン溜め内で蒸発したネオンと前
記膨張タービンで膨張したネオンとを前記熱交換器の冷
却源とし、冷却源として用いた後のネオンを前記ネオン
圧縮機の吸入側に戻して循環させるネオン循環経路と、
前記液化ネオン溜め内の液化ネオンにより前記低温高圧
水素を更に冷却する熱交換手段とを備えていることを特
徴としている。
The neon-based hydrogen liquefying apparatus of the present invention is a hydrogen compressor for compressing liquefied hydrogen, a heat exchanger for cooling the compressed hydrogen, and a low-temperature high-pressure hydrogen after cooling for expansion. Means for liquefying a portion, a liquefied hydrogen storage tank for storing liquefied hydrogen generated by expansion, and hydrogen that has not been liquefied as a cooling source for the heat exchanger, and hydrogen after being used as a cooling source is the hydrogen compressor. A hydrogen circulation path for returning the gas to the suction side for circulation, a neon compressor for compressing neon, a heat exchanger for cooling the compressed neon, and an expansion means for expanding the cooled low temperature neon to liquefy a part thereof. , A liquefied neon reservoir that stores liquefied neon generated by expansion, an expansion turbine that expands a portion of the compressed neon to generate cold, a neon that has not been liquefied by the expansion in the expansion means, and the liquid A neon circulation path in which neon evaporated in the neon reservoir and neon expanded by the expansion turbine are used as cooling sources for the heat exchanger, and neon after being used as a cooling source is returned to the suction side of the neon compressor for circulation. When,
And a heat exchange means for further cooling the low-temperature high-pressure hydrogen by the liquefied neon in the liquefied neon reservoir.

【0007】さらに、本発明の水素液化装置は、前記液
化ネオン溜め内で蒸発したネオンを吸引して液化ネオン
溜め内を減圧する排気ポンプを備えていること、前記低
温高圧ネオンを膨張させて一部を液化する膨張手段の上
流に、膨張タービン又は超臨界膨張タービンを直列に備
えており、該超臨界膨張タービンは、その吐出圧力(膨
張後の圧力)がそのタービン流体の臨界圧力以上である
膨張タービンであること、また、前記低温高圧水素を膨
張させて一部を液化する膨張手段の上流に、液化ネオン
との熱交換器及び膨張タービンを直列に備えていること
を特徴としている。
Further, the hydrogen liquefaction apparatus of the present invention comprises an exhaust pump for sucking neon vaporized in the liquefied neon reservoir to reduce the pressure in the liquefied neon reservoir, and expanding the low-temperature high-pressure neon. An expansion turbine or a supercritical expansion turbine is provided in series upstream of the expansion means for liquefying the portion, and the discharge pressure (pressure after expansion) of the supercritical expansion turbine is equal to or higher than the critical pressure of the turbine fluid. It is an expansion turbine, and is characterized in that a heat exchanger for liquefied neon and an expansion turbine are provided in series upstream of an expansion means for expanding the low-temperature high-pressure hydrogen to liquefy a part thereof.

【0008】[0008]

【発明の実施の形態】以下、本発明を、図面を参照して
さらに詳細に説明する。図1は、本発明のネオンを用い
た水素液化装置の一例を示すもので、水素液化サイクル
10とネオン循環サイクル50とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows an example of a hydrogen liquefaction apparatus using neon of the present invention, which is composed of a hydrogen liquefaction cycle 10 and a neon circulation cycle 50.

