JPH092876A - Member for heat treatment oven - Google Patents

Member for heat treatment oven

Info

Publication number
JPH092876A
JPH092876A JP7154467A JP15446795A JPH092876A JP H092876 A JPH092876 A JP H092876A JP 7154467 A JP7154467 A JP 7154467A JP 15446795 A JP15446795 A JP 15446795A JP H092876 A JPH092876 A JP H092876A
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
vapor deposition
chemical vapor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7154467A
Other languages
Japanese (ja)
Other versions
JP2745208B2 (en
Inventor
Kichiya Yano
吉弥 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15584891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH092876(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP7154467A priority Critical patent/JP2745208B2/en
Publication of JPH092876A publication Critical patent/JPH092876A/en
Application granted granted Critical
Publication of JP2745208B2 publication Critical patent/JP2745208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Abstract

PURPOSE: To obtain the subject member made of silicon carbide, capable of markedly improving its service life through assuredly preventing debonding the chemical vapor deposition layer thereon, thus useful for the reaction tubes for use in semiconductor diffusion ovens. CONSTITUTION: This member 1 for heat treatment oven is obtained by coating the surface of porous base material 2 consisting of silicon carbide sintered compact with silicon carbide chemical vapor deposition layer 3. This chemical vapor deposition layer 3 is made up, in series, of an airtight dense coating layer 3a on the surface layer 2a of the base material, a completely permeated layer 3b compactly filled among the silicon carbide grains 2'b in the shallow layer portion 2b of the surface layer 2a, and an incompletely permeated layer 3c formed without filling among the silicon carbide grains 2'c in the deep layer portion 2c of the surface layer 2a and adhered to the surface of the grains 2'c in a filmy fashion. It is preferable that the thickness H of the chemical vapor deposition layer 3 be >=200μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体拡散炉において
使用される反応管(ベルジャ型を含む)等の熱処理炉用
部材であって、特に、炭化珪素焼結体である多孔質基体
の表面を炭化珪素の化学蒸着層で被覆してなる熱処理炉
用部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for a heat treatment furnace such as a reaction tube (including a bell jar type) used in a semiconductor diffusion furnace, and particularly to a surface of a porous substrate made of a silicon carbide sintered body. With a silicon carbide chemical vapor deposition layer.

【0002】[0002]

【従来の技術】熱処理炉用部材、例えば半導体拡散炉用
の反応管としては、伝統的に石英が使用されていたが、
石英は高温条件下では変形,失透現象等による消耗が激
しく、寿命が短い。そこで、処理時間の短縮化等の要請
から熱処理温度を高くする傾向にあることとも相俟っ
て、近時、反応管の構成材として炭化珪素が注目されて
おり、炭化珪素焼結体を基体する反応管が提案されてい
る。
2. Description of the Related Art Quartz has been traditionally used as a heat treatment furnace member, for example, a reaction tube for a semiconductor diffusion furnace.
Quartz is severely consumed by deformation, devitrification, and the like under high temperature conditions, and has a short life. Accordingly, silicon carbide has recently been attracting attention as a constituent material of a reaction tube in combination with the tendency of increasing the heat treatment temperature due to a demand for shortening the treatment time and the like. Reaction tubes have been proposed.

【0003】ところで、炭化珪素焼結体は多孔質であ
り、気密性に乏しいことから、従来の炭化珪素製反応管
にあっては、一般に、基体の表面を炭化珪素の化学蒸着
層で被覆することによって、気密性を確保するようにし
ている。なお、気密性を確保するために、多孔質基体に
金属珪素を含浸させることも提案されてはいるが、かか
る含浸珪素は高温条件下で溶融,蒸気化するといった欠
点がある。
[0003] Incidentally, since the silicon carbide sintered body is porous and poor in airtightness, in a conventional silicon carbide reaction tube, the surface of the substrate is generally coated with a chemical vapor deposition layer of silicon carbide. This ensures airtightness. Although it has been proposed to impregnate the porous substrate with metallic silicon in order to ensure airtightness, there is a drawback that such impregnated silicon melts and vaporizes under high temperature conditions.

