JPH09294373A - Snubber circuit of insulation type ac/dc conversion device - Google Patents

Snubber circuit of insulation type ac/dc conversion device

Info

Publication number
JPH09294373A
JPH09294373A JP10489296A JP10489296A JPH09294373A JP H09294373 A JPH09294373 A JP H09294373A JP 10489296 A JP10489296 A JP 10489296A JP 10489296 A JP10489296 A JP 10489296A JP H09294373 A JPH09294373 A JP H09294373A
Authority
JP
Japan
Prior art keywords
snubber
full
circuit
wave rectifier
rectifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10489296A
Other languages
Japanese (ja)
Inventor
Makoto Tanitsu
誠 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10489296A priority Critical patent/JPH09294373A/en
Publication of JPH09294373A publication Critical patent/JPH09294373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the loss generated in a snubber circuit to protect a rectifying circuit even when the frequency of an AC power supply to be inputted into an insulation type AC/DC conversion device. SOLUTION: Full-wave rectifiers 20, 30 are connected to secondary windings 12, 13 of a transformer 10, the DC side of the rectifiers 20, 30 is connected to each other in series through a smoothing reactor 4, and a smoothing capacitor 5 is connected to the series circuit. A first snubber circuit 25 attached to the first full-wave rectifier 20 is connected to the negative pole side of the smoothing capacitor 5 through a first snubber resistor 28, while a second snubber circuit 35 attached to the second full-wave rectifying circuit 30 is connected to the positive pole side of the smoothing capacitor 5 through a second snubber resistor 38. When the ratio of the number of turns of the secondary winding 12 to that of the secondary winding 13 is about 1, and the flowing ratio of the AC power supply 1 is >=50% in total, the voltage of the smoothing capacitor 5 is higher than the voltage amplitude on the DC value of the first full-wave retificing 20, 30, and snubber capacitors 26, 36 are clamped through the respective snubber resistors 28, 38, and a clamp snubber circuit of discharge preventive type can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、全波整流器を使
って交流電源とは絶縁された直流電力を得る際の前記全
波整流器を保護する絶縁形交流/直流変換装置のスナバ
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snubber circuit of an insulation type AC / DC converter that protects a full-wave rectifier when using the full-wave rectifier to obtain DC power insulated from an AC power source.

【0002】[0002]

【従来の技術】図2は交流側とは絶縁された直流電力を
出力する絶縁形交流/直流変換装置の従来例を示した回
路図である。この図2の従来例回路に図示のように、従
来は一次巻線とは絶縁された二次巻線を有する変圧器2
の前記一次巻線に交流電源1を接続し、半導体素子をフ
ルブリッジ接続して構成した全波整流回路3を前記二次
巻線に接続する。なお、変圧器2には漏れインダクタン
ス8が存在する。また、全波整流回路3を構成する半導
体素子としてはサイリスタやトランジスタなどもある
が、ダイオードならば制御回路が不要で構造が単純で低
価格の整流回路を構成できるので、以下ではダイオード
を使用した場合について説明する。
2. Description of the Related Art FIG. 2 is a circuit diagram showing a conventional example of an insulation type AC / DC converter which outputs DC power insulated from the AC side. As shown in the conventional circuit of FIG. 2, the transformer 2 has a secondary winding that is conventionally insulated from the primary winding.
The AC power supply 1 is connected to the primary winding, and the full-wave rectifier circuit 3 configured by connecting semiconductor elements in a full bridge is connected to the secondary winding. A leakage inductance 8 exists in the transformer 2. Further, as a semiconductor element forming the full-wave rectifier circuit 3, there are a thyristor, a transistor, etc., but if a diode is used, a control circuit is not necessary and a low-priced rectifier circuit can be formed. Therefore, a diode is used in the following. The case will be described.