【0009】水素液化サイクル10は、原料水素を供給
する原料水素経路11と、該原料水素経路11から供給
された原料水素と水素循環経路12からの循環水素とが
合流する水素供給経路13と、水素供給経路13の水素
を所定圧力まで圧縮する水素圧縮機14と、圧縮した水
素を冷却する複数の熱交換器15a,15b,15c,
15d,15e,15fと、圧縮した水素を液化窒素温
度レベルまで冷却する1段目の熱交換器15aの下流に
設けられた液化窒素溜め16及び該液化窒素溜め16内
に浸漬されたオルソパラ変換器(熱交換器)17と、高
圧水素の終段熱交換器15fを導出した低温高圧水素
を、水素の臨界圧(約12.7気圧)以上の圧力範囲で
膨張させる水素膨張タービン(超臨界膨張タービン)1
8と、ネオン循環サイクル50の液化ネオン溜め51内
に設けられたオルソパラ変換器(熱交換器)19と、こ
れらのオルソパラ変換器(熱交換器)及び膨張タービン
を通過することにより低温となった低温圧縮水素を膨張
(フラッシュ)させて一部を液化する膨張手段である水
素J−T弁20と、膨張により生成した液化水素を貯蔵
する液化水素貯槽21と、液化しなかった水素(フラッ
シュロス)や液化水素貯槽21内で蒸発した水素を、前
記熱交換器15a,15b,15c,15d,15e,
15f及びネオン循環サイクル50の最終段の熱交換器
52の冷却源として寒冷を回収した後、前記原料水素経
路11に合流させる前記水素循環経路12とを備えてお
り、前記液化窒素溜め16内のオルソパラ変換器(熱交
換器)17から下流の低温側の熱交換器15b,15
c,15d,15e,15fの水素通路には、通過する
水素を連続的にオルソ・パラ変換するため変換触媒がそ
れぞれ充填されている。また、製品の液化水素は、液化
水素貯槽21に設けられた製品取出し経路22から抜出
される。上記水素膨張タービン18は、膨張後の圧力が
その臨界圧力である超臨界タービンであり、該水素膨張
タービン18と、オルソパラ変換器19である熱交換器
と、水素J−T弁20とは、直列に配置されている。
The hydrogen liquefaction cycle 10 includes a raw material hydrogen passage 11 for supplying raw material hydrogen, and a hydrogen supply passage 13 where the raw material hydrogen supplied from the raw material hydrogen passage 11 and the circulating hydrogen from the hydrogen circulation passage 12 join together. A hydrogen compressor 14 for compressing hydrogen in the hydrogen supply path 13 to a predetermined pressure, and a plurality of heat exchangers 15a, 15b, 15c for cooling the compressed hydrogen.
15d, 15e, 15f and a liquefied nitrogen reservoir 16 provided downstream of the first-stage heat exchanger 15a for cooling compressed hydrogen to a liquefied nitrogen temperature level, and an orthopara converter immersed in the liquefied nitrogen reservoir 16 Hydrogen expansion turbine (supercritical expansion) that expands the low-temperature high-pressure hydrogen derived from the (heat exchanger) 17 and the final-stage heat exchanger 15f for high-pressure hydrogen at a pressure range higher than the critical pressure of hydrogen (about 12.7 atm). Turbine) 1
8, the orthopara converter (heat exchanger) 19 provided in the liquefied neon reservoir 51 of the neon circulation cycle 50, and these orthopara converters (heat exchangers) and the expansion turbine, the temperature became low. Hydrogen JT valve 20 which is expansion means for expanding (flushing) low temperature compressed hydrogen to liquefy a part thereof, liquefied hydrogen storage tank 21 for storing liquefied hydrogen generated by expansion, and hydrogen which has not been liquefied (flash loss ) Or hydrogen vaporized in the liquefied hydrogen storage tank 21, the heat exchangers 15a, 15b, 15c, 15d, 15e,
15 f and the hydrogen circulation path 12 for merging with the raw material hydrogen path 11 after collecting cold as a cooling source of the heat exchanger 52 at the final stage of the neon circulation cycle 50. Low temperature side heat exchangers 15b, 15 downstream from the orthopara converter (heat exchanger) 17
The hydrogen passages c, 15d, 15e, and 15f are filled with conversion catalysts for continuously ortho-para converting the passing hydrogen. Further, the liquefied hydrogen of the product is extracted from the product extraction path 22 provided in the liquefied hydrogen storage tank 21. The hydrogen expansion turbine 18 is a supercritical turbine whose pressure after expansion is its critical pressure, and the hydrogen expansion turbine 18, the heat exchanger that is the orthopara converter 19, and the hydrogen JT valve 20 are They are arranged in series.