【0004】また、半導体を熱処理する場合において、
反応管に不純物が存在するとウエハに欠陥を生じるた
め、基体を結合剤としての焼結助剤を使用しない高純度
炭化珪素焼結体とすると共に、その表面を高純度炭化珪
素の化学蒸着層で被覆しているのが普通である。
When a semiconductor is heat-treated,
If impurities are present in the reaction tube, the wafer will be defective.Therefore, the substrate is made of a high-purity silicon carbide sintered body that does not use a sintering aid as a binder, and its surface is formed of a high-purity silicon carbide chemical vapor deposition layer. It is usually coated.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような従
来の炭化珪素製反応管にあっては、高純度炭化珪素から
なる化学蒸着層が炭化珪素焼結体である基体と熱的物性
及び特に機械的物性が大きく異なるため、繰り返し熱応
力を受ける等により、剥離する虞れがある。そして、か
かる化学蒸着層の剥離現象は、化学蒸着層と基体との接
着強度を如何に高めたとしても、回避することができな
い。すなわち、基体は、上記した如く不純物を排除する
ために、一般に、結合剤としての焼結助剤を使用しない
高純度炭化珪素焼結体で構成されるが、かかる焼結体は
強度が頗る低く、極めて脆いものである。したがって、
化学蒸着層と基体との接着強度を高くしたとしても、熱
応力により基体側の界面部分が破壊されることになり、
その結果、化学蒸着層が剥離することになる。すなわ
ち、基体を構成する炭化珪素粒子の接合強度が弱いた
め、基体界面の表層が化学蒸着層と共に剥がれてしまう
ことになる。
However, in such a conventional reaction tube made of silicon carbide, the chemical vapor deposition layer made of high-purity silicon carbide has a thermal property and a physical property, in particular, that of a substrate made of a silicon carbide sintered body. Since the mechanical properties are greatly different, there is a possibility that peeling may occur due to repeated thermal stress or the like. Such a peeling phenomenon of the chemical vapor deposition layer cannot be avoided no matter how the adhesion strength between the chemical vapor deposition layer and the substrate is increased. That is, the substrate is generally made of a high-purity silicon carbide sintered body that does not use a sintering aid as a binder in order to eliminate impurities as described above, but such a sintered body has a very low strength. Is extremely brittle. Therefore,
Even if the bonding strength between the chemical vapor deposition layer and the substrate is increased, the interface part on the substrate side will be destroyed by thermal stress,
As a result, the chemical vapor deposition layer will peel off. That is, since the bonding strength of the silicon carbide particles constituting the substrate is weak, the surface layer at the substrate interface is peeled off together with the chemical vapor deposition layer.

【0006】本発明は、かかる点に鑑みてなされたもの
で、化学蒸着層の剥離を確実に防止して、寿命を大幅に
向上させることができる炭化珪素製の熱処理炉用部材を
提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and provides a member for a heat treatment furnace made of silicon carbide, which can reliably prevent the chemical vapor deposition layer from peeling and can greatly improve the life. It is intended for.

【0007】[0007]

【課題を解決するための手段】本発明は、炭化珪素焼結
体である多孔質基体の表面を炭化珪素の化学蒸着層で被
覆してなる反応管等の熱処理炉用部材において、上記の
目的を達成すべく、特に、化学蒸着層を、基体表面層上
に形成された気密性を有する緻密な被覆層と、被覆層に
連らなっており、基体表面層の浅層部分における炭化珪
素粒子間に隙間なく充填する緻密な完全浸透層と、完全
浸透層に連らなって、基体表面層の深層部分における炭
化珪素粒子間に充填することなく形成された、その粒子
表面に膜状をなして接着する不完全浸透層と、からなる
一連のものとしておくことを提案するものである。
SUMMARY OF THE INVENTION The present invention provides a member for a heat treatment furnace such as a reaction tube in which a surface of a porous substrate, which is a silicon carbide sintered body, is coated with a chemical vapor deposition layer of silicon carbide. In order to achieve the above, in particular, the chemical vapor deposition layer, a dense coating layer having airtightness formed on the substrate surface layer, the silicon carbide particles in the shallow layer portion of the substrate surface layer that is continuous with the coating layer A dense complete permeable layer that fills the gap without any gaps, and a film formed on the surface of the silicon carbide particles formed in the deep portion of the substrate surface layer without being filled between the silicon carbide particles following the complete permeable layer And an incompletely osmotic layer that adheres to the surface.