【0003】交流電力を全波整流回路3で整流して得ら
れる直流電力にはリップル分が含まれているので、全波
整流回路3の直流側には平滑リアクトル4と平滑コンデ
ンサ5とでなる平滑回路を設けてこのリップル分を除去
し、平滑された直流電力を直流負荷6へ供給する。例え
ば全波整流回路3を構成しているダイオード3Uとダイ
オード3Yとが導通して直流負荷6へ電力を供給しいる
ときに、交流電源1の極性が反転してダイオード3Vと
ダイオード3Xとが導通となる転流時(またはダイオー
ド3Vとダイオード3Xとの導通からダイオード3Uと
ダイオード3Yとの導通となる転流時)に発生するダイ
オードのリカバリー電流により、前記の漏れインダクタ
ンス8にエネルギーが蓄えられる。このエネルギーがス
イッチング時のサージ電圧となって全波整流回路3を構
成する各ダイオードを破壊する恐れがある。そこでこの
スイッチングサージ電圧に耐えられるように高耐電圧特
性のダイオードを選定すると、このダイオードが大形・
高価になり、装置全体が大形化・高価格化する不都合が
ある。そこで全波整流回路3の直流出力側と前述した平
滑回路との間にRCスナバ回路7を設置することで、前
記のスイッチングサージ電圧の吸収を図っている。
Since the DC power obtained by rectifying the AC power by the full-wave rectifier circuit 3 contains a ripple component, the smoothing reactor 4 and the smoothing capacitor 5 are provided on the DC side of the full-wave rectifier circuit 3. A smoothing circuit is provided to remove this ripple and supply smoothed DC power to the DC load 6. For example, when the diode 3U and the diode 3Y forming the full-wave rectifier circuit 3 are conducting to supply electric power to the DC load 6, the polarity of the AC power supply 1 is inverted and the diode 3V and the diode 3X are conducting. Energy is stored in the leakage inductance 8 by the recovery current of the diode generated at the time of commutation (or at the time of commutation from conduction between the diode 3V and the diode 3X to conduction between the diode 3U and the diode 3Y). This energy may become a surge voltage at the time of switching and destroy each diode forming the full-wave rectifier circuit 3. Therefore, if a diode with a high withstand voltage characteristic is selected to withstand this switching surge voltage, this diode is
There is a disadvantage in that it becomes expensive and the entire apparatus becomes large and expensive. Therefore, the RC snubber circuit 7 is installed between the DC output side of the full-wave rectifier circuit 3 and the above-mentioned smoothing circuit to absorb the switching surge voltage.

【0004】[0004]

【発明が解決しようとする課題】ところで図2の従来例
回路では、平滑コンデンサ5の電圧は全波整流回路3の
直流側電圧振幅値よりも低くなり、常にこの直流側電圧
振幅値よりも安定して高い電位点は存在しない。そのた
め図2に図示の従来例回路では適当なクランプ先が無い
ので、放電阻止形のクランプ式スナバ回路を採用するの
は困難であり、図示している充放電形のRCスナバ回路
7を使用せざるを得ない。このRCスナバ回路7は単純
な構成であるが発生損失が大きい欠点がある。RCスナ
バ回路7を構成しているスナバコンデンサ7Cの静電容
量をCS ,交流電源1の電圧振幅値をVP ,交流電源1
の周波数をfとすると、RCスナバ回路7での発生損失
Sは下記の数式1で表される。
By the way, in the conventional circuit of FIG. 2, the voltage of the smoothing capacitor 5 becomes lower than the DC side voltage amplitude value of the full-wave rectifier circuit 3, and is always more stable than this DC side voltage amplitude value. And there is no high potential point. Therefore, in the conventional circuit shown in FIG. 2, since there is no suitable clamp tip, it is difficult to adopt the clamp type snubber circuit of the discharge blocking type, and the charge / discharge type RC snubber circuit 7 shown in FIG. I have no choice. Although this RC snubber circuit 7 has a simple structure, it has a drawback that the generated loss is large. The capacitance of the snubber capacitor 7C forming the RC snubber circuit 7 is C S , the voltage amplitude value of the AC power supply 1 is V P , and the AC power supply 1 is
Where f is the frequency of, the generated loss P S in the RC snubber circuit 7 is expressed by the following formula 1.