【0010】一方のネオン循環サイクル50は、常温の
ネオンを所定圧力まで圧縮する第1及び第2ネオン圧縮
機53,54と、前記水素冷却用と共通の複数の熱交換
器15a,15b,15c,15d,15e及び前記液
化窒素溜め16内に浸漬された熱交換器55並びに前記
最終段の熱交換器52によりネオンを順次冷却するネオ
ン冷却液化経路56と、該ネオン冷却液化経路56の最
終段の熱交換器52の上流に設けられたネオン膨張ター
ビン57と、熱交換器52を導出した低温ネオンを膨張
(フラッシュ)させて一部を液化する膨張手段であるネ
オンJ−T弁58と、膨張により生成した液化ネオンを
貯蔵する前記液化ネオン溜め51と、液化しなかったネ
オン(フラッシュロス)や液化ネオン溜め51内で蒸発
したネオンを液化ネオン溜め51から吸引して液化ネオ
ン溜め51内を減圧して負圧状態にする排気ポンプ59
と、排気ポンプ59で吸引したネオンを、熱交換器の適
当な温度位置に戻して各熱交換器のの冷却源として寒冷
を回収した後、前記第1ネオン圧縮機53の吸入側に戻
して循環させるネオン循環経路60と、前記ネオン冷却
液化経路56を流れるネオンの一部を分岐して断熱膨張
させることにより寒冷を発生させる第1乃至第3ネオン
膨張タービン61,62a,62bと、第1ネオン膨張
タービン61で中間圧力に膨張して寒冷を発生したネオ
ンを相当温度の熱交換器15b,15aに冷却源として
導入した後、第2ネオン圧縮機54の吸入側のネオンに
合流させる第1寒冷経路63と、第2ネオン膨張タービ
ン62aを中間圧力で導出したネオンを熱交換器15c
で冷却源として利用した後、前記第3ネオン膨張タービ
ン62bに導入し、低圧まで膨張させて再び寒冷を発生
させ、熱交換器15eに導入する第2寒冷経路64とを
備えており、第2寒冷経路64のネオンは、前記ネオン
循環経路60のネオンと合流して第1ネオン圧縮機53
に循環する。
On the other hand, the neon circulation cycle 50 includes first and second neon compressors 53 and 54 for compressing neon at room temperature to a predetermined pressure, and a plurality of heat exchangers 15a, 15b and 15c common to the hydrogen cooling. , 15d, 15e, a heat exchanger 55 immersed in the liquefied nitrogen reservoir 16, and a neon cooling liquefaction path 56 for sequentially cooling neon by the final stage heat exchanger 52, and a final stage of the neon cooling liquefaction path 56. Neon expansion turbine 57 provided upstream of the heat exchanger 52, and a neon J-T valve 58 which is an expansion means for expanding (flushing) the low temperature neon led out of the heat exchanger 52 and liquefying a part thereof. The liquefied neon reservoir 51 that stores the liquefied neon generated by expansion, the neon that has not been liquefied (flash loss), and the neon that has evaporated in the liquefied neon reservoir 51 are liquefied. Was aspirated from the on reservoir 51 by reducing the pressure in the liquefied neon reservoir 51 to a negative pressure in the exhaust pump 59
Then, the neon sucked by the exhaust pump 59 is returned to an appropriate temperature position of the heat exchanger to collect cold as a cooling source of each heat exchanger, and then returned to the suction side of the first neon compressor 53. A neon circulation path 60 for circulation, first to third neon expansion turbines 61, 62a, 62b for generating cold by branching a part of the neon flowing through the neon cooling liquefaction path 56 and performing adiabatic expansion, and After introducing neon, which has been cooled to an intermediate pressure in the neon expansion turbine 61 to generate cold, into the heat exchangers 15b and 15a having a corresponding temperature as a cooling source, the neon is joined to the suction side neon of the second neon compressor 54. The cold path 63 and the neon derived from the second neon expansion turbine 62a at an intermediate pressure are transferred to the heat exchanger 15c.
After being used as a cooling source in the second neon expansion turbine 62b, it is introduced into the third neon expansion turbine 62b, expanded to a low pressure to generate refrigeration again, and is introduced into the heat exchanger 15e. The neon of the cold path 64 merges with the neon of the neon circulation path 60 and the first neon compressor 53.
Circulates.