【0008】すなわち、本発明の熱処理炉用部材は、高
純度炭化珪素を結合剤としての焼結助剤を使用すること
なく焼結させてなる所定形状の多孔質基体の表面に、被
覆層、完全浸透層及び不完全浸透層からなる一連の高純
度炭化珪素層(β−SiC)を蒸着形成させることによ
って得られるものであるが、かかる3層構造の化学蒸着
層は、具体的には、減圧CVD法又は間欠CVD法によ
り、次のようにして形成される。なお、炭化珪素焼結体
である多孔質基体における平均気孔径及び気孔率は、熱
処理炉用部材の使用条件等に応じて任意に設定すること
ができるが、一般には、静的強度及び耐熱衝撃性等を考
慮して決定される。
That is, the heat treatment furnace member of the present invention comprises a coating layer, a coating layer, a porous substrate having a predetermined shape formed by sintering high-purity silicon carbide without using a sintering aid as a binder. Although it is obtained by vapor-depositing a series of high-purity silicon carbide layers (β-SiC) composed of a completely permeable layer and an incompletely permeable layer, such a three-layer chemical vapor deposition layer is, specifically, It is formed as follows by a low pressure CVD method or an intermittent CVD method. The average pore diameter and the porosity of the porous substrate that is a silicon carbide sintered body can be arbitrarily set according to the usage conditions of the heat treatment furnace member, but generally, the static strength and the thermal shock resistance. It is decided in consideration of sex and the like.