【0005】[0005]

【数1】PS ≧CS ・VP 2 ・f 交流電源1の周波数を高くすれば交流電源1と直流側と
を絶縁するための変圧器2を小形・軽量にできるので、
装置全体を小形化が可能になるから、交流電力の周波数
は極力高くしたいが、数式1に示すようにRCスナバ回
路7での損失は周波数に比例して大きくなり、この損失
に伴う発熱の処理のために装置が大形化する不都合があ
るし、装置の効率が低下する不具合も生じる。
[Formula 1] P S ≧ C S · V P 2 · f If the frequency of the AC power supply 1 is increased, the transformer 2 for insulating the AC power supply 1 from the DC side can be made compact and lightweight.
Since it is possible to downsize the entire device, it is desirable to make the frequency of the AC power as high as possible, but as shown in Formula 1, the loss in the RC snubber circuit 7 becomes large in proportion to the frequency, and the heat generated by this loss is treated. Therefore, the size of the device becomes large, and the efficiency of the device decreases.

【0006】そこでこの発明の目的は、絶縁形交流/直
流変換装置へ入力する交流電源の周波数が高くても、整
流回路を保護するスナバ回路が発生する損失を抑制でき
るようにすることにある。
Therefore, an object of the present invention is to suppress the loss generated in the snubber circuit for protecting the rectifier circuit even if the frequency of the AC power source input to the insulation type AC / DC converter is high.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めにこの発明の絶縁形交流/直流変換装置のスナバ回路
は、相互に絶縁された1つの一次巻線と2つの二次巻線
とを備えている変圧器の前記一次巻線に交流電源を接続
し、半導体素子のフルブリッジ接続でなる第1全波整流
回路を一方の二次巻線に接続し、この第1全波整流回路
と同じ構成の第2全波整流回路を他方の二次巻線に接続
し、第1全波整流回路の負極側と第2全波整流回路の正
極側とを平滑リアクトルを介して接続し、第1全波整流
回路の正極側と第2全波整流回路の負極側との間に平滑
コンデンサを接続し、直流負荷をこの平滑コンデンサに
並列に接続し、第1スナバコンデンサと第1スナバダイ
オードとの直列回路を前記第1全波整流回路の正極側と
負極側との間に接続し、この第1スナバコンデンサと第
1スナバダイオードの結合点と前記平滑コンデンサの負
極側とを第1スナバ抵抗を介して接続することで、当該
第1スナバコンデンサの電圧を平滑コンデンサの電圧に
クランプし、第2スナバコンデンサと第2スナバダイオ
ードとの直列回路を前記第2全波整流回路の正極側と負
極側との間に接続し、この第2スナバコンデンサと第2
スナバダイオードの結合点と前記平滑コンデンサの正極
側とを第2スナバ抵抗を介して接続することで、当該第
2スナバコンデンサの電圧を平滑コンデンサの電圧にク
ランプする。
To achieve the above object, a snubber circuit of an insulated AC / DC converter according to the present invention comprises a primary winding and two secondary windings insulated from each other. AC power source is connected to the primary winding of the transformer, and the first full-wave rectifying circuit, which is a full-bridge connection of semiconductor elements, is connected to one secondary winding. The second full-wave rectifier circuit having the same configuration as the above is connected to the other secondary winding, and the negative side of the first full-wave rectifier circuit and the positive side of the second full-wave rectifier circuit are connected via a smoothing reactor, A smoothing capacitor is connected between the positive electrode side of the first full-wave rectifier circuit and the negative electrode side of the second full-wave rectifier circuit, and a DC load is connected in parallel to this smoothing capacitor, and a first snubber capacitor and a first snubber diode are connected. And a series circuit connected between the positive side and the negative side of the first full-wave rectifier circuit. Then, the voltage of the first snubber capacitor is clamped to the voltage of the smoothing capacitor by connecting the coupling point of the first snubber capacitor and the first snubber diode and the negative side of the smoothing capacitor via the first snubber resistor. Then, a series circuit of the second snubber capacitor and the second snubber diode is connected between the positive electrode side and the negative electrode side of the second full-wave rectifier circuit, and the second snubber capacitor and the second snubber capacitor are connected.
The voltage of the second snubber capacitor is clamped to the voltage of the smoothing capacitor by connecting the connection point of the snubber diode and the positive electrode side of the smoothing capacitor via the second snubber resistor.