【0011】前記最終段の熱交換器52の上流に、ネオ
ンJ−T弁58に対して直列に設けられたネオン膨張タ
ービン57は、少なくとも吐出温度がその圧力における
沸点温度よりも高い温度になるように、すなわち、ター
ビン出口で液化しないように設定されており、さらに、
超臨界膨張タービンを用いることもできる。この超臨界
膨張タービンは、その吐出圧力(膨張後の圧力)が臨界
圧力以上である膨張タービンである。
The neon expansion turbine 57 installed upstream of the final stage heat exchanger 52 in series with the neon JT valve 58 has a discharge temperature at least higher than the boiling temperature at that pressure. That is, it is set so that it does not liquefy at the turbine outlet, and
A supercritical expansion turbine can also be used. This supercritical expansion turbine is an expansion turbine whose discharge pressure (pressure after expansion) is equal to or higher than the critical pressure.

【0012】また、前記液化窒素溜め16には、液化窒
素経路16aから液化窒素が供給され、液化窒素溜め1
6内で蒸発した窒素は、液化窒素を生成する過程で生じ
た低温窒素経路16bからの低温窒素と合流し、熱交換
器15aで寒冷回収された後、排気経路16cから導出
される。
Liquefied nitrogen is supplied to the liquefied nitrogen reservoir 16 from a liquefied nitrogen passage 16a, and the liquefied nitrogen reservoir 1 is
The nitrogen evaporated in 6 merges with the low temperature nitrogen from the low temperature nitrogen path 16b generated in the process of producing liquefied nitrogen, is cold-collected by the heat exchanger 15a, and is then discharged from the exhaust path 16c.

【0013】水素液化サイクル10において、水素圧縮
機14で所定の圧力(20〜60気圧)まで圧縮された
水素は、熱交換器15a及び液化窒素溜め16で、液化
窒素温度レベルまで冷却され、同時に液化窒素溜め16
に浸漬された熱交換器のオルソパラ変換器17で、パラ
水素濃度約17%まで変換される。
In the hydrogen liquefaction cycle 10, the hydrogen compressed by the hydrogen compressor 14 to a predetermined pressure (20 to 60 atm) is cooled to the liquefied nitrogen temperature level by the heat exchanger 15a and the liquefied nitrogen reservoir 16 and at the same time. Liquefied nitrogen reservoir 16
In the ortho-para converter 17 of the heat exchanger immersed in, the para-hydrogen concentration is converted to about 17%.

【0014】その後、水素は、オルソパラ変換触媒を充
填したパスを有する熱交換器15b,15c,15d,
15eを順次流れることにより、ネオンの常圧の沸点温
度に近い約28Kまで冷却されるとともに、パラ水素濃
度約95%まで変換される。これらの熱交換器15b,
15c,15d,15eの寒冷は、主としてネオン循環
サイクル50の第1乃至第3ネオン膨張タービン61,
62a,62bで発生したものである。
Thereafter, the hydrogen is converted into the heat exchangers 15b, 15c, 15d, which have a path filled with the orthopara conversion catalyst.
By sequentially flowing through 15e, it is cooled down to about 28 K which is close to the boiling point temperature of neon at normal pressure, and the parahydrogen concentration is converted to about 95%. These heat exchangers 15b,
The cold of 15c, 15d, and 15e is mainly due to the first to third neon expansion turbines 61 of the neon circulation cycle 50,
62a and 62b.

【0015】一方、ネオン冷却経路56の所定圧力のネ
オンは、熱交換器15eで約28Kまで冷却された後、
ネオン膨張タービン57で膨張後の圧力におけるネオン
の沸点温度よりも高い吐出温度まで断熱膨張して寒冷を
発生し、さらに熱交換器52で冷却された後、ネオンJ
−T弁58でジュール・トムソン膨張し、液化ネオン溜
め51に導入されて気液分離される。このとき、液化ネ
オン溜め51内の圧力は、排気ポンプ59で吸引するこ
とにより約0.5気圧の負圧状態であり、温度は25K
となる。
On the other hand, neon having a predetermined pressure in the neon cooling path 56 is cooled to about 28 K by the heat exchanger 15e,
The neon expansion turbine 57 adiabatically expands to a discharge temperature higher than the boiling temperature of neon at the pressure after expansion to generate cold, and is further cooled by the heat exchanger 52, and then neon J
-T-valve 58 expands Joule-Thomson, introduces into liquefied neon reservoir 51 and separates into gas and liquid. At this time, the pressure in the liquefied neon reservoir 51 is a negative pressure state of about 0.5 atm by being sucked by the exhaust pump 59, and the temperature is 25K.
Becomes