【0009】減圧CVD法による場合は、基体をチャン
バ内に配置させた上、この基体を一定温度(1400〜
1500℃としておくことが好ましい)に保持させた状
態で、反応ガス(モノメチルトリクロルシランと所定当
量比(例えば20当量比)の水素)をチャンバ内に連続
供給させると共に、チャンバからは常に排気を行い、チ
ャンバ内を減圧雰囲気(3000〜20000Paとし
ておくことが好ましい)に保持させて、CH3 SiCl
3 +H2 →SiC+3HClの反応により上記した3層
構造の化学蒸着層を形成する。すなわち、基体表面層に
おいては、反応ガスが浅層部分から深層部分へと浸透し
て、上記反応により、まず、基体を構成する炭化珪素粒
子の表面上に炭化珪素膜が形成され、爾後、この炭化珪
素膜が順次成長していくことになる。このとき、基体表
面層の浅層部分では、反応ガスの炭化珪素粒子間への浸
透が活発に行われて、炭化珪素膜の成長が著しく、炭化
珪素粒子間に隙間なく充填された緻密な完全浸透層が形
成される。一方、基体表面層の深層部分では、反応ガス
が浅層部分を通過して浸透することになるため、反応ガ
スの浸透が浅層部分程には活発に行われず、浅層部分に
おける成膜作用が終了すると、つまり炭化珪素粒子間の
隙間が消失すると、爾後、反応ガスの浸透が停止される
ことになる。したがって、基体表面層の深層部分では、
成膜作用が炭化珪素粒子間の隙間を消失させる程度にま
で行われず、その粒子表面に膜状をなして接着するにす
ぎない不完全浸透層が形成されることになる。また、基
体表面上においては、上記した完全浸透層が形成された
箇所から、つまり反応ガスの基体表面層への浸透が停止
された箇所から、順次成膜されていき、気密性を有する
緻密な被覆層が形成されることになる。ところで、通常
の化学蒸着法によっては、基体内部やチャンバ内に反応
残渣ガスが残留するため、新たな反応ガスの基体内部へ
の浸透を妨げることがあるが、このように反応ガスの基
体内部への浸透が充分に行われないときは、完全浸透層
や不完全浸透層の形成が不充分となる(基体表面層全体
ではなく、その一部に形成されるにすぎない)。しか
し、上記した如く、チャンバからは常に排気を行い、チ
ャンバ内を減圧雰囲気に保持させておくと、基体内部や
チャンバ内に反応残渣ガスが残留せず、反応ガスが基体
内部に充分に浸透されることになるから、上記した成膜
作用が基体表面層全体に効果的に行われ、3層構造の化
学蒸着層を良好に形成することができる。また、チャン
バからの排気を常時行うことから、反応残渣ガスが速や
かに排出されると共にチャンバ内が清浄に保たれること
になり、不純物を含まない極めて高純度の化学蒸着層を
形成することができる。
In the case of the low pressure CVD method, a substrate is placed in a chamber, and the substrate is kept at a constant temperature (1400 to 1400).
While keeping the temperature at 1500 ° C.), the reaction gas (monomethyltrichlorosilane and hydrogen at a predetermined equivalent ratio (for example, 20 equivalent ratio)) is continuously supplied into the chamber, and the chamber is constantly evacuated. And the chamber is kept in a reduced pressure atmosphere (preferably at 3000 to 20,000 Pa), and CH 3 SiCl
The chemical vapor deposition layer having the above three-layer structure is formed by the reaction of 3 + H 2 → SiC + 3HCl. That is, in the substrate surface layer, the reaction gas penetrates from the shallow portion to the deep portion, and the above reaction forms a silicon carbide film on the surface of the silicon carbide particles constituting the substrate. The silicon carbide film grows sequentially. At this time, in the shallow portion of the substrate surface layer, the reaction gas is actively penetrated into the silicon carbide particles, and the silicon carbide film grows remarkably, and the dense and complete silicon carbide particles are filled without gaps. A permeable layer is formed. On the other hand, in the deep part of the substrate surface layer, the reaction gas penetrates through the shallow part, so that the reaction gas does not permeate as actively as in the shallow part, and the film forming action in the shallow part is not performed. Is completed, that is, when the gap between the silicon carbide particles disappears, thereafter, the permeation of the reaction gas is stopped. Therefore, in the deep part of the substrate surface layer,
The film-forming action is not performed to such an extent that the gaps between the silicon carbide particles are eliminated, and an incompletely permeable layer is formed on the surface of the particles only in the form of a film and adhered. On the surface of the substrate, a film is sequentially formed from a portion where the above-described complete permeation layer is formed, that is, from a portion where the permeation of the reaction gas into the substrate surface layer is stopped. A coating layer will be formed. By the way, according to the normal chemical vapor deposition method, the reaction residue gas remains inside the substrate or the chamber, which may hinder the penetration of new reaction gas into the substrate. If the infiltration of the substrate is not sufficiently performed, the formation of a completely permeable layer or an incompletely permeable layer will be insufficient (only a part of the substrate surface layer is formed instead of the entire surface layer). However, as described above, if the chamber is constantly evacuated and the chamber is kept in a reduced pressure atmosphere, the reaction residual gas does not remain inside the substrate or the chamber, and the reaction gas is sufficiently permeated into the substrate. Therefore, the above-described film forming action is effectively performed on the entire surface layer of the substrate, and the chemical vapor deposition layer having a three-layer structure can be formed well. In addition, since the chamber is constantly exhausted, the reaction residue gas is quickly exhausted and the inside of the chamber is kept clean, so that an extremely high-purity chemical vapor deposition layer containing no impurities can be formed. it can.