【0008】前記交流電源が出力する交流波形は、正極
性パルスと負極性パルスとの合計が50%以上の導通率
で交互に繰り返される波形にすることにより、平滑コン
デンサの電圧を前記第1全波整流回路または第2全波整
流回路の直流出力側電圧振幅値よりも高くする。
The alternating current waveform output from the alternating current power source is a waveform in which the positive polarity pulse and the negative polarity pulse are alternately repeated at a conduction rate of 50% or more, whereby the voltage of the smoothing capacitor is changed to the first total voltage. It is made higher than the DC output side voltage amplitude value of the wave rectifier circuit or the second full-wave rectifier circuit.

【0009】[0009]

【発明の実施の形態】図1は本発明の実施例を表した回
路図である。この実施例回路における交流電源1は2つ
の二次巻線12と13とを備えた変圧器10の一次巻線
11に接続されるが、これら3つの巻線は相互に絶縁さ
れている。この二次巻線12には漏れインダクタンス1
4があり、二次巻線13には漏れインダクタンス15が
ある。変圧器10の一方の二次巻線12には、半導体素
子としてのダイオードをフルブリッジ接続した第1全波
整流回路20を接続し、他方の二次巻線13も同じ構成
の第2全波整流回路30を接続する。第1全波整流回路
20の負極側と第2全波整流回路30の正極側とは平滑
リアクトル4を介して接続する。更に第1全波整流回路
20の正極側と第2全波整流回路30の負極側との間に
は平滑コンデンサ5を接続する。出力する直流電力に含
まれるリップル分は、これら平滑リアクトル4と平滑コ
ンデンサ5とにより除去されるから、平滑コンデンサ5
に並列に接続されている直流負荷6へは平滑された直流
電力が与えられる。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. The AC power supply 1 in this example circuit is connected to a primary winding 11 of a transformer 10 with two secondary windings 12 and 13, these three windings being insulated from one another. This secondary winding 12 has a leakage inductance 1
4 and the secondary winding 13 has a leakage inductance 15. A first full-wave rectifying circuit 20 in which a diode as a semiconductor element is full-bridge connected is connected to one secondary winding 12 of the transformer 10, and the other secondary winding 13 has a second full-wave rectifying circuit of the same configuration. The rectifier circuit 30 is connected. The negative side of the first full-wave rectifier circuit 20 and the positive side of the second full-wave rectifier circuit 30 are connected via the smoothing reactor 4. Further, a smoothing capacitor 5 is connected between the positive side of the first full-wave rectifier circuit 20 and the negative side of the second full-wave rectifier circuit 30. Since the ripple component contained in the output DC power is removed by the smoothing reactor 4 and the smoothing capacitor 5, the smoothing capacitor 5
The smoothed DC power is applied to the DC load 6 connected in parallel with.