【0016】液化ネオン溜め51からの戻りガスは、排
気ポンプ59で常圧まで戻された後、低温側の第3ネオ
ン膨張タービン62bを導出した第2寒冷経路64の略
常圧のネオンと合流し、ネオン循環経路60を流れて熱
交換器で寒冷回収された後、ネオン圧縮機53,54に
吸入され、所定圧力まで圧縮されて循環する。
The return gas from the liquefied neon reservoir 51 is returned to the normal pressure by the exhaust pump 59, and then merges with the neon at the substantially normal pressure in the second cold path 64 which has led out the third neon expansion turbine 62b on the low temperature side. Then, after flowing through the neon circulation path 60 and being cold-collected by the heat exchanger, it is sucked into the neon compressors 53 and 54, compressed to a predetermined pressure and circulated.

【0017】また、熱交換器15fで冷却されるととも
に、オルソ・パラ変換触媒によりオルソ・パラ変換した
低温高圧水素は、水素膨張タービン18で少なくとも吐
出圧力が水素の臨界圧(約12.7気圧)より高い圧力
にまで膨張して寒冷を発生した後、液化ネオン溜め51
内のオルソパラ変換器(熱交換器)19に導入され、パ
ラ水素濃度約99%まで変換されると同時に25K近く
まで冷却される。
The low-temperature high-pressure hydrogen, which has been ortho-para converted by the ortho-para conversion catalyst while being cooled by the heat exchanger 15f, has at least a discharge pressure of hydrogen at the hydrogen expansion turbine 18 (about 12.7 atm). ) After expanding to a higher pressure and producing cold, liquefied neon reservoir 51
It is introduced into an orthopara converter (heat exchanger) 19 inside and is converted to a parahydrogen concentration of about 99% and at the same time cooled to nearly 25K.

【0018】冷却された水素は、水素J−T弁20でフ
ラッシュして液化水素貯槽21に導入され、気液分離し
て液化水素が製品取出し経路22から抜き取られ、ガス
は、水素循環経路12を通って寒冷回収後、原料水素経
路11と合流する。
The cooled hydrogen is flushed by the hydrogen J-T valve 20 and introduced into the liquefied hydrogen storage tank 21, the gas-liquid separation is performed and the liquefied hydrogen is extracted from the product extraction path 22, and the gas is the hydrogen circulation path 12 After recovering cold by passing through, it joins the raw material hydrogen passage 11.

【0019】なお、排気ポンプ59は、液化ネオン溜め
51の近くでなくてもよく、ネオン循環経路60の適当
な位置に設置することができる。すなわち、常温や他の
温度レベルの位置に設置してもよいが、経路が別に必要
となるなどが不利となる。
The exhaust pump 59 need not be located near the liquefied neon reservoir 51 and can be installed at an appropriate position in the neon circulation path 60. That is, it may be installed at a position of room temperature or another temperature level, but it is disadvantageous in that a separate route is required.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
液化ネオンの潜熱を利用するので、水素を効果的に冷却
することができ、さらに、液化ネオンを減圧することに
より、より低い温度まで水素を冷却することができる。
また、ネオンをJ−T膨張させて液化する前に、吐出温
度を少なくともその圧力における沸点温度よりも高い温
度に設定した膨張タービンで断熱膨張させて寒冷を発生
させることにより、ネオン循環サイクルの高い供給圧を
有効に活用することができる。したがって、プロセスの
効率が向上し、より効果的、経済的に水素を液化するこ
とができる。
As described above, according to the present invention,
Since the latent heat of liquefied neon is utilized, hydrogen can be effectively cooled, and further, by decompressing liquefied neon, hydrogen can be cooled to a lower temperature.
In addition, before the JT expansion and liquefaction of the neon, adiabatic expansion is performed by an expansion turbine in which the discharge temperature is set to a temperature higher than the boiling point temperature at least at that pressure to generate cold, so that the neon circulation cycle is high. The supply pressure can be effectively utilized. Therefore, the efficiency of the process is improved, and hydrogen can be liquefied more effectively and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の水素液化装置の一例を示す系統図で
ある。
FIG. 1 is a system diagram showing an example of a hydrogen liquefaction device of the present invention.