【0010】また、間欠CVD法による場合は、基体を
チャンバ内に配置させた上、この基体を一定温度(14
00〜1500℃としておくことが好ましい)に保持さ
せた状態で、反応ガスとしてモノメチルトリクロルシラ
ンと所定当量比(例えば20当量比)の水素とをチャン
バ内に一定サイクルで間欠的に供給させる。そして、反
応ガスの供給停止期間においてはチャンバからの排気を
行い、反応ガスの供給再開を一定の減圧条件下で行う。
すなわち、反応ガスの供給が停止されると、排気を開始
して、チャンバ内を一定圧(10Pa程度が好ましい)
まで減圧して、その圧力に保持させておき、この状態で
反応ガスの供給を再開するのである。このようにガス供
給と排気とを一定サイクル(ガス供給時間及び排気時間
(ガス供給停止時間)は夫々2分程度としておくことが
好ましい)で繰り返すことによって、反応ガスの供給期
間において、反応ガスが基体内部に充分に浸透して、上
記した減圧CVD法による場合と同様の成膜作用が行わ
れ、被覆層、完全浸透層及び不完全浸透層からなる一連
の高純度炭化珪素層たる化学蒸着膜を形成することがで
きる。特に、反応ガスの供給停止期間においては、排気
により基体内部及びチャンバ内に残存する反応ガス残渣
ガスや未反応ガスをすべて排除することから、つまり、
反応ガスの供給再開時には基体内部及びチャンバ内に反
応ガス残渣ガスや未反応ガスが全く存在しない状態で新
たな反応ガスが供給されることから、反応ガスの供給を
間欠的に行うことによって、極めて純粋で均一な物性を
有する化学蒸着層を得ることができる。
[0010] In the case of the intermittent CVD method, a substrate is placed in a chamber, and the substrate is kept at a constant temperature (14 ° C.).
(Preferably set to 00 to 1500 ° C.), monomethyltrichlorosilane and hydrogen having a predetermined equivalent ratio (for example, 20 equivalent ratio) are intermittently supplied into the chamber at a constant cycle as a reaction gas. During the reaction gas supply stop period, the gas is exhausted from the chamber, and the supply of the reaction gas is restarted under a constant decompression condition.
That is, when the supply of the reaction gas is stopped, the exhaust is started and the inside of the chamber is kept at a constant pressure (preferably about 10 Pa).
The pressure is reduced to and kept at that pressure, and the supply of the reaction gas is restarted in this state. By repeating the gas supply and the exhaust in a fixed cycle (the gas supply time and the exhaust time (gas supply stop time) are preferably set to about 2 minutes each), the reaction gas is supplied during the reaction gas supply period. A chemical vapor deposition film, which is a series of high-purity silicon carbide layers consisting of a coating layer, a completely permeable layer, and an incompletely permeable layer. Can be formed. In particular, during the reaction gas supply suspension period, exhaust gas removes all the reaction gas residue gas and unreacted gas remaining inside the substrate and in the chamber, that is,
When the supply of the reactant gas is restarted, a new reactant gas is supplied without any residual reactant gas or unreacted gas inside the substrate and inside the chamber. A chemical vapor deposition layer having pure and uniform physical properties can be obtained.

【0011】ところで、被覆層,完全浸透層,不完全浸
透層の厚みは夫々任意であり、特に制限されるものでは
ないが、これらの各層が後述するような機能を充分に発
揮するようなものに形成されるためには、一般に、化学
蒸着層全体の厚みが200μm以上となるようにしてお
くことが好ましい。
The thicknesses of the coating layer, the completely permeable layer and the incompletely permeable layer are not particularly limited, and are not particularly limited. In general, it is preferable that the thickness of the entire chemical vapor deposition layer be 200 μm or more.

【0012】[0012]

【作用】基体表面上には気密性を有する緻密な被覆層が
形成されているから、基体が多孔質の炭化珪素焼結体で
あるにも拘わらず、熱処理炉部材の気密性は充分に確保
される。
The airtight tight coating layer is formed on the surface of the substrate, so that the airtightness of the heat treatment furnace member is sufficiently ensured even though the substrate is a porous silicon carbide sintered body. Is done.

【0013】そして、被覆層を含む化学蒸着層は、繰り
返し熱応力を受ける等の熱履歴に拘わらず、基体から剥
離するような虞れがない。
[0013] The chemical vapor deposition layer including the coating layer is not likely to be peeled off from the substrate irrespective of the thermal history such as being repeatedly subjected to thermal stress.