【0010】第1スナバコンデンサ26と第1スナバダ
イオード27との直列回路を前記の第1全波整流回路2
0の正極側と負極側との間に接続し、これら第1スナバ
コンデンサ26と第1スナバダイオード27との結合点
には第1スナバ抵抗28の一端を接続し、その他端は前
記平滑コンデンサ5の負極側に接続するが、これら第1
スナバコンデンサ26,第1スナバダイオード27およ
び第1スナバ抵抗28とで第1スナバ回路25を構成す
る。同様に、第2スナバコンデンサ36と第2スナバダ
イオード37との直列回路を前記第2全波整流回路30
の正極側と負極側との間に接続し、これら第2スナバコ
ンデンサ36と第2スナバダイオード37との結合点に
接続した第2スナバ抵抗38の他端を平滑コンデンサ5
の正極側に接続するが、これら第2スナバコンデンサ3
6,第2スナバダイオード37および第2スナバ抵抗3
8とで第2スナバ回路35を構成する。
The series circuit of the first snubber capacitor 26 and the first snubber diode 27 is connected to the first full-wave rectifier circuit 2 described above.
0 is connected between the positive electrode side and the negative electrode side, one end of the first snubber resistor 28 is connected to the connection point of the first snubber capacitor 26 and the first snubber diode 27, and the other end is connected to the smoothing capacitor 5 It is connected to the negative electrode side of
The snubber capacitor 26, the first snubber diode 27, and the first snubber resistor 28 form a first snubber circuit 25. Similarly, the series circuit of the second snubber capacitor 36 and the second snubber diode 37 is connected to the second full-wave rectifier circuit 30.
Is connected between the positive electrode side and the negative electrode side of the second snubber capacitor 36 and the second snubber diode 37, and the other end of the second snubber resistor 38 is connected to the smoothing capacitor 5
Connected to the positive electrode side of the second snubber capacitor 3
6, second snubber diode 37 and second snubber resistor 3
And 8 form a second snubber circuit 35.

【0011】交流電源1からの交流電力は変圧器10で
絶縁されたのち、第1全波整流回路20と第2全波整流
回路30とにより直流電力に変換されるが、この直流電
力は平滑リアクトル4と平滑コンデンサ5とにより平滑
されて直流負荷6へ与えられる。ここで交流電源1の極
性が反転する際に、第1全波整流回路20ではダイオー
ド21と24,又はダイオード22と23の転流・リカ
バリー動作に伴って、変圧器10の漏れインダクタンス
14に蓄えられたエネルギーは、漏れインダクタンス1
4→ダイオード21→第1スナバコンデンサ26→第1
スナバダイオード27→ダイオード24→二次巻線12
(または漏れインダクタンス14→ダイオード22→第
1スナバコンデンサ26→第1スナバダイオード27→
ダイオード23→二次巻線12)の経路で第1スナバコ
ンデンサ26へ吸収されるから、スイッチングサージ電
圧は当該第1スナバコンデンサ26の電圧に制限され、
第1全波整流回路20を保護する。この第1スナバコン
デンサ26の電圧は、第1スナバ抵抗28を介して平滑
コンデンサ5の電圧にクランプされる。第2全波整流回
路30と第2スナバ回路35の動作も前記と同様であっ
て、第2スナバコンデンサ36の電圧は第2スナバ抵抗
38を介して平滑コンデンサ5の電圧にクランプされ
る。
The AC power from the AC power supply 1 is insulated by the transformer 10 and then converted into DC power by the first full-wave rectifier circuit 20 and the second full-wave rectifier circuit 30. This DC power is smoothed. It is smoothed by the reactor 4 and the smoothing capacitor 5 and given to the DC load 6. Here, when the polarity of the AC power supply 1 is reversed, the first full-wave rectifier circuit 20 stores in the leakage inductance 14 of the transformer 10 with the commutation / recovery operation of the diodes 21 and 24 or the diodes 22 and 23. The energy stored is the leakage inductance 1
4 → diode 21 → first snubber capacitor 26 → first
Snubber diode 27 → diode 24 → secondary winding 12
(Or leakage inductance 14 → diode 22 → first snubber capacitor 26 → first snubber diode 27 →
The switching surge voltage is limited to the voltage of the first snubber capacitor 26 because it is absorbed by the first snubber capacitor 26 in the path of the diode 23 → secondary winding 12).
The first full-wave rectifier circuit 20 is protected. The voltage of the first snubber capacitor 26 is clamped to the voltage of the smoothing capacitor 5 via the first snubber resistor 28. The operations of the second full-wave rectifier circuit 30 and the second snubber circuit 35 are similar to the above, and the voltage of the second snubber capacitor 36 is clamped to the voltage of the smoothing capacitor 5 via the second snubber resistor 38.