【符号の説明】[Explanation of symbols]

10…水素液化サイクル、11…原料水素経路、12…
水素循環経路、13…水素供給経路、14…水素圧縮
機、15a,15b,15c,15d,15e,15f
…熱交換器、16…液化窒素溜め、17…オルソパラ変
換器(熱交換器)、18…水素膨張タービン、19…オ
ルソパラ変換器(熱交換器)、20…水素J−T弁、2
1…液化水素貯槽、22…製品取出し経路、50…ネオ
ン循環サイクル、51…液化ネオン溜め、52…熱交換
器、53,54…第1及び第2ネオン圧縮機、55…熱
交換器、56…ネオン冷却液化経路、57…ネオン膨張
タービン、58…ネオンJ−T弁、59…排気ポンプ、
60…ネオン循環経路、61,62a,62b…第1〜
第3ネオン膨張タービン、63,64…第1及び第2寒
冷経路
10 ... Hydrogen liquefaction cycle, 11 ... Raw material hydrogen path, 12 ...
Hydrogen circulation path, 13 ... Hydrogen supply path, 14 ... Hydrogen compressor, 15a, 15b, 15c, 15d, 15e, 15f
... Heat exchanger, 16 ... Liquefied nitrogen reservoir, 17 ... Orthopara converter (heat exchanger), 18 ... Hydrogen expansion turbine, 19 ... Orthopara converter (heat exchanger), 20 ... Hydrogen J-T valve, 2
DESCRIPTION OF SYMBOLS 1 ... Liquefied hydrogen storage tank, 22 ... Product extraction path, 50 ... Neon circulation cycle, 51 ... Liquefied neon storage, 52 ... Heat exchanger, 53, 54 ... First and second neon compressors, 55 ... Heat exchanger, 56 ... neon cooling liquefaction path, 57 ... neon expansion turbine, 58 ... neon JT valve, 59 ... exhaust pump,
60 ... Neon circulation path, 61, 62a, 62b ... 1st to 1st
3rd neon expansion turbine, 63, 64 ... 1st and 2nd cold path