【0014】すなわち、基体表面層には被覆層に連なる
完全浸透層及び完全浸透層に連なる不完全浸透層が形成
されており、特に、完全浸透層は基体の炭化珪素粒子間
に隙間なく充填されていることから、化学蒸着層と基体
との接着強度は極めて高い。しかも、不完全浸透層は、
基体の炭化珪素粒子間に隙間なく充満するものではな
く、その粒子表面に膜状をなして接着するものであるか
ら、繰り返し熱応力が作用した場合にも応力を分散,吸
収することができ、完全浸透層が基体表面層の浅層部分
に形成されているにすぎないこととも相俟って、熱履歴
による基体表面層の破壊が効果的に防止される。したが
って、高純度炭化珪素からなる化学蒸着層が炭化珪素焼
結体である基体と熱的物性や機械的物性が大きく異な
り、基体が結合剤としての焼結助剤を使用しない高純度
炭化珪素焼結体で構成されたものであって、強度が低く
極めて脆いものである場合にも、基体側の界面部分が破
壊される等により化学蒸着層が剥離するようなことがな
い。
That is, a completely permeable layer connected to the coating layer and an incompletely permeable layer connected to the completely permeable layer are formed on the surface layer of the substrate. In particular, the completely permeable layer is filled without gaps between the silicon carbide particles of the substrate. Therefore, the adhesive strength between the chemical vapor deposition layer and the substrate is extremely high. Moreover, the imperfect permeation layer is
The silicon carbide particles of the base material are not filled without gaps, and are adhered in a film form on the surface of the particles. Therefore, even when thermal stress is repeatedly applied, the stress can be dispersed and absorbed. Coupled with the fact that the completely permeable layer is formed only in the shallow portion of the substrate surface layer, destruction of the substrate surface layer due to heat history is effectively prevented. Therefore, the thermal and mechanical properties of the chemical vapor deposition layer made of high-purity silicon carbide are significantly different from those of the silicon carbide sintered body, and the high-purity silicon carbide sintered body does not use a sintering aid as a binder. Even in the case where the substrate is made of a compact and has low strength and is extremely brittle, the chemical vapor deposition layer does not peel off due to the destruction of the interface portion on the base side.

【0015】[0015]

【実施例】以下、本発明の構成を図1に示す実施例に基
づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be specifically described below based on the embodiment shown in FIG.

【0016】この実施例は、本発明を半導体拡散炉にお
いて使用される反応管に適用した例に係る。
This embodiment relates to an example in which the present invention is applied to a reaction tube used in a semiconductor diffusion furnace.

【0017】すなわち、この反応管1は、図1に示す如
く、結合剤としての焼結助剤を使用することなく筒状に
焼結された高純度炭化珪素焼結体である多孔質基体2の
表面(内外周面の何れか一方又は両方)を、高純度炭化
珪素層(β−SiC)である化学蒸着層3で被覆したも
のである。
That is, as shown in FIG. 1, the reaction tube 1 is made of a porous substrate 2 which is a high-purity sintered silicon carbide sintered body without using a sintering aid as a binder. (One or both of the inner and outer peripheral surfaces) is covered with a chemical vapor deposition layer 3 which is a high-purity silicon carbide layer (β-SiC).

【0018】而して、化学蒸着層3は、図1に示す如
く、基体表面層2a上に形成された気密性を有する緻密
な被覆層3aと、被覆層3aに連なっており、基体表面
層2aの浅層部分2bにおける炭化珪素粒子2´b間に
隙間なく充填された完全浸透層3bと、完全浸透層3b
に連らなって、基体表面層2aの深層部分2cにおける
炭化珪素粒子2´c間に充満することなく形成されてお
り、その粒子2´cの表面に膜状をなして接着する不完
全浸透層3cと、からなる一連のものである。
As shown in FIG. 1, the chemical vapor deposition layer 3 is connected to the air-tight dense coating layer 3a formed on the substrate surface layer 2a and the coating layer 3a. A completely permeable layer 3b filled without gaps between silicon carbide particles 2'b in shallow layer portion 2b of 2a;
Formed in the deep portion 2c of the base surface layer 2a without being filled between the silicon carbide particles 2'c, and incompletely penetrating the surface of the particles 2'c in a film form. And a layer 3c.