【0012】交流電源1が出力する交流電力の周波数が
高ければ、変圧器10を小形化・軽量化できることは既
に述べた。そこで、例えば正極性パルスと負極性パルス
とを高頻度で交互に出力させることで、交流電源1が高
周波交流電力を出力できるようにして、前記パルスの通
流率が合計50%以上で、且つ二次巻線12と二次巻線
13との巻数比を1程度にするならば、平滑コンデンサ
5の電圧は常に第1全波整流回路20の直流側電圧振幅
値または第2全波整流回路30の直流側電圧振幅値より
も高くなる。よって第1スナバ回路25または第2スナ
バ回路35へ流入するエネルギーは、第1全波整流回路
20または第2全波整流回路30を構成するダイオード
がスイッチングする際に漏れインダクタンス14または
漏れインダクタンス15に蓄えられたエネルギーだけと
なる。即ち第1スナバ回路25または第2スナバ回路3
5は余分な損失を生じない放電阻止形のクランプ式スナ
バ回路を実現することになる。
It has already been described that the transformer 10 can be made smaller and lighter if the frequency of the AC power output from the AC power source 1 is high. Therefore, for example, the positive polarity pulse and the negative polarity pulse are alternately output at high frequency so that the AC power supply 1 can output the high frequency AC power, and the pulse conduction rate is 50% or more in total, and If the turn ratio between the secondary winding 12 and the secondary winding 13 is set to about 1, the voltage of the smoothing capacitor 5 is always the DC side voltage amplitude value of the first full-wave rectifier circuit 20 or the second full-wave rectifier circuit. It becomes higher than the DC side voltage amplitude value of 30. Therefore, the energy flowing into the first snubber circuit 25 or the second snubber circuit 35 is transferred to the leakage inductance 14 or the leakage inductance 15 when the diodes forming the first full-wave rectification circuit 20 or the second full-wave rectification circuit 30 switch. Only the stored energy is available. That is, the first snubber circuit 25 or the second snubber circuit 3
5 realizes a clamp type snubber circuit of discharge prevention type that does not generate extra loss.

【0013】[0013]

【発明の効果】従来の絶縁形交流/直流変換装置では、
全波整流回路の直流出力側に設置するスナバ回路のコン
デンサをクランプする適切な電位点が存在しないため
に、このスナバ回路での損失が大きくなる欠点があった
が、本発明では変圧器二次巻線を2組にしてそれぞれに
全波整流回路を接続する回路構成にすることで、当該全
波整流回路の保護に放電阻止形のクランプ式スナバ回路
を採用できる。放電阻止形のクランプ式スナバ回路を使
用すれば、交流電源の周波数を高くしてもスナバ回路で
の損失は大きくならないので、高周波数化による装置の
小形化、スナバ回路の損失低減による装置の小形化、装
置の効率が向上するなどの効果が得られる。また、半導
体素子の耐電圧性能には限界があるから、直流側電圧が
高くなれば整流器を多重化する必要があり、本発明を適
用することによって得られる装置の小形化効果や低損失
化効果は更に大きくなる。
According to the conventional insulated AC / DC converter,
Since there is no appropriate potential point for clamping the capacitor of the snubber circuit installed on the DC output side of the full-wave rectifier circuit, there is a disadvantage that the loss in this snubber circuit becomes large, but in the present invention, the transformer secondary By forming a circuit configuration in which two sets of windings are connected to each full-wave rectification circuit, a discharge-prevention clamp type snubber circuit can be used for protection of the full-wave rectification circuit. If you use the clamp type snubber circuit of discharge prevention type, the loss in the snubber circuit will not increase even if the frequency of the AC power supply is increased.Therefore, downsizing the device by increasing the frequency and downsizing the device by reducing the loss of the snubber circuit And the efficiency of the device is improved. Further, since the withstand voltage performance of the semiconductor element is limited, it is necessary to multiplex the rectifier if the DC side voltage becomes higher, and the effect of downsizing and loss reduction of the device obtained by applying the present invention. Will be even larger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表した回路図FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】交流側とは絶縁された直流電力を出力する絶縁
形交流/直流変換装置の従来例を示した回路図
FIG. 2 is a circuit diagram showing a conventional example of an insulated AC / DC converter that outputs DC power that is insulated from the AC side.