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水素を圧縮,冷却して膨張させることに
より液化する方法において、前記圧縮,冷却した低温高
圧水素を、ネオンを圧縮,冷却して膨張させて得た液化
ネオンの潜熱で更に冷却した後、膨張させて液化するこ
とを特徴とするネオンを用いた水素液化方法。
1. A method of liquefying hydrogen by compressing, cooling and expanding it, further cooling the compressed and cooled low-temperature high-pressure hydrogen with latent heat of liquefied neon obtained by compressing, cooling and expanding neon. After that, the hydrogen liquefaction method using neon is characterized by expanding and liquefying.
【請求項2】 前記液化ネオンは、減圧状態にあること
を特徴とする請求項1記載のネオンを用いた水素液化方
法。
2. The hydrogen liquefaction method using neon according to claim 1, wherein the liquefied neon is in a reduced pressure state.
【請求項3】 前記圧縮,冷却した低温高圧ネオンを断
熱膨張させて液化するに際し、その膨張後の温度が少な
くともその膨張後の圧力における沸点温度よりも高い温
度に設定して膨張タービンで膨張させることを特徴とす
る請求項1記載のネオンを用いた水素液化方法。
3. When the compressed and cooled low-temperature high-pressure neon is adiabatically expanded and liquefied, the temperature after expansion is set at a temperature higher than the boiling point temperature at least after the expansion and expanded by an expansion turbine. The method for liquefying hydrogen using neon according to claim 1, characterized in that.
【請求項4】 前記膨張タービンは、超臨界膨張タービ
ンであることを特徴とする請求項3記載のネオンを用い
た水素液化方法。
4. The hydrogen liquefaction method using neon according to claim 3, wherein the expansion turbine is a supercritical expansion turbine.
【請求項5】 液化する水素を圧縮する水素圧縮機と、
圧縮した水素を冷却する熱交換器と、冷却後の低温高圧
水素を膨張させて一部を液化する膨張手段と、膨張によ
り生成した液化水素を貯蔵する液化水素貯槽と、液化し
なかった水素を前記熱交換器の冷却源とし、冷却源とし
て用いた後の水素を前記水素圧縮機の吸入側に戻して循
環させる水素循環経路と、ネオンを圧縮するネオン圧縮
機と、圧縮したネオンを冷却する熱交換器と、冷却後の
低温ネオンを膨張させて一部を液化する膨張手段と、膨
張により生成した液化ネオンを貯蔵する液化ネオン溜め
と、前記圧縮したネオンの一部を膨張させて寒冷を発生
させる膨張タービンと、前記膨張手段での膨張で液化し
なかったネオン及び前記液化ネオン溜め内で蒸発したネ
オンと前記膨張タービンで膨張したネオンとを前記熱交
換器の冷却源とし、冷却源として用いた後のネオンを前
記ネオン圧縮機の吸入側に戻して循環させるネオン循環
経路と、前記液化ネオン溜め内の液化ネオンにより前記
低温高圧水素を更に冷却する熱交換手段とを備えている
ことを特徴とするネオンを用いた水素液化装置。
5. A hydrogen compressor for compressing liquefied hydrogen,
A heat exchanger that cools the compressed hydrogen, an expansion unit that expands the cooled low-temperature high-pressure hydrogen to liquefy it, a liquefied hydrogen storage tank that stores the liquefied hydrogen generated by expansion, and a non-liquefied hydrogen. As a cooling source of the heat exchanger, a hydrogen circulation path for returning hydrogen after being used as a cooling source to the suction side of the hydrogen compressor for circulation, a neon compressor for compressing neon, and cooling the compressed neon. A heat exchanger, an expansion means for expanding the low temperature neon after cooling to liquefy a part thereof, a liquefied neon reservoir for storing the liquefied neon generated by the expansion, and a part of the compressed neon for expanding the cold. An expansion turbine to be generated, neon not liquefied by expansion in the expansion means, neon evaporated in the liquefied neon reservoir, and neon expanded in the expansion turbine as a cooling source of the heat exchanger. A neon circulation path for returning the neon after used as a cooling source to the suction side of the neon compressor for circulation, and a heat exchange means for further cooling the low-temperature high-pressure hydrogen by the liquefied neon in the liquefied neon reservoir. A hydrogen liquefaction device using neon, which is characterized in that
【請求項6】 前記液化ネオン溜め内で蒸発したネオン
を吸引して液化ネオン溜め内を減圧する排気ポンプを備
えていることを特徴とする請求項5記載のネオンを用い
た水素液化装置。
6. The hydrogen liquefaction apparatus using neon according to claim 5, further comprising an exhaust pump for sucking neon evaporated in the liquefied neon reservoir to reduce the pressure in the liquefied neon reservoir.
【請求項7】 前記低温高圧ネオンを膨張させて一部を
液化する膨張手段の上流に、膨張タービンを直列に備え
ていることを特徴とする請求項5記載のネオンを用いた
水素液化装置。
7. The hydrogen liquefaction apparatus using neon according to claim 5, wherein an expansion turbine is provided in series upstream of an expansion means for expanding the low-temperature high-pressure neon to liquefy a part thereof.
【請求項8】 前記低温高圧水素を膨張させて一部を液
化する膨張手段の上流に、液化ネオンとの熱交換器及び
膨張タービンを直列に備えていることを特徴とする請求
項5記載のネオンを用いた水素液化装置。
8. A heat exchanger for liquefying neon and an expansion turbine are provided in series upstream of an expansion means for expanding the low-temperature high-pressure hydrogen to liquefy a part thereof. Hydrogen liquefaction device using neon.
JP11743796A 1996-05-13 1996-05-13 Method and apparatus for hydrogen liquefaction using neon Expired - Fee Related JP3660748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11743796A JP3660748B2 (en) 1996-05-13 1996-05-13 Method and apparatus for hydrogen liquefaction using neon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11743796A JP3660748B2 (en) 1996-05-13 1996-05-13 Method and apparatus for hydrogen liquefaction using neon