【0019】この化学蒸着層3は、前述した減圧CVD
法又は間欠CVD法によって形成され、各層3a,3
b,3cが前記機能を発揮しうるように、全体としての
層厚さHを300μm以上としてある。すなわち、被覆
層3aは、反応管1の気密性を確保できるに充分な緻密
性を有する厚みとされている。完全浸透層3bは、不完
全浸透層3cの存在と相俟って基体2との接着強度を充
分に確保できる厚さであって、基体2の多孔質特性(耐
衝撃性等)を損なわない厚さとされている。不完全浸透
層3cは、繰り返し熱応力を受けた場合において、その
応力を充分に分散,吸収して、基体側界面部分の破壊を
充分に防止しうる厚さとされている。
This chemical vapor deposition layer 3 is formed by the aforementioned low pressure CVD.
Layers 3a, 3a
The layer thickness H as a whole is set to 300 μm or more so that b and 3c can exhibit the above function. That is, the coating layer 3a has a thickness that is sufficiently dense to ensure the airtightness of the reaction tube 1. The completely permeable layer 3b is thick enough to ensure sufficient adhesive strength to the substrate 2 in combination with the presence of the incompletely permeable layer 3c, and does not impair the porous characteristics (impact resistance, etc.) of the substrate 2. It is said to be thick. The imperfectly penetrated layer 3c has such a thickness as to be able to sufficiently disperse and absorb the stress when repeatedly subjected to thermal stress and to sufficiently prevent the destruction of the interface portion on the base side.

【0020】以上のように構成された反応管1を使用し
て半導体拡散炉による半導体の熱処理を並行して行うと
共に、これと同一形状とした伝統的な石英製反応管及び
基体表面層上に被覆層3aに相当する化学蒸着層のみを
形成した炭化珪素製反応管を使用して同一条件で熱処理
を行った。その結果、石英製反応管の寿命が尽きた時点
では、炭化珪素製反応管も化学蒸着膜が剥離して寿命が
尽きていたが、上記反応管1については、化学蒸着層3
が何ら剥離しておらず、更に継続使用が可能な状態にあ
り、寿命が向上するものであることが判明した。
Using the reaction tube 1 configured as described above, heat treatment of semiconductors is performed in parallel with a semiconductor diffusion furnace, and a conventional quartz reaction tube and a substrate surface layer having the same shape are placed on the surface of the substrate. Heat treatment was performed under the same conditions using a silicon carbide reaction tube in which only the chemical vapor deposition layer corresponding to the coating layer 3a was formed. As a result, when the life of the quartz reaction tube expired, the life of the silicon carbide reaction tube was also expired because the chemical vapor deposition film was peeled off.
Was not peeled off at all and was in a state where it could be used continuously and it was found that the life was improved.

【0021】[0021]

【発明の効果】以上の説明から容易に理解されるよう
に、本発明によれば、繰り返し熱応力を受ける等の熱履
歴に拘わらず、化学蒸着層の剥離現象を効果的に防止で
き、極めて高寿命の半導体拡散炉用反応管等の熱処理炉
用部材を提供することができる。
As can be easily understood from the above description, according to the present invention, the peeling phenomenon of the chemical vapor deposition layer can be effectively prevented irrespective of the thermal history such as repeated thermal stress. A member for a heat treatment furnace such as a reaction tube for a semiconductor diffusion furnace having a long life can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱処理炉用部材を示す要部の拡大
断面図である。
FIG. 1 is an enlarged sectional view of a main part showing a heat treatment furnace member according to the present invention.

【符号の説明】[Explanation of symbols]