【符号の説明】[Explanation of symbols]

1 交流電源 2,10 変圧器 3 全波整流回路 4 平滑リアクトル 5 平滑コンデンサ 6 直流負荷 7 RCスナバ回路 7C スナバコンデンサ 7R スナバ抵抗 8,14,15 漏れインダクタンス 11 一次巻線 12,13 二次巻線 20 第1全波整流回路 25 第1スナバ回路 26 第1スナバコンデンサ 27 第1スナバダイオード 28 第1スナバ抵抗 30 第2全波整流回路 35 第2スナバ回路 36 第2スナバコンデンサ 37 第2スナバダイオード 38 第2スナバ抵抗 1 AC power supply 2,10 Transformer 3 Full wave rectifier circuit 4 Smoothing reactor 5 Smoothing capacitor 6 DC load 7 RC snubber circuit 7C Snubber capacitor 7R Snubber resistance 8, 14, 15 Leakage inductance 11 Primary winding 12, 13 Secondary winding 20 1st full wave rectifier circuit 25 1st snubber circuit 26 1st snubber capacitor 27 1st snubber diode 28 1st snubber resistance 30 2nd full wave rectifier circuit 35 2nd snubber circuit 36 2nd snubber capacitor 37 2nd snubber diode 38 Second snubber resistance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/10 8726−5H H02M 7/10 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H02M 7/10 8726-5H H02M 7/10 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】相互に絶縁された1つの一次巻線と2つの
二次巻線とを備えている変圧器の前記一次巻線に交流電
源を接続し、半導体素子のフルブリッジ接続でなる第1
全波整流回路を一方の二次巻線に接続し、この第1全波
整流回路と同じ構成の第2全波整流回路を他方の二次巻
線に接続し、第1全波整流回路の負極側と第2全波整流
回路の正極側とを平滑リアクトルを介して接続し、第1
全波整流回路の正極側と第2全波整流回路の負極側との
間に平滑コンデンサを接続し、直流負荷をこの平滑コン
デンサに並列に接続し、第1スナバコンデンサと第1ス
ナバダイオードとの直列回路を前記第1全波整流回路の
正極側と負極側との間に接続し、この第1スナバコンデ
ンサと第1スナバダイオードの結合点と前記平滑コンデ
ンサの負極側とを第1スナバ抵抗を介して接続し、第2
スナバコンデンサと第2スナバダイオードとの直列回路
を前記第2全波整流回路の正極側と負極側との間に接続
し、この第2スナバコンデンサと第2スナバダイオード
の結合点と前記平滑コンデンサの正極側とを第2スナバ
抵抗を介して接続することを特徴とする絶縁形交流/直
流変換装置のスナバ回路。
1. An AC power supply is connected to the primary winding of a transformer having one primary winding and two secondary windings insulated from each other, and a full bridge connection of semiconductor devices is provided. 1
The full-wave rectifier circuit is connected to one of the secondary windings, and the second full-wave rectifier circuit having the same configuration as the first full-wave rectifier circuit is connected to the other secondary winding of the first full-wave rectifier circuit. The negative electrode side and the positive electrode side of the second full-wave rectifier circuit are connected via a smoothing reactor,
A smoothing capacitor is connected between the positive electrode side of the full-wave rectifier circuit and the negative electrode side of the second full-wave rectifier circuit, and a DC load is connected in parallel to this smoothing capacitor to connect the first snubber capacitor and the first snubber diode. A series circuit is connected between the positive side and the negative side of the first full-wave rectifier circuit, and the first snubber resistor is connected to the coupling point of the first snubber capacitor and the first snubber diode and the negative side of the smoothing capacitor. Connect through the second
A series circuit of a snubber capacitor and a second snubber diode is connected between the positive side and the negative side of the second full-wave rectifier circuit, and the connection point of the second snubber capacitor and the second snubber diode and the smoothing capacitor are connected. A snubber circuit for an insulation type AC / DC converter, wherein the snubber circuit is connected to the positive electrode side via a second snubber resistor.
【請求項2】請求項1に記載の絶縁形交流/直流変換装
置のスナバ回路において、前記交流電源が出力する交流
波形は、正極性パルスと負極性パルスとが合計50%以
上の通流率で交互に繰り返される波形とすることを特徴
とする絶縁形交流/直流変換装置のスナバ回路。
2. The snubber circuit of the insulation type AC / DC converter according to claim 1, wherein the AC waveform output from the AC power supply has a conduction ratio of positive pulse and negative pulse of 50% or more in total. A snubber circuit for an insulation type AC / DC converter, which is characterized by having a waveform that is alternately repeated.
JP10489296A 1996-04-25 1996-04-25 Snubber circuit of insulation type ac/dc conversion device Pending JPH09294373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10489296A JPH09294373A (en) 1996-04-25 1996-04-25 Snubber circuit of insulation type ac/dc conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10489296A JPH09294373A (en) 1996-04-25 1996-04-25 Snubber circuit of insulation type ac/dc conversion device

Publications (1)

Publication Number Publication Date
JPH09294373A true JPH09294373A (en) 1997-11-11

Family

ID=14392821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10489296A Pending JPH09294373A (en) 1996-04-25 1996-04-25 Snubber circuit of insulation type ac/dc conversion device

Country Status (1)

Country Link
JP (1) JPH09294373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271076A (en) * 2005-03-23 2006-10-05 Fuji Electric Systems Co Ltd Dc-dc converter
CN107613611A (en) * 2017-09-28 2018-01-19 周安平 Alternating current and direct current automatic switchover LED
JP2020120578A (en) * 2016-04-04 2020-08-06 東芝キヤリア株式会社 Electric power unit
CN112219346A (en) * 2018-04-11 2021-01-12 航天喷气发动机洛克达因股份有限公司 Power converter including a recirculation buffer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271076A (en) * 2005-03-23 2006-10-05 Fuji Electric Systems Co Ltd Dc-dc converter
JP4701771B2 (en) * 2005-03-23 2011-06-15 富士電機システムズ株式会社 DC / DC converter
JP2020120578A (en) * 2016-04-04 2020-08-06 東芝キヤリア株式会社 Electric power unit
CN107613611A (en) * 2017-09-28 2018-01-19 周安平 Alternating current and direct current automatic switchover LED
CN107613611B (en) * 2017-09-28 2023-10-27 周安平 AC/DC automatic switching LED lamp
CN112219346A (en) * 2018-04-11 2021-01-12 航天喷气发动机洛克达因股份有限公司 Power converter including a recirculation buffer

Similar Documents

Publication Publication Date Title
JP4430531B2 (en) Bi-directional isolated DC-DC converter
EP2814155A1 (en) LC snubber circuit
JP3393617B2 (en) Three-phase sine wave input switching power supply circuit
WO1999022436A1 (en) Ac to dc conversion arrangement
JP3239757B2 (en) AC current source circuit
JPH09285126A (en) Snubber circuit of semiconductor rectifier
JP2004336976A (en) Rectifier circuit
US4423476A (en) d.c. Blocking oscillator charging device for electric vehicles
JPH09294373A (en) Snubber circuit of insulation type ac/dc conversion device
JP2007274818A (en) Rectifying device
JPH08228486A (en) Control method of dc-ac inverter
JP3656779B2 (en) DC-DC converter
JP3736997B2 (en) Pulse width modulation controlled converter
JPH0685632B2 (en) DC / DC converter
JP4096696B2 (en) Rectifier
JP3757729B2 (en) Inverter device
JP2789222B2 (en) Power converter
CN110707934B (en) Switching power supply circuit and power supply device
JPH11146648A (en) Dc-dc converter
JP3275856B2 (en) Power converter
RU2074497C1 (en) Frequency converter
JPH09252576A (en) Sunbber circuit of dc-dc converter
JPS63268465A (en) Power converter
JP3993704B2 (en) Active filter device
JPH06284723A (en) Power-supply device