Publications (2)

Publication Number Publication Date
JPH09303954A true JPH09303954A (en) 1997-11-28
JP3660748B2 JP3660748B2 (en) 2005-06-15

Family

ID=14711634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11743796A Expired - Fee Related JP3660748B2 (en) 1996-05-13 1996-05-13 Method and apparatus for hydrogen liquefaction using neon

Country Status (1)

Country Link
JP (1) JP3660748B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163236A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3162871A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
EP3163235A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Novel cascade process for cooling and liquefying hydrogen in large-scale
US10816262B2 (en) 2016-03-10 2020-10-27 Jgc Corporation Production equipment and production method of liquefied hydrogen and liquefied natural gas
CN114544216A (en) * 2022-04-25 2022-05-27 北京大臻科技有限公司 Performance test system for two-phase expander
RU2779805C1 (en) * 2022-05-06 2022-09-13 Общество с ограниченной ответственностью "КРИОИНЖИНИРИНГ" (ООО "КРИОИНЖИНИРИНГ") Method for liquefiting hydrogen and installation for its implementation (options)
CN115597308A (en) * 2022-09-24 2023-01-13 江苏捷思新能源科技有限公司(Cn) Low-cost high-efficiency liquid hydrogen preparation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163236A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3162871A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
EP3163235A1 (en) 2015-10-27 2017-05-03 Linde Aktiengesellschaft Novel cascade process for cooling and liquefying hydrogen in large-scale
WO2017072019A1 (en) 2015-10-27 2017-05-04 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
WO2017072018A1 (en) 2015-10-27 2017-05-04 Linde Aktiengesellschaft Novel cascade process for cooling and liquefying hydrogen in large-scale
US10816262B2 (en) 2016-03-10 2020-10-27 Jgc Corporation Production equipment and production method of liquefied hydrogen and liquefied natural gas
CN114544216A (en) * 2022-04-25 2022-05-27 北京大臻科技有限公司 Performance test system for two-phase expander
CN114544216B (en) * 2022-04-25 2022-07-12 北京大臻科技有限公司 Performance test system for two-phase expander
RU2779805C1 (en) * 2022-05-06 2022-09-13 Общество с ограниченной ответственностью "КРИОИНЖИНИРИНГ" (ООО "КРИОИНЖИНИРИНГ") Method for liquefiting hydrogen and installation for its implementation (options)
CN115597308A (en) * 2022-09-24 2023-01-13 江苏捷思新能源科技有限公司(Cn) Low-cost high-efficiency liquid hydrogen preparation method

Also Published As

Publication number Publication date
JP3660748B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
AU674813B2 (en) Process and apparatus for producing liquefied natural gas
JP3086857B2 (en) Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method
CN110701870B (en) Air separation device and method utilizing LNG cold energy
JP2015501410A (en) Multiple nitrogen expansion process for LNG production
JP2020098092A5 (en)
JP2000065471A (en) Gas liquefaction process
CN113286977B (en) Cooling method for liquefied raw gas
US4638638A (en) Refrigeration method and apparatus
JPH09303954A (en) Method and device for liquefying hydrogen by using neon
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JP3486786B2 (en) Method and apparatus for producing liquid hydrogen
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
JPH11343865A (en) Cryogenic turbine power generation system
JP3521360B2 (en) Method and apparatus for producing liquid hydrogen
JP3326536B2 (en) Method and apparatus for liquefying nitrogen gas
JPH05180558A (en) Method of liquefying gas and refrigerating plant
CN116075678A (en) Apparatus and method for refrigerating and/or liquefying a fluid
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
CN115789511B (en) Liquid hydrogen cold energy cascade utilization system and method
JPH06241647A (en) Hydrogen liquefying equipment and slush hydrogen producing equipment
JPH09170834A (en) Helium refrigerating system
CN112444099B (en) Natural gas liquefaction equipment
JP3551397B2 (en) Gas liquefaction method
TW202328612A (en) Hydrogen liquefaction with stored hydrogen refrigeration source

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees