JP2020120578A - Electric power unit - Google Patents

Electric power unit Download PDF

Info

Publication number
JP2020120578A
JP2020120578A JP2020078305A JP2020078305A JP2020120578A JP 2020120578 A JP2020120578 A JP 2020120578A JP 2020078305 A JP2020078305 A JP 2020078305A JP 2020078305 A JP2020078305 A JP 2020078305A JP 2020120578 A JP2020120578 A JP 2020120578A
Authority
JP
Japan
Prior art keywords
switch element
circuit
diode
current
rectifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020078305A
Other languages
Japanese (ja)
Other versions
JP6926272B2 (en
Inventor
正樹 金森
Masaki Kanamori
正樹 金森
圭一 石田
Keiichi Ishida
圭一 石田
洋平 久保田
Yohei Kubota
洋平 久保田
健太 山本
Kenta Yamamoto
健太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016075144A external-priority patent/JP6789654B2/en
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2020078305A priority Critical patent/JP6926272B2/en
Publication of JP2020120578A publication Critical patent/JP2020120578A/en
Application granted granted Critical
Publication of JP6926272B2 publication Critical patent/JP6926272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

To provide an electric power unit capable of preventing element destruction due to surge voltage.SOLUTION: An electric power unit includes a series circuit of first switch element SW1 having a reactor 11 for connection with the output end of a rectifier circuit 2, and a diode D1 connected in anti-parallel, a backflow prevention diode D2 provided in an electrification path between a load and the first switch element, a second switch element SW2 connected in parallel with the backflow prevention diode, and a capacitor 12 connected in parallel with the load. In a booster circuit 10 having a step-up mode for boosting the output voltage of the rectifier circuit by on-off of the first switch element, and on-off of the second switch element of inverse phase from on-off of the first switch element, and a non-boost mode for outputting the output voltage of the rectifier circuit without boosting by continuing off of the first switch element, when the instantaneous value of a current flowing to the reactor is equal to or less than a set value, the step-up mode of the booster circuit is prohibited and the booster circuit is brought into the non-boost mode.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、例えば、冷凍サイクルを有する空気調和機や熱源機等に搭載される電源装置に関する。 The embodiment of the present invention relates to a power supply device mounted on, for example, an air conditioner or a heat source device having a refrigeration cycle.

冷凍サイクルを有する空気調和機や熱源機等に搭載される電源装置は、交流電源の電圧を整流する全波整流回路、この全波整流回路の出力電圧を昇圧する昇圧回路、この昇圧回路の出力電圧を所定周波数の交流電圧に変換して圧縮機モータに供給するインバータなどを含む。昇圧回路は、全波整流回路の出力端に接続されるリアクタおよびスイッチ素子の直列回路、負荷とスイッチ素子との間の通電路に設けた逆流防止用のダイオード、上記負荷の両端間に接続したコンデンサを含み、スイッチ素子のオン,オフにより全波整流回路の出力電圧を昇圧する。 The power supply device installed in an air conditioner or a heat source device having a refrigeration cycle is a full-wave rectifier circuit that rectifies the voltage of an AC power supply, a booster circuit that boosts the output voltage of this full-wave rectifier circuit, and the output of this booster circuit. It includes an inverter or the like that converts the voltage into an AC voltage having a predetermined frequency and supplies the AC voltage to the compressor motor. The booster circuit was connected to the output terminal of the full-wave rectifier circuit, a series circuit of a reactor and a switch element, a diode for preventing backflow provided in a conduction path between the load and the switch element, and connected between both ends of the load. It includes a capacitor and boosts the output voltage of the full-wave rectifier circuit when the switch element is turned on and off.

昇圧回路中の逆流防止用のダイオードは、順方向に流れる電流に対して小さいながらも電圧降下を有する。この電圧降下は、昇圧回路の電力損失につながり、省エネルギー性の面で無視できない。 The backflow prevention diode in the booster circuit has a small voltage drop with respect to the current flowing in the forward direction. This voltage drop leads to power loss of the booster circuit and cannot be ignored in terms of energy saving.

対策として、逆流防止用のダイオードよりも電力損失が少ない、すなわちオン抵抗値が小さいスイッチ素子(第2スイッチ素子という)をダイオードに並列接続し、この第2スイッチ素子をリアクタ側のスイッチ素子(第1スイッチ素子という)のオン時にオフしてオフ時にオンする、すなわち第1および第2スイッチ素子を相補的に動作させることにより、逆流防止用のダイオードに順方向電流が流れる期間を縮小してダイオードによる電力損失を低減することが考えられる。第1および第2スイッチ素子としては、MOSFETが用いられる。この場合、両スイッチ素子が同時にオンすると逆流防止用のダイオードをバイパスする経路でコンデンサから両スイッチ素子を通して短絡電流が流れてしまうため、いずれかのスイッチ素子をオフからオンに変化させる際には両スイッチが共にオフ状態となるいわゆるデッドタイムを確保するようにしている。したがって、このごく短時間のデッドタイムの期間の間にのみ逆流防止用のダイオードに電流が流れることになる。 As a countermeasure, a switch element (referred to as a second switch element), which has less power loss than the diode for preventing backflow, that is, a small on-resistance value, is connected in parallel to the diode, and this second switch element is connected to the switch element on the reactor side (first switch element). (1 switch element) is turned off when turned on and turned on when turned off, that is, the first and second switch elements are complementarily operated to reduce the period during which a forward current flows in the diode for preventing reverse current to reduce the diode. It is conceivable to reduce the power loss due to. MOSFETs are used as the first and second switch elements. In this case, if both switch elements are turned on at the same time, a short-circuit current will flow from the capacitor through both switch elements in the route that bypasses the backflow prevention diode.Therefore, when changing either switch element from off to on, A so-called dead time in which both switches are turned off is secured. Therefore, the current flows through the backflow prevention diode only during the dead time period of this very short time.

特開2009−38875号公報JP, 2009-38875, A

リアクタに流れる電流(リアクタ電流という)は、スイッチ素子のオン,オフに伴い脈動となる。また、冷凍サイクルの負荷状態の急変や圧縮機の回転数の激減等で急激に負荷が軽くなり、負荷に流れる電流が減少すると、リアクタ電流のレベルは、“0(零)”またはその付近まで下降する。 The current flowing through the reactor (referred to as reactor current) pulsates as the switch element turns on and off. In addition, when the load suddenly decreases due to a sudden change in the load condition of the refrigeration cycle or a sharp decrease in the number of revolutions of the compressor, and the current flowing through the load decreases, the level of the reactor current reaches "0 (zero)" or its vicinity. To descend.

ここで、リアクタ電流のレベルが“0”またはその付近に下降している状態で第2スイッチ素子がオフからオンに切換わったとき、全波整流回路のダイオード素子に逆回復電流が生じ、これに伴い、リアクタ電流Iaが負側(マイナス側)に振れる場合があることが見いだされた。具体的には、リアクタ電流のレベルが“0”またはその付近に下降している状態で第2スイッチ素子がオンすると、第2スイッチ素子がオン時に両方向に電流を流すことのできるMOSFETであることから、昇圧されたコンデンサ電圧が第2スイッチ素子を通じて全波整流回路のダイオード素子に逆方向電圧が加わる。通常、ダイオード素子は逆方向に電流を流すことはないが、順方向に電流が流れていたダイオード素子に逆方向電圧が加わると、短期間であるがダイオード素子に逆方向の電流(逆回復電流という)が流れる。この逆回復電流がピーク値に達した後、負のリアクタ電流−Iaの時間的変化率(di/dt)がマイナスからプラスに急激に変化する。このとき、リアクタに大きな
逆起電力が発生し、その逆起電力に起因する過大なサージ電圧がリアクタの両端に生じる。このサージ電圧とコンデンサ電圧とを合わせた過大な電圧が全波整流回路の出力端に加わると、全波整流回路のダイオード素子が破壊されてしまうことがある。
Here, when the second switch element is switched from off to on while the level of the reactor current is dropping to or near "0", a reverse recovery current is generated in the diode element of the full-wave rectification circuit, which causes It was found that the reactor current Ia may fluctuate to the negative side (minus side). Specifically, when the second switch element is turned on while the reactor current level is decreasing to or near "0", the second switch element is a MOSFET capable of flowing current in both directions when turned on. Therefore, the boosted capacitor voltage applies a reverse voltage to the diode element of the full-wave rectifier circuit through the second switch element. Normally, the diode element does not flow current in the reverse direction, but if a reverse voltage is applied to the diode element that was flowing current in the forward direction, the reverse current (reverse recovery current) will flow to the diode element for a short period of time. Is called). After the reverse recovery current reaches the peak value, the temporal rate of change (di/dt) of the negative reactor current −Ia rapidly changes from negative to positive. At this time, a large counter electromotive force is generated in the reactor, and an excessive surge voltage due to the counter electromotive force is generated across the reactor. If an excessive voltage, which is the sum of the surge voltage and the capacitor voltage, is applied to the output end of the full-wave rectifier circuit, the diode element of the full-wave rectifier circuit may be destroyed.

本発明の実施形態の目的は、サージ電圧による素子の破壊を防ぐことができる電源装置を提供することである。 An object of the embodiments of the present invention is to provide a power supply device capable of preventing the destruction of elements due to a surge voltage.

請求項1の電源装置は、整流回路、昇圧回路、電流検知手段、制御手段を備える。整流回路は、三相交流電圧を整流する。昇圧回路は、前記整流回路の出力端に接続されるリアクタおよび逆並列接続されたダイオードを有する第1スイッチ素子の直列回路、負荷と前記第1スイッチ素子との間の通電路に設けた逆流防止用ダイオード、この逆流防止用ダイオードに並列接続した第2スイッチ素子、前記負荷に並列に接続したコンデンサを含み、前記第1スイッチ素子のオン,オフとこの第1スイッチ素子のオン,オフとは逆位相の前記第2スイッチ素子のオン,オフにより前記整流回路の出力電圧を昇圧する昇圧モード、および前記第1スイッチ素子のオフを継続させて前記整流回路の出力電圧を昇圧せずに出力する非昇圧モードを有する。制御手段は、前記昇圧回路が昇圧モード中で前記電流検知手段により検知された電流の瞬時値Iaが設定値Ias以下の場合に、前記昇圧回路を非昇圧モードとする。 A power supply device according to a first aspect includes a rectifier circuit, a booster circuit, a current detection unit, and a control unit. The rectifier circuit rectifies the three-phase AC voltage. The booster circuit is a series circuit of a first switch element having a reactor connected to the output end of the rectifier circuit and a diode connected in antiparallel, and a backflow prevention provided in a conduction path between a load and the first switch element. Diode, a second switch element connected in parallel with the backflow prevention diode, and a capacitor connected in parallel with the load. The on/off of the first switch element and the on/off of the first switch element are opposite. A boost mode in which the output voltage of the rectifier circuit is boosted by turning on and off the phase of the second switch element, and a non-output mode in which the output voltage of the rectifier circuit is output without boosting by continuing to turn off the first switch element. It has a boost mode. The control means sets the booster circuit in the non-boosting mode when the instantaneous value Ia of the current detected by the current detecting means is equal to or less than the set value Ias while the booster circuit is in the boosting mode.

請求項3の電源装置は、整流回路、昇圧回路、前記整流回路の出力端に接続されたコンデンサまたはバリスタを備える。整流回路は、交流電圧を整流する。昇圧回路は、前記整流回路の出力端に接続されるリアクタおよび逆並列接続されたダイオードを有する第1スイッチ素子の直列回路、負荷と前記第1スイッチ素子との間の通電路に設けた逆流防止用ダイオード、この逆流防止用ダイオードに並列接続した第2スイッチ素子、前記負荷に並列に接続したコンデンサを含み、前記第1スイッチ素子のオン,オフとこの第1スイッチ素子のオン,オフとは逆位相の前記第2スイッチ素子のオン,オフにより前記整流回路の出力電圧を昇圧する。前記整流回路の出力端に接続されたコンデンサまたはバリスタは、前記整流回路のダイオード素子に生じた逆回復電流によって引き起こされるサージ電圧を吸収する。 A power supply device according to a third aspect includes a rectifier circuit, a booster circuit, and a capacitor or a varistor connected to an output terminal of the rectifier circuit. The rectifier circuit rectifies the AC voltage. The booster circuit is a series circuit of a first switch element having a reactor connected to the output end of the rectifier circuit and a diode connected in antiparallel, and a backflow prevention provided in a conduction path between a load and the first switch element. Diode, a second switch element connected in parallel with the backflow prevention diode, and a capacitor connected in parallel with the load. The on/off of the first switch element and the on/off of the first switch element are opposite. The output voltage of the rectifier circuit is boosted by turning on and off the second switch element in phase. The capacitor or varistor connected to the output terminal of the rectifier circuit absorbs the surge voltage caused by the reverse recovery current generated in the diode element of the rectifier circuit.

第1実施形態の構成を示すブロック図。The block diagram which shows the structure of 1st Embodiment. 第1実施形態の保護制御がない場合のリアクタ電流の波形を示す図。The figure which shows the waveform of the reactor current when there is no protection control of 1st Embodiment. 図2の波形の一部を拡大して示す図。The figure which expands and shows a part of waveform of FIG. 第1実施形態の保護制御を示すフローチャート。The flowchart which shows the protection control of 1st Embodiment. 第1実施形態におけるリアクタ電流の波形を示す図。The figure which shows the waveform of the reactor current in 1st Embodiment. 第2実施形態の構成を示すブロック図。The block diagram which shows the structure of 2nd Embodiment. 第2実施形態の変形例の要部の構成を示す図。The figure which shows the structure of the principal part of the modification of 2nd Embodiment. 第2実施形態の別の変形例の要部の構成を示す図。The figure which shows the structure of the principal part of another modification of 2nd Embodiment. 各実施形態のさらに別の変形例の要部の構成を示す図。The figure which shows the structure of the principal part of the further another modified example of each embodiment.

[1]第1実施形態
第1実施形態として、冷凍サイクルを有する空気調和機に搭載される電源装置を例に説
明する。
図1に示すように、三相交流電源1にダイオードブリッジの全波整流回路2(以下、全波整流回路という)が接続され、その全波整流回路2の出力端に昇圧回路10が接続されている。全波整流回路2は、三相交流電圧を整流する。
[1] First embodiment
As a first embodiment, a power supply device installed in an air conditioner having a refrigeration cycle will be described as an example.
As shown in FIG. 1, a diode bridge full-wave rectifier circuit 2 (hereinafter referred to as a full-wave rectifier circuit) is connected to a three-phase AC power source 1, and a booster circuit 10 is connected to an output terminal of the full-wave rectifier circuit 2. ing. The full-wave rectifier circuit 2 rectifies the three-phase AC voltage.

昇圧回路10は、全波整流回路2の出力端に接続されるリアクタ11およびスイッチ素子(第1スイッチ素子)SW1の直列回路、負荷であるインバータ20と第1スイッチ素子SW1との間の通電路に設けた逆流防止用ダイオードD2、この逆流防止用ダイオードD2に並列接続したスイッチ素子(第2スイッチ)SW2、上記負荷に並列に接続したコンデンサ(電解コンデンサ)12を含み、スイッチ素子SW1のオン,オフ(断続オン)とこのスイッチ素子SW1のオン,オフとは逆位相のスイッチ素子SW2のオン,オフ(断続オン)により全波整流回路2の出力電圧(直流電圧)を昇圧する昇圧モード、およびスイッチ素子SW1のオフ(オフの継続)とスイッチ素子SW2のオン(オンの継続)により全波整流回路2の出力電圧を昇圧せずに出力する非昇圧モードを有する。スイッチ素子SW1を下相側スイッチ素子、スイッチ素子SW2を上相側スイッチ素子ともいう。 The booster circuit 10 is a series circuit of a reactor 11 and a switch element (first switch element) SW1 connected to the output terminal of the full-wave rectifier circuit 2, and a power supply path between the inverter 20 as a load and the first switch element SW1. Includes a backflow prevention diode D2 provided in, a switch element (second switch) SW2 connected in parallel to the backflow prevention diode D2, and a capacitor (electrolytic capacitor) 12 connected in parallel to the load. A boost mode in which the output voltage (DC voltage) of the full-wave rectifier circuit 2 is boosted by turning off (intermittent on) and turning on and off (intermittent on) the switch element SW2 having a phase opposite to the on and off of the switch element SW1, and There is a non-boosting mode in which the output voltage of the full-wave rectifier circuit 2 is output without being boosted by turning off the switch element SW1 (continuing turning off) and turning on the switch element SW2 (continuing turning on). The switch element SW1 is also referred to as a lower phase side switch element, and the switch element SW2 is also referred to as an upper phase side switch element.

スイッチ素子SW1は、スイッチ素子本体と逆並列接続された寄生ダイオードD1を含むオン抵抗の小さい半導体スイッチ素子たとえばスーパージャンクションMOSFETであり、コントローラ30から供給される駆動信号S1によってオン,オフ駆動される。スイッチ素子SW2は、スイッチ素子本体と逆並列接続された寄生ダイオードD2を含み、オン時にドレイン・ソース間の双方向に電流が流れる双方向性を有し、かつオン時の電力損失が寄生ダイオードD2の順方向の電圧降下による電力損失より小さくなる半導体スイッチ素子、たとえばスイッチ素子SW1と同様に、オン抵抗の小さいスーパージャンクションMOSFETであり、コントローラ30から供給される駆動信号S2によってスイッチ素子SW1のオン,オフとは逆位相でオン,オフ駆動される。このスイッチ素子SW2の寄生ダイオードD2が、そのまま上記逆流防止用ダイオードD2として用いられている。 The switch element SW1 is a semiconductor switch element having a small ON resistance, such as a super junction MOSFET, which includes a parasitic diode D1 connected in antiparallel with the switch element body, and is turned on/off by a drive signal S1 supplied from the controller 30. The switch element SW2 includes a parasitic diode D2 connected in anti-parallel with the switch element body, has a bidirectionality in which a current flows bidirectionally between the drain and source at the time of turning on, and has a power loss at the time of turning on the parasitic diode D2. The semiconductor switch element, which is smaller than the power loss due to the voltage drop in the forward direction, such as the switch element SW1, is a super-junction MOSFET having a small on-resistance, and is turned on by the drive signal S2 supplied from the controller 30. It is driven on and off in the opposite phase to off. The parasitic diode D2 of the switch element SW2 is used as it is as the backflow prevention diode D2.

昇圧回路10の出力端に、負荷であるインバータ20が接続されている。インバータ20は、昇圧回路10の出力電圧をスイッチングにより交流電圧に変換し、それをモータ21への駆動電力として出力する。モータ21は、圧縮機22の駆動用モータであって、誘導性負荷であるところの例えばブラシレスDCモータであり、インバータ20の出力により動作する。 An inverter 20, which is a load, is connected to the output terminal of the booster circuit 10. The inverter 20 converts the output voltage of the booster circuit 10 into an AC voltage by switching and outputs it as drive power to the motor 21. The motor 21 is a motor for driving the compressor 22 and is, for example, a brushless DC motor that is an inductive load, and operates by the output of the inverter 20.

圧縮機22は、冷媒を吸込んで圧縮し吐出する。この圧縮機22の冷媒吐出口に四方弁23を介して室外熱交換器24の一端が接続され、その室外熱交換器24の他端が膨張弁25を介して室内熱交換器26の一端に接続される。室内熱交換器26の他端は、四方弁23を介して圧縮機22の冷媒吸込口に接続される。これら圧縮機22、四方弁23、室外熱交換器24、膨張弁25、室内熱交換器26により、空気調和機のヒートポンプ式冷凍サイクルが構成されている。図1中の矢印は、冷房時の冷媒の流れを示し、圧縮機から吐出した高温冷媒は、室内熱交換器26で吸熱して室内を冷却し、室外熱交換器24で放熱する。すなわち、室内熱交換器26は吸熱器となり、室外熱交換器24は放熱器となる。四方弁23を反転すれば、冷媒の流れが反対となり暖房運転ができる。この場合、室内熱交換器26で放熱して室内を暖め、室外熱交換器24で吸熱することになる。 The compressor 22 draws in the refrigerant, compresses it, and discharges it. One end of an outdoor heat exchanger 24 is connected to the refrigerant discharge port of the compressor 22 via a four-way valve 23, and the other end of the outdoor heat exchanger 24 is connected to one end of an indoor heat exchanger 26 via an expansion valve 25. Connected. The other end of the indoor heat exchanger 26 is connected to the refrigerant suction port of the compressor 22 via the four-way valve 23. The compressor 22, the four-way valve 23, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 26 constitute a heat pump type refrigeration cycle of the air conditioner. The arrow in FIG. 1 indicates the flow of the refrigerant during cooling, and the high temperature refrigerant discharged from the compressor absorbs heat in the indoor heat exchanger 26 to cool the room and radiates heat in the outdoor heat exchanger 24. That is, the indoor heat exchanger 26 becomes a heat absorber, and the outdoor heat exchanger 24 becomes a radiator. By reversing the four-way valve 23, the flow of the refrigerant is reversed and heating operation can be performed. In this case, the indoor heat exchanger 26 radiates heat to warm the room, and the outdoor heat exchanger 24 absorbs heat.

全波整流回路2の正側出力端と昇圧回路10のリアクタ11との間の通電路に、リアクタ11に流れる電流(瞬時値;リアクタ電流という)Iaを検知する電流センサ13が配置されている。インバータ20とモータ21との間の通電路に、モータ21に流れる電流(相巻線電流)を検知する電流センサ27が配置されている。これら電流センサ13,27の検知結果がコントローラ30に供給されるとともに、昇圧回路10の出力電圧(コンデンサ12の両端間電圧)Vdcがコントローラ30で検出される。 A current sensor 13 for detecting a current (instantaneous value; referred to as a reactor current) Ia flowing in the reactor 11 is arranged in a conduction path between the positive side output end of the full-wave rectifier circuit 2 and the reactor 11 of the booster circuit 10. .. A current sensor 27 that detects a current (phase winding current) flowing in the motor 21 is arranged in a current path between the inverter 20 and the motor 21. The detection results of the current sensors 13 and 27 are supplied to the controller 30, and the output voltage (voltage across the capacitor 12) Vdc of the booster circuit 10 is detected by the controller 30.

コントローラ30は、昇圧制御部40、インバータ制御部50、目標値設定部51を含む。 The controller 30 includes a boost control unit 40, an inverter control unit 50, and a target value setting unit 51.

昇圧制御部40は、昇圧回路10の出力電圧Vdcが目標値Vdcrefとなるように、かつ昇圧回路10への入力電流(リアクタ電流)Iaが一定となるように、昇圧回路10のスイッチングをパルス幅変調(PWM)制御するもので、減算部41、PI制御器42、減算部43、PI制御器44、PWM信号生成部45、キャリア発生部46、スイッチ駆動制御部(制御手段)47,48を含む。 The step-up control unit 40 switches the step-up circuit 10 with a pulse width so that the output voltage Vdc of the step-up circuit 10 becomes the target value Vdcref and the input current (reactor current) Ia to the step-up circuit 10 becomes constant. Modulation (PWM) control is performed. The subtraction unit 41, the PI controller 42, the subtraction unit 43, the PI controller 44, the PWM signal generation unit 45, the carrier generation unit 46, and the switch drive control units (control means) 47 and 48. Including.

減算部41は、昇圧回路10の出力電圧Vdcと目標値Vdcrefとの偏差ΔVdcを求める。PI制御器42は、減算部41で得た偏差ΔVdcを入力とする比例・積分演算により、昇圧回路10への入力電流(リアクタ電流)Iaに対する電流指令値Irefを得る。減算部43は、PI制御器42で得た電流指令値Irefと昇圧回路10への入力電流(電流センサ13の検知電流)Iaとの偏差ΔIaを求める。PI制御器44は、減算部43で得た偏差ΔIaを入力とする比例・積分演算により、パルス幅変調用の電圧指令値Vrefを得る。キャリア発生部46は、所定周波数の三角波状のキャリア信号電圧Vcを発する。PWM信号生成部45は、キャリア発生部46が発するキャリア信号電圧VcをPI制御器44で得た電圧指令値Vrefでパルス幅変調(電圧比較)することにより、昇圧回路10のスイッチング素子SW1,W2に対するスイッチング用のパルス状のPWM信号S0を生成する。 The subtraction unit 41 obtains a deviation ΔVdc between the output voltage Vdc of the booster circuit 10 and the target value Vdcref. The PI controller 42 obtains the current command value Iref for the input current (reactor current) Ia to the booster circuit 10 by the proportional/integral calculation using the deviation ΔVdc obtained by the subtraction unit 41 as an input. The subtraction unit 43 obtains a deviation ΔIa between the current command value Iref obtained by the PI controller 42 and the input current (detection current of the current sensor 13) Ia to the booster circuit 10. The PI controller 44 obtains a voltage command value Vref for pulse width modulation by a proportional/integral calculation using the deviation ΔIa obtained by the subtraction unit 43 as an input. The carrier generation unit 46 generates a triangular-wave carrier signal voltage Vc having a predetermined frequency. The PWM signal generation unit 45 performs pulse width modulation (voltage comparison) on the carrier signal voltage Vc generated by the carrier generation unit 46 with the voltage command value Vref obtained by the PI controller 44, thereby switching elements SW1 and W2 of the booster circuit 10. A pulsed PWM signal S0 for switching is generated.

スイッチ駆動制御部47は、目標値設定部51で設定される目標値Vdcrefが所定値以上(高・中負荷時)の場合に、PWM信号生成部45で生成されたPWM信号S0と同じ位相の駆動信号S1をスイッチ素子SW1の駆動用として生成し出力する。スイッチ駆動制御部48は、目標値設定部51で設定される目標値Vdcrefが所定値以上(高・中負荷時)の場合に、PWM信号生成部45で生成されたPWM信号S0と逆位相の駆動信号S2をスイッチ素子SW2の駆動用として生成し出力する。これら駆動信号S1,SW2の出力により、昇圧回路10が昇圧モードで動作する。 The switch drive control unit 47 has the same phase as the PWM signal S0 generated by the PWM signal generation unit 45 when the target value Vdcref set by the target value setting unit 51 is equal to or higher than a predetermined value (at high/medium load). The drive signal S1 is generated and output for driving the switch element SW1. When the target value Vdcref set by the target value setting unit 51 is equal to or higher than a predetermined value (when the load is high/medium), the switch drive control unit 48 has a phase opposite to that of the PWM signal S0 generated by the PWM signal generation unit 45. The drive signal S2 is generated and output for driving the switch element SW2. The booster circuit 10 operates in the boosting mode by the output of the drive signals S1 and SW2.

また、スイッチ駆動制御部47は、目標値設定部51で設定される目標値Vdcrefが所定値未満(低負荷時)の場合、スイッチ素子SW1を継続的にオフさせるための駆動信号S1を生成し出力する。スイッチ駆動制御部48は、目標値設定部51で設定される目標値Vdcrefが所定値未満(低負荷時)の場合、スイッチ素子SW2を継続的にオンさせるための駆動信号S2を生成し出力する。これら駆動信号S1,SW2の出力により、スイッチ素子SW1が継続的にオフされるため、昇圧は行われず、昇圧回路10が非昇圧モードとなる。 Further, when the target value Vdcref set by the target value setting unit 51 is less than the predetermined value (when the load is low), the switch drive control unit 47 generates the drive signal S1 for continuously turning off the switch element SW1. Output. When the target value Vdcref set by the target value setting unit 51 is less than the predetermined value (when the load is low), the switch drive control unit 48 generates and outputs the drive signal S2 for continuously turning on the switch element SW2. .. Since the switch element SW1 is continuously turned off by the output of the drive signals S1 and SW2, boosting is not performed and the boosting circuit 10 is in the non-boosting mode.

とくに、スイッチ駆動制御部47,48は、スイッチ素子SW1がオフからオンに切換わる前にスイッチ素子SW2がオンからオフに切換わるように、つまりスイッチ素子SW1がオフからオンに切換わるタイミングとスイッチ素子SW2がオンからオフに切換わるタイミングとの間に両スイッチ素子SW1,SW2が共にオフ状態となるいわゆるデッドタイムが確保されるように、かつスイッチ素子SW1がオンからオフに切換わった後でスイッチ素子SW2がオフからオンに切換わるように、つまりスイッチ素子SW1がオンからオフに切換わるタイミングとスイッチ素子SW2がオフからオンに切換わるタイミングとの間に両スイッチ素子SW1,SW2が共にオフ状態となるいわゆるデッドタイムが確保されるように、駆動信号S1,S2を生成する。 In particular, the switch drive control units 47 and 48 are arranged so that the switch element SW2 is switched from on to off before the switch element SW1 is switched from off to on, that is, the timing and the switch at which the switch element SW1 is switched from off to on. In order to secure a so-called dead time in which both the switch elements SW1 and SW2 are in an off state with the timing when the element SW2 is switched from on to off, and after the switch element SW1 is switched from on to off. Both the switch elements SW1 and SW2 are turned off so that the switch element SW2 is switched from off to on, that is, between the timing when the switch element SW1 is switched from on to off and the timing when the switch element SW2 is switched from off to on. The drive signals S1 and S2 are generated so as to secure a so-called dead time for achieving the state.

さらに、スイッチ駆動制御部47,48は、以下の方式で昇圧モードと非昇圧モードの切替えを行う。スイッチ駆動制御部47,48は、非昇圧モード中にリアクタ電流Iaの実効値Iamが設定値Iams以上になると昇圧モードに切替わる。さらに昇圧モード中にリアクタ電流Iaの実効値Iamが設定値“Iams-α“以下に低下すると非昇圧モードに切替わる。これは、電流実効値が小さい状態では、もともと圧縮機を駆動するインバータには、昇圧が不必要であり、逆に昇圧することでスイッチ素子SW2のオン・オフに伴うスイッチング損失が増加してしまうためである。 Further, the switch drive control units 47 and 48 switch between the boosting mode and the non-boosting mode by the following method. The switch drive control units 47 and 48 switch to the boost mode when the effective value Iam of the reactor current Ia exceeds the set value Iams during the non-boosting mode. Further, when the effective value Iam of the reactor current Ia falls below the set value "Iams-α" during the boost mode, the mode is switched to the non-boosting mode. This is because, in the state where the effective current value is small, the inverter that drives the compressor originally does not require boosting, and on the contrary, boosting causes an increase in switching loss due to ON/OFF of the switch element SW2. This is because.

さらに、スイッチ駆動制御部47,48は、昇圧モード中に、リアクタ電流(瞬時値)Iaが設定値Ias以下への低下が検出された場合に、昇圧回路10の昇圧モードを禁止して昇圧回路10を非昇圧モードとする保護制御手段を含む。リアクタ電流Iaの実効値Iamは、交流電源の数周期分の瞬時電流値から計算により求める。設定値Iamsは例えば12Aであり、設定値Iasは例えば3Aである。また、“α”は頻繁な昇圧モードと非昇圧モードの切替えを防止するためのヒステリシスとして機能するよう予め設定されている設定値であり、例えば、設定値Iasの50%=6A程度の大きな値が設定される。減算部41およびPI制御器42が電圧制御系として機能する。減算部43およびPI制御器44が電流制御系として機能する。この電圧制御系および電流制御系により、昇圧回路10の出力電圧Vdcが目標値Vdcrefとなるように、かつ昇圧回路10への入力電流(リアクタ電流)Iaが一定となるように、昇圧回路10のスイッチングがPWM制
御される。
Further, when it is detected that the reactor current (instantaneous value) Ia falls below the set value Ias during the boosting mode, the switch drive control units 47 and 48 prohibit the boosting mode of the boosting circuit 10 and prohibit the boosting circuit. It includes protection control means for setting 10 to the non-boosting mode. The effective value Iam of the reactor current Ia is calculated from the instantaneous current value for several cycles of the AC power supply. The set value Iams is 12 A, for example, and the set value Ias is 3 A, for example. Further, “α” is a preset value set to function as a hysteresis for preventing frequent switching between the boost mode and the non-boosting mode, and for example, a large value of about 50% of the set value Ias=6A. Is set. The subtraction unit 41 and the PI controller 42 function as a voltage control system. The subtractor 43 and the PI controller 44 function as a current control system. By the voltage control system and the current control system, the booster circuit 10 is controlled so that the output voltage Vdc of the booster circuit 10 becomes the target value Vdcref and the input current (reactor current) Ia to the booster circuit 10 becomes constant. The switching is PWM controlled.

インバータ制御部50は、電流センサ27の検知電流(モータ電流)からモータ21の速度(回転速度)を推定し、その推定速度が負荷(冷凍負荷)の大きさに対応する目標速度となるようにインバータ20のスイッチングをPWM制御する。目標値設定部51は、インバータ20の出力電圧が上記目標速度を得るのに必要な最低限の昇圧回路10の出力電圧Vdcを目標値Vdcrefとして設定する。すなわち、目標値Vdcrefは、冷凍サイクルの負荷によって決定され、圧縮機22(モータ21)が低回転状態である低負荷の場合は低く設定され、圧縮機22が高回転(高負荷)になるほど大きな値が設定される。 The inverter control unit 50 estimates the speed (rotation speed) of the motor 21 from the detection current (motor current) of the current sensor 27, and makes the estimated speed the target speed corresponding to the magnitude of the load (refrigeration load). The switching of the inverter 20 is PWM controlled. The target value setting unit 51 sets the minimum output voltage Vdc of the booster circuit 10 required for the output voltage of the inverter 20 to obtain the target speed as the target value Vdcref. That is, the target value Vdcref is determined by the load of the refrigeration cycle, is set low when the compressor 22 (motor 21) is in a low rotation state, that is, low, and increases as the compressor 22 rotates at higher speed (high load). The value is set.

上記全波整流回路2、昇圧回路10、電流センサ13、インバータ20、電流センサ27、およびコントローラ30などにより、本実施形態の電源装置が構成されている。 The full-wave rectifier circuit 2, the booster circuit 10, the current sensor 13, the inverter 20, the current sensor 27, the controller 30, and the like constitute the power supply device of this embodiment.

つぎに、コントローラ30が実行する制御について説明する。
モータ21が高・中速度で回転する高・中負荷時、スイッチ素子SW1がオン,オフし、かつそのスイッチ素子SW1のオン,オフとは逆位相でスイッチ素子SW2がオン,オフする。これにより、全波整流回路2の出力電圧が昇圧回路10で昇圧されてインバータ20に供給される。モータ21が低速度で回転する低負荷時は、スイッチ素子SW1が継続的にオフしてスイッチ素子SW2が継続的にオンする。これにより、全波整流回路2の出力電圧は、リアクタ11およびスイッチ素子SW2を通り、昇圧されることなくコンデンサ12を介してインバータ20に供給される。
Next, the control executed by the controller 30 will be described.
When the motor 21 rotates at a high/medium speed and under a high/medium load, the switch element SW1 is turned on/off, and the switch element SW2 is turned on/off in a phase opposite to the on/off state of the switch element SW1. As a result, the output voltage of the full-wave rectifier circuit 2 is boosted by the booster circuit 10 and supplied to the inverter 20. When the motor 21 rotates at a low speed and has a low load, the switch element SW1 is continuously turned off and the switch element SW2 is continuously turned on. As a result, the output voltage of the full-wave rectifier circuit 2 passes through the reactor 11 and the switch element SW2, and is supplied to the inverter 20 via the capacitor 12 without being boosted.

スイッチ駆動制御部47,48の保護制御手段がないと仮定した場合のリアクタ電流Iaの波形を図2に示し、この波形の一部を拡大して図3に示している。 FIG. 2 shows a waveform of the reactor current Ia when it is assumed that there is no protection control means for the switch drive control units 47 and 48, and a part of this waveform is enlarged and shown in FIG.

すなわち、リアクタ電流Iaのレベルは、昇圧回路10の負荷の急激な減少に伴い、“0”またはその付近まで下降する。リアクタ電流Iaのレベルが“0”またはその付近に下降している状態でスイッチ素子SW2がオンしたとき、上述のスイッチ駆動制御部47,48の保護制御手段がないと仮定すると、スイッチ素子SW2がMOSFETであるため、コンデンサ12から交流電源1の方向に電流が流れることがある。 That is, the level of the reactor current Ia drops to “0” or its vicinity as the load of the booster circuit 10 sharply decreases. When the switch element SW2 is turned on in the state where the level of the reactor current Ia drops to or near “0”, assuming that there is no protection control means for the switch drive control units 47 and 48, the switch element SW2 is Since it is a MOSFET, current may flow from the capacitor 12 toward the AC power supply 1.

全波整流回路2の各ダイオード素子には、通常は順方向にのみ電流が流れる。しかしながら、オン時にスイッチ素子本体の両方向に電流を流すことができるMOSFETをスイッチ素子SW2として使用していること、および平滑用のコンデンサ12の電圧Vdcが電源電圧以上に昇圧された状態にあることが原因で、リアクタ電流Iaのレベルが“0”付近でスイッチ素子SW2がオンすると、スイッチ素子SW2がオン時に両方向に電流を流すことのできるMOSFETであることから、昇圧されたコンデンサ12の電圧Vdcがスイッチ素子SW2を通じて全波整流回路2の各ダイオード素子に逆方向電圧が加わる。この結果、図1に破線矢印で示すように、それまで順方向に電流が流れていた全波整流回路2のダイオード素子に、短期間であるが逆回復電流Irが流れ始める。逆回復電流Irが流れ終わると、全波整流回路2のダイオード素子は逆回復電流Irの流れを遮断する。 In each diode element of the full-wave rectifier circuit 2, a current normally flows only in the forward direction. However, a MOSFET capable of flowing a current in both directions of the switch element body when turned on is used as the switch element SW2, and the voltage Vdc of the smoothing capacitor 12 is in a state of being boosted above the power supply voltage. Due to this, when the switch element SW2 is turned on when the level of the reactor current Ia is near “0”, since the switch element SW2 is a MOSFET capable of flowing current in both directions, the boosted voltage Vdc of the capacitor 12 is A reverse voltage is applied to each diode element of the full-wave rectifier circuit 2 through the switch element SW2. As a result, the reverse recovery current Ir starts to flow in the diode element of the full-wave rectifier circuit 2 in which the current has flowed in the forward direction until a short period of time, as shown by the broken line arrow in FIG. When the reverse recovery current Ir has finished flowing, the diode element of the full-wave rectification circuit 2 blocks the flow of the reverse recovery current Ir.

なお、全波整流回路2のダイオード素子に逆回復電流Irが流れている状態でスイッチ素子SW2がオフに切換わっても、逆回復電流Ir電流は、全波整流回路2の負側出力端からスイッチ素子SW1の寄生ダイオードD1を順方向に通って全波整流回路2の正側出力端へと流れる(還流電流)。 Even if the switch element SW2 is switched off while the reverse recovery current Ir is flowing in the diode element of the full-wave rectification circuit 2, the reverse recovery current Ir current is output from the negative side output end of the full-wave rectification circuit 2. It flows through the parasitic diode D1 of the switch element SW1 in the forward direction to the positive output terminal of the full-wave rectifier circuit 2 (reflux current).

そして、逆回復電流がピーク値に達した後、負のリアクタ電流−Iaの時間的変化率(di/dt)がマイナスからプラスに急激に変化する。このとき、リアクタ11に大きな逆起電力が発生し、その逆起電力に起因する過大なサージ電圧がリアクタ11の両端に生じる。このサージ電圧とコンデンサ12の電圧Vdcとを合わせた過大な電圧が全波整流回路2の出力端に加わると、全波整流回路2のダイオード素子が破壊されてしまうことがある。 Then, after the reverse recovery current reaches the peak value, the temporal change rate (di/dt) of the negative reactor current −Ia rapidly changes from negative to positive. At this time, a large counter electromotive force is generated in the reactor 11, and an excessive surge voltage resulting from the counter electromotive force is generated at both ends of the reactor 11. If an excessive voltage that is the sum of this surge voltage and the voltage Vdc of the capacitor 12 is applied to the output end of the full-wave rectifier circuit 2, the diode element of the full-wave rectifier circuit 2 may be destroyed.

この問題に対処するため、スイッチ駆動制御部47,48は、図4のフローチャートに示す制御を実行する。スイッチ駆動制御部47,48は、リアクタ電流Iaの実効値Iamが設定値Iamsより大きい場合に(ステップS1のNO)、昇圧回路10の昇圧運転(昇圧モードの動作)を実行する(ステップS2)。この昇圧運転の実行に伴い、スイッチ駆動制御部47,48は、リアクタ電流(瞬時値)Iaが設定値Ias以下でないことを条件に(ステップS3のNO)、ステップS1の判定に戻る。 In order to deal with this problem, the switch drive control units 47 and 48 execute the control shown in the flowchart of FIG. When the effective value Iam of the reactor current Ia is larger than the set value Iams (NO in step S1), the switch drive control units 47 and 48 execute the boosting operation of the booster circuit 10 (operation in the boosting mode) (step S2). .. With the execution of the boosting operation, the switch drive control units 47 and 48 return to the determination of step S1 on condition that the reactor current (instantaneous value) Ia is not equal to or less than the set value Ias (NO in step S3).

リアクタ電流Iaの実効値Iamが設定値Iams以下に下降した場合(ステップS1のYES)、スイッチ駆動制御部47,48は、昇圧回路10が昇圧運転中かどうかを判定する(ステップS4)。昇圧運転中であれば(ステップS4のYES)、スイッチ駆動制御部47,48は、実効値Iamと設定値“Iams−α”とを比較する(ステップS5)。実効値Iamが設定値“Iams−α”以下でなければ(ステップS5のNO)、スイッチ駆動制御部47,48は、昇圧運転を続ける(ステップS2)。ただし、実効値Iamが設定値“Iams−α”以下まで下降していれば(ステップS5のYES)、スイッチ駆動制御部47,48は、昇圧回路10の昇圧運転を禁止して昇圧回路10を非昇圧モードに切替える(ステップS6)。そして、スイッチ駆動制御部47,48は、最初のステップS1からの処理を繰り返す。 When the effective value Iam of the reactor current Ia falls below the set value Iams (YES in step S1), the switch drive control units 47 and 48 determine whether the booster circuit 10 is in the boosting operation (step S4). If the boosting operation is being performed (YES in step S4), the switch drive control units 47 and 48 compare the effective value Iam with the set value "Iams-α" (step S5). If the effective value Iam is not less than or equal to the set value "Iams-α" (NO in step S5), the switch drive control units 47 and 48 continue the boosting operation (step S2). However, if the effective value Iam has fallen to the set value “Iams−α” or less (YES in step S5), the switch drive control units 47 and 48 prohibit the boosting operation of the boosting circuit 10 and turn on the boosting circuit 10. The mode is switched to the non-boosting mode (step S6). Then, the switch drive control units 47 and 48 repeat the processing from the first step S1.

具体的な動きとしては、冷凍サイクルの運転中、空調もしくは冷凍負荷が増加した場合、インバータ20の出力電圧の周波数が高くなり、すなわち圧縮機22の回転数が高まり、リアクタ電流Iaの実効値Iamが増加して設定値Iamsを超えたところで、昇圧運転が開始される。その後、冷凍サイクルの運転により、空調もしくは冷凍負荷が低下し、インバータ20の出力する周波数が低くなってリアクタ電流Iaの実効値Iamが低下し、設定値“Iams−α”以下まで下降したところで昇圧運転が終了し、非昇圧モードとなる。ここでの昇圧モードと非昇圧モードの切替えは、効率向上を目的としている。なお、設定値“Iams−α”のαは、ヒステリシス値であり、例えば設定値Imsの50%程度のかなり大きな値とするのが望ましい。このヒステリシス値αの確保により、昇圧モードと非昇圧モードの頻繁な入り切りの発生を防止している。 Specifically, when the air conditioning or the refrigeration load increases during the operation of the refrigeration cycle, the frequency of the output voltage of the inverter 20 increases, that is, the rotation speed of the compressor 22 increases, and the effective value Iam of the reactor current Ia increases. Is increased and exceeds the set value Iams, the boosting operation is started. After that, due to the operation of the refrigerating cycle, the air conditioning or the refrigerating load is lowered, the frequency output from the inverter 20 is lowered, the effective value Iam of the reactor current Ia is lowered, and the boosting is performed when the value falls below the set value “Iams−α”. The operation is completed and the non-boosting mode is set. The switching between the boost mode and the non-boosting mode here is intended to improve efficiency. It should be noted that α of the set value “Iams−α” is a hysteresis value, and it is desirable to set it to a considerably large value, for example, about 50% of the set value Ims. By securing this hysteresis value α, frequent occurrence of switching between the boosting mode and the non-boosting mode is prevented.

一方、例えば、冷凍サイクルの四方弁23が反転する除霜運転への移行によって負荷が急減した場合、インバータ20側で消費する電力が減少し、リアクタ電流Iaが下降する。そこで、昇圧運転中に、圧縮機22の負荷の急減によってリアクタ電流(瞬時値)Iaが設定値Ias以下に下降した場合(ステップS3のYES)、スイッチ駆動制御部47,48は、昇圧回路10の昇圧モードを禁止して昇圧回路10を非昇圧モードとする(ステップS6)。 On the other hand, for example, when the load suddenly decreases due to the shift to the defrosting operation in which the four-way valve 23 of the refrigeration cycle reverses, the power consumed on the inverter 20 side decreases and the reactor current Ia decreases. Therefore, during the boosting operation, when the reactor current (instantaneous value) Ia drops below the set value Ias due to a sudden decrease in the load of the compressor 22 (YES in step S3), the switch drive control units 47 and 48 cause the boosting circuit 10 to operate. The boosting mode is prohibited and the boosting circuit 10 is set to the non-boosting mode (step S6).

このように、リアクタ電流Iaが設定値Ias以下に下降した時点で昇圧用のスイッチングを禁止することにより、図5に示すように、その後のリアクタ電流Iaの下降は“0”レベルで収まり、リアクタ電流Iaが負側に振れることはない。 In this way, by prohibiting the boosting switching when the reactor current Ia falls below the set value Ias, as shown in FIG. 5, the subsequent fall of the reactor current Ia subsides at “0” level, The current Ia does not swing to the negative side.

負のリアクタ−Iaが流れないので、スイッチ素子SW2がオフからオンに切換わっても、昇圧されたコンデンサ12の電圧Vdcがスイッチ素子SW2を通じて全波整流回路2の各ダイオード素子に逆方向電圧が加わる事態を防ぐことができる。したがって、全波整流回路2のダイオード素子に逆回復電流Irが流れることもなく、逆回復電流Irに起因するサージ電圧の発生を防ぐことができる。つまり、サージ電圧とコンデンサ12の電圧Vdcとを合わせた過大な電圧が全波整流回路2の出力端に加わることはなく、全波整流回路2におけるダイオード素子の破壊を防ぐことができる。 Since the negative reactor-Ia does not flow, even when the switch element SW2 is switched from OFF to ON, the boosted voltage Vdc of the capacitor 12 causes a reverse voltage to each diode element of the full-wave rectifier circuit 2 through the switch element SW2. The situation of joining can be prevented. Therefore, the reverse recovery current Ir does not flow through the diode element of the full-wave rectifier circuit 2, and the generation of the surge voltage due to the reverse recovery current Ir can be prevented. That is, an excessive voltage, which is the sum of the surge voltage and the voltage Vdc of the capacitor 12, is not applied to the output end of the full-wave rectifier circuit 2, and the diode element in the full-wave rectifier circuit 2 can be prevented from being destroyed.

なお、上述のとおり、効率向上のために昇圧モード中にリアクタ電流Iaの実効値Iamが設定値“Iams-α“以下に低下した時点で非昇圧モードに切替えるモード切替制御が存在するが、この制御はあくまで効率向上を目的として定常時における昇圧モードと非昇圧モードの切替えを行うもので、このリアクタ電流Iaの実効値Iamの検出(更新)には、交流電源の数周期の時間が必要となる。このため、通常のモード切替制御では、上述のような負荷の急激な減少に伴うリアクタ電流(瞬時値)Iaの“0”またはその付近への急激な下降に対して応答することはできず、昇圧モードから非昇圧モードへの切替えを行うことはできない。そこで、ステップS3において、リアクタ電流Iaの瞬時値に基づき昇圧モードと非昇圧モードとを切り替える(ステップS6)ようにしている。 As described above, there is a mode switching control for switching to the non-boosting mode when the effective value Iam of the reactor current Ia drops below the set value “Iams−α” during the boosting mode in order to improve efficiency. The control is to switch between the boosting mode and the non-boosting mode in the steady state for the purpose of improving efficiency, and it takes several cycles of the AC power supply to detect (update) the effective value Iam of the reactor current Ia. Become. For this reason, in the normal mode switching control, it is not possible to respond to the sudden drop of the reactor current (instantaneous value) Ia to “0” or its vicinity due to the rapid decrease of the load as described above, It is not possible to switch from boost mode to non-boost mode. Therefore, in step S3, the boosting mode and the non-boosting mode are switched based on the instantaneous value of the reactor current Ia (step S6).

また、本実施形態において、非昇圧モードではスイッチ素子SW2をオン継続するようにして、逆流防止用ダイオードD2に極力電流を流さないようにして効率を向上させている。しかしながら、逆流防止用ダイオードD2に定格の大きい素子を採用し、ある程度の大きさの電流を流すことを可能とすれば、昇圧モード中にリアクタ電流(瞬時値)Iaが設定値Ias以下に下降した時(ステップS3のYES)における非昇圧モード(ステップS6)の場合に限り、スイッチ素子SW2をオフ継続して、逆流防止用ダイオードD2に電流を流すようにして、リアクタ11の逆電流発生を完全に阻止するようにしても良い。すなわち、逆流防止用ダイオードD2の定格によっては、少なくともスイッチ素子SW1のオフを継続させれば、スイッチ素子SW2の動作はオンでもオフでも良いことになる。 Further, in the present embodiment, in the non-boosting mode, the switch element SW2 is kept on, and the current is prevented from flowing to the backflow prevention diode D2 as much as possible to improve the efficiency. However, if a device with a large rating is adopted as the backflow prevention diode D2 and it is possible to flow a current of a certain amount, the reactor current (instantaneous value) Ia drops below the set value Ias during the boost mode. Only in the non-boosting mode (step S6) at the time (YES in step S3), the switch element SW2 is continuously turned off to allow the current to flow through the backflow prevention diode D2 to completely generate the reverse current in the reactor 11. May be blocked. That is, depending on the rating of the backflow prevention diode D2, the operation of the switch element SW2 may be on or off if at least the switch element SW1 is kept off.

[2]第2実施形態
第2実施形態では、第1実施形態におけるスイッチ駆動制御部47,48の保護制御に代えて、図6に示すように、全波整流回路2の出力端にコンデンサ61が接続される。他の構成は第1実施形態と同じである。
[2] Second embodiment
In the second embodiment, instead of the protection control of the switch drive control units 47 and 48 in the first embodiment, a capacitor 61 is connected to the output end of the full-wave rectifier circuit 2 as shown in FIG. Other configurations are the same as those in the first embodiment.

負のリアクタ電流−Idが流れたときに発生するサージ電圧は、負のリアクタ電流−Idの行き場がなくなることによって発生する。そこで、全波整流回路2の出力端にコンデンサ61を接続し、負のリアクタ電流−Idが流れたときに発生するサージ電圧のエネルギーをコンデンサ61で吸収するようにしている。したがって、過大な電圧が全波整流回路2の出力端に加わることはなく、よって全波整流回路2の素子の破壊を防ぐことができる。 The surge voltage generated when the negative reactor current −Id flows is generated by the disappearance of the negative reactor current −Id. Therefore, a capacitor 61 is connected to the output terminal of the full-wave rectification circuit 2 so that the surge voltage energy generated when a negative reactor current −Id flows is absorbed by the capacitor 61. Therefore, an excessive voltage will not be applied to the output terminal of the full-wave rectifier circuit 2, and thus the destruction of the elements of the full-wave rectifier circuit 2 can be prevented.

コンデンサ61の容量は、負のリアクタ電流−Idによって発生するサージ電圧の吸収量を考慮し、また基板や回路内の寄生インダクタンスとの間で共振が生じないよう、選定する必要がある。具体的には、コンデンサ61の容量が大きいと、スイッチ素子SW1との間の寄生インダクタンスや寄生ダイオードD1とのLC共振が発生し、スイッチ素子SW1がスイッチングするタイミングで共振電流が流れてスイッチ素子SW1の損失が増大する。許容できる損失は半導体スイッチ素子の特性や組込むシステムの放熱構造によって変わるため、それらを考慮した上で最適な容量のコンデンサ61を選定する必要がある。以下、この選定について説明する。 The capacitance of the capacitor 61 needs to be selected in consideration of the absorption amount of the surge voltage generated by the negative reactor current −Id and so as not to cause resonance with the substrate or the parasitic inductance in the circuit. Specifically, when the capacitance of the capacitor 61 is large, a parasitic inductance with the switch element SW1 or LC resonance with the parasitic diode D1 occurs, and a resonance current flows at the timing when the switch element SW1 switches to cause a switch element SW1. Will increase the loss. Since the allowable loss varies depending on the characteristics of the semiconductor switch element and the heat radiation structure of the system to be incorporated, it is necessary to select the capacitor 61 having the optimum capacity in consideration of them. Hereinafter, this selection will be described.

リアクタ11に電流が流れた際にリアクタ11に蓄積されるエネルギーEは、下式(1)で表わされる。Lはリアクタ11のインダクタンス、iはリアクタ11に流れる逆電流(負のリアクタ電流−Id)である。
=1/2×L×i ……式(1)
このエネルギーEとコンデンサ61に蓄積されるエネルギーとが釣り合うようにコンデンサ61の容量Cを決定すればよいことになる。
Energy E L accumulated in the reactor 11 when a current flows in the reactor 11 is expressed by the following equation (1). L is the inductance of the reactor 11, and i L is the reverse current (negative reactor current −Id) flowing in the reactor 11.
E L =1/2×L×i L 2 ... Formula (1)
It is sufficient to determine the capacitance C of the capacitor 61 so that the energy stored in the energy E L and the capacitor 61 are balanced.

サージ電圧の吸収前にコンデンサ61に蓄積される初期エネルギーEc0は、下式(2)で表わされる。サージ電圧の吸収後にコンデンサ61に蓄積されるエネルギーEc1は、下式(3)で表わされる。Vはコンデンサ61の初期電圧、ΔVはサージ電圧発生時の電圧跳ね上がり許容量である。
Ec0=1/2×C×V……式(2)
Ec1=1/2×C×(V+ΔV)
=1/2×C×V+C×V×ΔV+1/2×C×ΔV……式(3)
コンデンサ61の充電エネルギーEc=は、下式(4)で表わされる。
Ec=Ec1−Ec0=C×V×ΔV+1/2×C×ΔV……式(4)
リアクタ11に蓄積されたエネルギーEの全てがコンデンサ61に充電されると仮定すると、式(1)=式(4)となり、これは下式(5)に置き換えることができる。
1/2×L×i =C×V×ΔV+1/2×C×ΔV……式(5)
例えば、リアクタ11のインダクタンスLを0.5mH、リアクタ11に流れる逆電流を4A、コンデンサ61の初期電圧Vを400V、サージ電圧発生時の電圧跳ね上がり許容量ΔVを100Vとし、これらを式(5)の左辺に当て嵌めると下式(6)が得られる。
1/2×L×i =1/2×0.5×10-3×4=4.00[ml]……式(6)
この式(6)に基づいて式(5)の右辺を展開すると、下式(7)のようにコンデンサ61の容量Cとして0.1μFを求めることができる。
The initial energy Ec0 stored in the capacitor 61 before absorption of the surge voltage is represented by the following equation (2). Energy Ec1 accumulated in the capacitor 61 after absorbing the surge voltage is expressed by the following equation (3). V is the initial voltage of the capacitor 61, and ΔV is the allowable voltage jump when a surge voltage occurs.
Ec0=1/2×C×V 2 ……Equation (2)
Ec1=1/2×C×(V+ΔV) 2
=1/2×C×V 2 +C×V×ΔV+1/2×C×ΔV 2 (3)
The charging energy Ec= of the capacitor 61 is expressed by the following equation (4).
Ec=Ec1-Ec0=C×V×ΔV+1/2×C×ΔV 2 (4)
Assuming that all of the energy E L stored in the reactor 11 is charged in the capacitor 61, the formula (1)=the formula (4), which can be replaced by the following formula (5).
1/2×L×i L 2 =C×V×ΔV+1/2×C×ΔV 2 (5)
For example, assuming that the inductance L of the reactor 11 is 0.5 mH, the reverse current flowing through the reactor 11 is 4 A, the initial voltage V of the capacitor 61 is 400 V, and the allowable voltage jump ΔV at the time of surge voltage generation is 100 V, these are given by the formula (5). When fitted on the left side, the following formula (6) is obtained.
1/2 x L x i L 2 = 1/2 x 0.5 x 10 -3 x 4 2 = 4.00 [ml] (Equation 6)
If the right side of the equation (5) is expanded based on the equation (6), 0.1 μF can be obtained as the capacitance C of the capacitor 61 as in the following equation (7).

C=(4.00×10-3)/(V×ΔV+1/2×ΔV)
=(4.00×10-3)/(400×100+100)≒0.1[ml]……式(7)
[3]第2実施形態の変形例
図7に要部を示すように、第2実施形態において、全波整流回路2とコンデンサ61との間の通電路に抵抗器62を挿入接続する構成としてもよい。第2実施形態のように最適な容量のコンデンサ60を選定することに加え、コンデンサ60と抵抗器62との直列接続によるRCスナバ(Snubber)回路を形成することにより、仮に共振が生じた場合でもEMI(Electro Magnetic Interference)ノイズの増加を抑制することができる。
C=(4.00×10 -3 )/(V×ΔV+1/2×ΔV)
= (4.00×10 -3 )/(400×100+100)≒0.1[ml]……Equation (7)
[3] Modification of Second Embodiment As shown in the main part of FIG. 7, in the second embodiment, a resistor 62 is inserted and connected in a conduction path between the full-wave rectifier circuit 2 and the capacitor 61. Good. In addition to selecting the capacitor 60 having the optimum capacity as in the second embodiment, by forming an RC snubber circuit by connecting the capacitor 60 and the resistor 62 in series, even if resonance occurs, It is possible to suppress an increase in EMI (Electro Magnetic Interference) noise.

図8に要部を示すように、第2実施形態において、全波整流回路2とコンデンサ61との間の通電路に抵抗器62を挿入接続し、その抵抗器62にダイオード63を並列接続する構成としてもよい。コンデンサ60、抵抗器62、およびダイオード63によってRDCスナバ回路が形成される。この構成により、抵抗器62の電力損失を低減することができる。 As shown in the main part in FIG. 8, in the second embodiment, a resistor 62 is inserted and connected in the energization path between the full-wave rectifier circuit 2 and the capacitor 61, and a diode 63 is connected in parallel to the resistor 62. It may be configured. The capacitor 60, the resistor 62, and the diode 63 form an RDC snubber circuit. With this configuration, the power loss of the resistor 62 can be reduced.

第2実施形態では、負のリアクタ電流−Iaに起因するサージ電圧を吸収するためのコンデンサ61を全波整流回路2の出力端に接続したが、コンデンサ61に代えて、サージ電圧を吸収するためのバリスタを接続してもよい。負のリアクタ電流−Iaにより逆回復電流が生じ、その逆回復電流Irに起因するサージ電圧がリアクタ11の両端に生じても、そのサージ電圧とコンデンサ12の電圧Vdcとを合わせた過大な電圧はバリスタに吸収されて全波整流回路2の出力端に加わらない。したがって、全波整流回路2におけるダイオード素子の破壊を防ぐことができる。 In the second embodiment, the capacitor 61 for absorbing the surge voltage caused by the negative reactor current −Ia is connected to the output terminal of the full-wave rectification circuit 2, but instead of the capacitor 61, the surge voltage is absorbed. You may connect the varistor of. Even if a reverse recovery current is generated by the negative reactor current −Ia and a surge voltage resulting from the reverse recovery current Ir is generated across the reactor 11, an excessive voltage that is the sum of the surge voltage and the voltage Vdc of the capacitor 12 is It is absorbed by the varistor and does not add to the output end of the full-wave rectifier circuit 2. Therefore, the breakdown of the diode element in the full-wave rectification circuit 2 can be prevented.

また、より高効率を得るために、図9に示すように、上記各実施形態のスイッチ素子SW2に代えて、スイッチ素子(前段スイッチ素子)SW2とスイッチ素子(後段スイッチ素子)SW3との直列回路を設け、その直列回路に逆流防止用のダイオードD4を並列接続する構成としてもよい。スイッチ素子SW2,SW3は駆動信号S2により互いに同期してオン,オフ動作する。スイッチ素子SW2,SW3の直列回路は、スイッチ素子SW2,SW3を互いに逆方向に直列接続したもので、スイッチ素子SW3の寄生ダイオードD3の逆回復電流を抑制する高効率スイッチング回路を逆流防止用のダイオードD4と共に形成している。高効率スイッチング回路は、特開2015-156795号公報に記載されている半導体スイッチ回路に相当するもので、スイッチ素子SW3の寄生ダイオード(還流ダイオードともいう)D3の逆回復電流を効果的に抑制することで、損失の低減およびスイッチング速度の高速化を実現する。この高効率スイッチング回路を採用することにより、上記各実施形態よりもより高い効率を得ることができる。 Further, in order to obtain higher efficiency, as shown in FIG. 9, instead of the switch element SW2 of each of the above-described embodiments, a series circuit of a switch element (previous stage switch element) SW2 and a switch element (second stage switch element) SW3. May be provided, and the diode D4 for backflow prevention may be connected in parallel to the series circuit. The switch elements SW2 and SW3 are turned on and off in synchronization with each other by the drive signal S2. The series circuit of the switch elements SW2 and SW3 is formed by connecting the switch elements SW2 and SW3 in series in mutually opposite directions. The high efficiency switching circuit for suppressing the reverse recovery current of the parasitic diode D3 of the switch element SW3 is a diode for preventing backflow. It is formed with D4. The high-efficiency switching circuit corresponds to the semiconductor switch circuit described in Japanese Unexamined Patent Publication No. 2015-156795, and effectively suppresses the reverse recovery current of the parasitic diode (also called a freewheeling diode) D3 of the switch element SW3. As a result, the loss is reduced and the switching speed is increased. By adopting this high-efficiency switching circuit, higher efficiency can be obtained as compared with the above embodiments.

上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The above embodiments and modifications are presented as examples, and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, rewritings, and changes can be made without departing from the spirit of the invention. These embodiments are included in the scope of the invention, and are included in the invention described in the claims and an equivalent range thereof.

1…3相交流電源、2…全波整流回路、10…昇圧回路、11…リアクタ、12…コンデンサ、13…電流センサ、D2…逆流阻止用ダイオード、SW1…スイッチ素子(第1スイッチ素子)、SW2…スイッチ素子(第2スイッチ素子)、20…インバータ、30…コントローラ、40…昇圧制御部、45…PWM信号生成部、47,48…スイッチ駆動制御部、50…インバータ制御部、51…目標値設定部 DESCRIPTION OF SYMBOLS 1... Three-phase AC power supply, 2... Full wave rectification circuit, 10... Booster circuit, 11... Reactor, 12... Capacitor, 13... Current sensor, D2... Reverse current blocking diode, SW1... Switch element (first switch element), SW2...Switch element (second switch element), 20...Inverter, 30...Controller, 40...Boost control section, 45...PWM signal generation section, 47,48...Switch drive control section, 50...Inverter control section, 51...Target Value setting section

請求項の電源装置は、整流回路、昇圧回路、前記整流回路の出力端に接続されたコンデンサまたはバリスタを備える。整流回路は、交流電圧を整流する。昇圧回路は、前記整流回路の出力端に接続されるリアクタおよび逆並列接続されたダイオードを有する第1スイッチ素子の直列回路、負荷と前記第1スイッチ素子との間の通電路に設けた逆流防止用ダイオード、この逆流防止用ダイオードに並列接続した第2スイッチ素子、前記負荷に並列に接続したコンデンサを含み、前記第1スイッチ素子のオン,オフとこの第1スイッチ素子のオン,オフとは逆位相の前記第2スイッチ素子のオン,オフにより前記整流回路の出力電圧を昇圧する。前記整流回路の出力端に接続されたコンデンサまたはバリスタは、前記整流回路のダイオード素子に生じた逆回復電流によって引き起こされるサージ電圧を吸収する。 Power apparatus according to claim 1 includes a rectifier circuit, a booster circuit, a capacitor connected or varistor to the output terminal of the rectifier circuit. The rectifier circuit rectifies the AC voltage. The booster circuit is a series circuit of a first switch element having a reactor connected to the output end of the rectifier circuit and a diode connected in antiparallel, and a backflow prevention provided in a conduction path between a load and the first switch element. Diode, a second switch element connected in parallel with the backflow prevention diode, and a capacitor connected in parallel with the load. The on/off of the first switch element and the on/off of the first switch element are opposite. The output voltage of the rectifier circuit is boosted by turning on and off the second switch element in phase. The capacitor or varistor connected to the output terminal of the rectifier circuit absorbs the surge voltage caused by the reverse recovery current generated in the diode element of the rectifier circuit.

C=(4.00×10-3)/(V×ΔV+1/2×ΔV)
=(4.00×10-3)/(400×100+100)≒0.1[μF]……式(7)
[3]第2実施形態の変形例
図7に要部を示すように、第2実施形態において、全波整流回路2とコンデンサ61との間の通電路に抵抗器62を挿入接続する構成としてもよい。第2実施形態のように最適な容量のコンデンサ60を選定することに加え、コンデンサ60と抵抗器62との直列接続によるRCスナバ(Snubber)回路を形成することにより、仮に共振が生じた場合でもEMI(Electro Magnetic Interference)ノイズの増加を抑制することができる。
C=(4.00×10 -3 )/(V×ΔV+1/2×ΔV)
= (4.00 × 10 -3 )/(400 × 100 + 100) ≒ 0.1 [ μF ] ……Equation (7)
[3] Modified Example of Second Embodiment As shown in the main part of FIG. 7, in the second embodiment, a resistor 62 is inserted and connected in a conduction path between the full-wave rectifier circuit 2 and the capacitor 61. Good. In addition to selecting the capacitor 60 having the optimum capacity as in the second embodiment, by forming an RC snubber circuit by connecting the capacitor 60 and the resistor 62 in series, even if resonance occurs, It is possible to suppress an increase in EMI (Electro Magnetic Interference) noise.

Claims (9)

三相交流電圧を整流する整流回路と、
前記整流回路の出力端に接続されるリアクタおよび逆並列接続されたダイオードを有する第1スイッチ素子の直列回路、負荷と前記第1スイッチ素子との間の通電路に設けた逆流防止用ダイオード、この逆流防止用ダイオードに並列接続した第2スイッチ素子、前記負荷に並列に接続したコンデンサを含み、前記第1スイッチ素子のオン,オフとこの第1スイッチ素子のオン,オフとは逆位相の前記第2スイッチ素子のオン,オフにより前記整流回路の出力電圧を昇圧する昇圧モード、および前記第1スイッチ素子のオフを継続させて前記整流回路の出力電圧を昇圧せずに出力する非昇圧モードを有する昇圧回路と、
前記リアクタに流れる電流を検知する電流検知手段と、
前記昇圧回路が昇圧モード中で前記電流検知手段により検知された電流の瞬時値Iaが設定値Ias以下の場合に、前記昇圧回路を非昇圧モードとする制御手段と、
を備えることを特徴とする電源装置。
A rectifier circuit that rectifies the three-phase AC voltage,
A series circuit of a first switch element having a reactor connected to the output terminal of the rectifier circuit and a diode connected in anti-parallel, a backflow prevention diode provided in a conduction path between a load and the first switch element, A second switch element connected in parallel to the backflow prevention diode; and a capacitor connected in parallel to the load, wherein the first switch element is turned on/off and the first switch element is turned on/off in the opposite phase. There are a boost mode in which the output voltage of the rectifier circuit is boosted by turning on and off two switch elements, and a non-boost mode in which the output voltage of the rectifier circuit is output without boosting by continuing to turn off the first switch element. Booster circuit,
Current detection means for detecting the current flowing through the reactor,
Control means for setting the booster circuit to a non-boosting mode when the instantaneous value Ia of the current detected by the current detecting means is equal to or less than the set value Ias in the boosting mode of the booster circuit;
A power supply device comprising:
前記制御手段は、前記電流検知手段によって検知された電流Iaの実効値Iamが設定値Iams以上となった場合、前記昇圧回路を昇圧モードとし、実効値Iamが前記設定値Iamsより低い設定値Iams-α以下となった場合、前記昇圧回路の昇圧モードを禁止して前記昇圧回路を非昇圧モードとする
ことを特徴とする請求項1に記載の電源装置。
When the effective value Iam of the current Ia detected by the current detection unit is equal to or higher than the set value Iams, the control unit sets the booster circuit to the boost mode, and the effective value Iam is lower than the set value Iams. The power supply device according to claim 1, wherein when the voltage is lower than or equal to -α, the boosting mode of the boosting circuit is prohibited and the boosting circuit is set to the non-boosting mode.
ダイオード素子からなり、交流電圧を整流する整流回路と、
前記整流回路の出力端に接続されるリアクタおよび逆並列接続されたダイオードを有する第1スイッチ素子の直列回路、負荷と前記第1スイッチ素子との間の通電路に設けた逆流防止用ダイオード、この逆流防止用ダイオードに並列接続した第2スイッチ素子、前記負荷に並列に接続した電解コンデンサを含み、前記第1スイッチ素子のオン,オフとこの第1スイッチ素子のオン,オフとは逆位相の前記第2スイッチ素子のオン,オフにより前記整流回路の出力電圧を昇圧する昇圧回路と、
前記整流回路の出力端に接続されたコンデンサまたはバリスタと、
を備え、
前記コンデンサまたは前記バリスタは、前記整流回路のダイオード素子に生じた逆回復電流によって引き起こされるサージ電圧を吸収する、
ことを特徴とする電源装置。
A rectifier circuit that consists of a diode element and rectifies AC voltage,
A series circuit of a first switch element having a reactor connected to the output terminal of the rectifier circuit and a diode connected in anti-parallel, a backflow prevention diode provided in a conduction path between a load and the first switch element, A second switch element connected in parallel to the backflow prevention diode; and an electrolytic capacitor connected in parallel to the load, wherein the first switch element is turned on and off and the first switch element is turned on and off. A booster circuit for boosting the output voltage of the rectifier circuit by turning on and off the second switch element;
A capacitor or a varistor connected to the output terminal of the rectifying circuit,
Equipped with
The capacitor or the varistor absorbs a surge voltage caused by a reverse recovery current generated in a diode element of the rectifier circuit,
A power supply device characterized by the above.
前記整流回路と前記コンデンサと間の通電路に挿入接続された抵抗器をさらに備えることを特徴とする請求項3に記載に電源装置。 The power supply device according to claim 3, further comprising a resistor that is inserted and connected to a current path between the rectifier circuit and the capacitor. 前記抵抗器に並列接続されたダイオードをさらに備えることを特徴とする請求項4に記載に電源装置。 The power supply device according to claim 4, further comprising a diode connected in parallel with the resistor. 前記第2スイッチ素子は、寄生ダイオードを含むMOSFETであり、オン時の電力損失が前記寄生ダイオードの順方向の電圧降下による電力損失より小さい、
前記逆流防止用ダイオードは、前記第2スイッチ素子の寄生ダイオードである、
ことを特徴とする請求項1ないし請求項5のいずれか一項に記載の電源装置。
The second switch element is a MOSFET including a parasitic diode, and the power loss at the time of turning on is smaller than the power loss due to the forward voltage drop of the parasitic diode.
The backflow prevention diode is a parasitic diode of the second switch element,
The power supply device according to claim 1, wherein the power supply device is a power supply device.
前記負荷は、誘導性負荷であることを特徴とする請求項1ないし請求項6のいずれか一項に記載の電源装置。 The said load is an inductive load, The power supply device as described in any one of Claim 1 thru|or 6 characterized by the above-mentioned. 前記誘導性負荷は、前記昇圧回路の出力端に接続されるインバータおよびこのインバータの出力により動作する圧縮機駆動用のDCブラシレスモータであることを特徴とする請求項7に記載の電源装置。 The power supply device according to claim 7, wherein the inductive load is an inverter connected to an output end of the booster circuit and a DC brushless motor for driving a compressor that operates by an output of the inverter. 前記第2スイッチ素子は、前段スイッチ素子および後段スイッチ素子の直列回路であり、
前記昇圧回路は、前記整流回路の出力端に接続されるリアクタおよび逆並列接続されたダイオードを有する第1スイッチ素子の直列回路、負荷と前記第1スイッチ素子との間の通電路に設けた逆流防止用ダイオード、この逆流防止用ダイオードに並列接続した前記前段および後段スイッチの直列回路、前記負荷に並列に接続したコンデンサを含み、前記第1スイッチ素子のオン,オフとこの第1スイッチ素子のオン,オフとは逆位相の前記前段および後段スイッチ素子のオン,オフにより前記整流回路の出力電圧を昇圧する昇圧モード、および前記第1スイッチ素子のオフを継続させて前記整流回路の出力電圧を昇圧せずに出力する非昇圧モードを有する、
ことを特徴とする請求項1または請求項2に記載の電源装置。
The second switch element is a series circuit of a front stage switch element and a rear stage switch element,
The booster circuit is a series circuit of a first switch element having a reactor connected to an output terminal of the rectifier circuit and a diode connected in antiparallel, and a reverse current provided in a conduction path between a load and the first switch element. A protection diode, a series circuit of the front-stage and rear-stage switches connected in parallel to the backflow prevention diode, and a capacitor connected in parallel to the load. , A boosting mode in which the output voltage of the rectifier circuit is boosted by turning on and off the front-stage and rear-stage switch elements that are opposite in phase to the off state, and the output voltage of the rectifier circuit is boosted by continuing to turn off the first switch element. Has a non-boosting mode that outputs without
The power supply device according to claim 1 or 2, wherein:
JP2020078305A 2016-04-04 2020-04-27 Power supply Active JP6926272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020078305A JP6926272B2 (en) 2016-04-04 2020-04-27 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016075144A JP6789654B2 (en) 2016-04-04 2016-04-04 Power supply
JP2020078305A JP6926272B2 (en) 2016-04-04 2020-04-27 Power supply

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016075144A Division JP6789654B2 (en) 2016-04-04 2016-04-04 Power supply

Publications (2)

Publication Number Publication Date
JP2020120578A true JP2020120578A (en) 2020-08-06
JP6926272B2 JP6926272B2 (en) 2021-08-25

Family

ID=71891475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078305A Active JP6926272B2 (en) 2016-04-04 2020-04-27 Power supply

Country Status (1)

Country Link
JP (1) JP6926272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508520A (en) * 2019-03-11 2021-10-15 三菱电机株式会社 Converter device, motor drive device, and air conditioner
RU220217U1 (en) * 2023-04-24 2023-09-04 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Power supply with current input

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273168A (en) * 1985-05-27 1986-12-03 Matsushita Electric Works Ltd Power source
JPH09294373A (en) * 1996-04-25 1997-11-11 Fuji Electric Co Ltd Snubber circuit of insulation type ac/dc conversion device
JP2004088941A (en) * 2002-08-28 2004-03-18 Toshiba Corp Snubber circuit for self-arc-extinguishing element
JP2012186910A (en) * 2011-03-04 2012-09-27 Toyota Central R&D Labs Inc Power conversion module
JP2014011907A (en) * 2012-07-02 2014-01-20 Renesas Electronics Corp Switching power-supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273168A (en) * 1985-05-27 1986-12-03 Matsushita Electric Works Ltd Power source
JPH09294373A (en) * 1996-04-25 1997-11-11 Fuji Electric Co Ltd Snubber circuit of insulation type ac/dc conversion device
JP2004088941A (en) * 2002-08-28 2004-03-18 Toshiba Corp Snubber circuit for self-arc-extinguishing element
JP2012186910A (en) * 2011-03-04 2012-09-27 Toyota Central R&D Labs Inc Power conversion module
JP2014011907A (en) * 2012-07-02 2014-01-20 Renesas Electronics Corp Switching power-supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508520A (en) * 2019-03-11 2021-10-15 三菱电机株式会社 Converter device, motor drive device, and air conditioner
RU220217U1 (en) * 2023-04-24 2023-09-04 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Power supply with current input

Also Published As

Publication number Publication date
JP6926272B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2018074274A1 (en) Power conversion device and air conditioner
JP6109408B2 (en) Motor drive control device, compressor, blower, and air conditioner
US9829234B2 (en) Heat pump device, heat pump system, and method for controlling inverter
JP5748842B2 (en) Power conversion device, motor drive device, and refrigeration air conditioner
KR101566598B1 (en) Backflow preventing means, power conversion apparatus, and freezing air conditioning apparatus
KR100430794B1 (en) Power supply apparatus and air conditioner using the same
JP6877898B2 (en) Power converter and air conditioner equipped with it
JP6431413B2 (en) Power conversion device, air conditioner equipped with the same, and power conversion method
JP2018007327A (en) Dc power supply and air conditioner
JP5984470B2 (en) Power converter, compressor, blower, air conditioner, and refrigerator
WO2016098160A1 (en) Power converter, compressor, air blower, and air conditioner
JP6528002B2 (en) Power supply
JP6789654B2 (en) Power supply
KR20140109165A (en) Power converting apparatus and air conditioner having the same
JP2017208979A (en) Power supply unit
JP6926272B2 (en) Power supply
JP6594584B2 (en) DC power supply and air conditioner
JP2014075949A (en) Dc power supply device, motor drive device, air conditioner, refrigerator, and heat pump hot water supply device
CA3001773C (en) Power supply apparatus
JP7130568B2 (en) power supply
JP6884254B2 (en) Power converter and air conditioner
WO2023238292A1 (en) Power conversion device, motor drive device, and refrigeration cycle applied equipment
JP7198344B2 (en) DC power supplies, motor drives, air conditioners, refrigerators and heat pump water heaters
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
WO2016190345A1 (en) Heat-source device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6926272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150