1…熱処理炉用部材(半導体拡散炉用反応管)、2…基
体、2a…基体表面層、2b…基体表面層の浅層部分、
2c…基体表面層の深層部分、2´b,2´c…炭化珪
素粒子、3…化学蒸着層、3a…被覆層、3b…完全浸
透層、3c…不完全浸透層、H…化学蒸着層の厚み。
DESCRIPTION OF SYMBOLS 1 ... Member for heat treatment furnace (reaction tube for semiconductor diffusion furnace), 2 ... Base, 2a ... Base surface layer, 2b ... Shallow layer part of base surface layer,
2c: deep portion of the substrate surface layer, 2'b, 2'c: silicon carbide particles, 3: chemical vapor deposition layer, 3a: coating layer, 3b: complete penetration layer, 3c: incomplete penetration layer, H: chemical vapor deposition layer Thickness.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素焼結体である多孔質基体の表面
を炭化珪素の化学蒸着層で被覆してなる熱処理炉用部材
において、化学蒸着層が、基体表面層上に形成された気
密性を有する緻密な被覆層と、被覆層に連なっており、
基体表面層の浅層部分における炭化珪素粒子間に隙間な
く充填された完全浸透層と、完全浸透層に連らなって、
基体表面層の深層部分における炭化珪素粒子間に充満す
ることなく形成されており、その粒子表面に膜状をなし
て接着する不完全浸透層と、からなる一連のものである
ことを特徴とする熱処理炉用部材。
1. A member for a heat treatment furnace in which a surface of a porous substrate which is a silicon carbide sintered body is coated with a chemical vapor deposition layer of silicon carbide, wherein the chemical vapor deposition layer has an airtightness formed on the substrate surface layer. A dense coating layer having
A complete permeation layer filled without gaps between silicon carbide particles in a shallow portion of the substrate surface layer,
A non-permeation layer formed without filling between the silicon carbide particles in the deep part of the substrate surface layer and adhering in a film form to the surface of the particles. Heat treatment furnace components.
【請求項2】 化学蒸着層の厚さが200μm以上であ
ることを特徴とする、請求項1に記載する熱処理炉用部
材。
2. The heat treatment furnace member according to claim 1, wherein the thickness of the chemical vapor deposition layer is 200 μm or more.
JP7154467A 1995-06-21 1995-06-21 Heat treatment furnace components Expired - Fee Related JP2745208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7154467A JP2745208B2 (en) 1995-06-21 1995-06-21 Heat treatment furnace components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7154467A JP2745208B2 (en) 1995-06-21 1995-06-21 Heat treatment furnace components

Publications (2)

Publication Number Publication Date
JPH092876A true JPH092876A (en) 1997-01-07
JP2745208B2 JP2745208B2 (en) 1998-04-28

Family

ID=15584891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7154467A Expired - Fee Related JP2745208B2 (en) 1995-06-21 1995-06-21 Heat treatment furnace components

Country Status (1)

Country Link
JP (1) JP2745208B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043427A1 (en) * 2009-10-09 2011-04-14 信越化学工業株式会社 Method for densifying porous silicon carbide base
WO2016026714A1 (en) * 2014-08-19 2016-02-25 Schunk Kohlenstofftechnik Gmbh Porous body and porous burner having a combustion zone formed by a porous body
WO2018008642A1 (en) * 2016-07-06 2018-01-11 株式会社Ihi Silicon compound material production method and silicon compound material production device
CN111892419A (en) * 2020-08-03 2020-11-06 福赛特(唐山)新材料有限公司 High-shock-resistance silicon carbide boat and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248285A (en) * 1991-01-25 1992-09-03 Tokai Carbon Co Ltd Manufacture of silicon carbide heating element
JPH06340479A (en) * 1993-05-31 1994-12-13 Ibiden Co Ltd Production of silicon carbide base material for jig for production of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248285A (en) * 1991-01-25 1992-09-03 Tokai Carbon Co Ltd Manufacture of silicon carbide heating element
JPH06340479A (en) * 1993-05-31 1994-12-13 Ibiden Co Ltd Production of silicon carbide base material for jig for production of semiconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043427A1 (en) * 2009-10-09 2011-04-14 信越化学工業株式会社 Method for densifying porous silicon carbide base
CN102686538A (en) * 2009-10-09 2012-09-19 信越化学工业株式会社 Method for densifying porous silicon carbide base
JPWO2011043427A1 (en) * 2009-10-09 2013-03-04 信越化学工業株式会社 Method for densifying porous silicon carbide substrate
WO2016026714A1 (en) * 2014-08-19 2016-02-25 Schunk Kohlenstofftechnik Gmbh Porous body and porous burner having a combustion zone formed by a porous body
WO2018008642A1 (en) * 2016-07-06 2018-01-11 株式会社Ihi Silicon compound material production method and silicon compound material production device
US11229893B2 (en) 2016-07-06 2022-01-25 Ihi Corporation Method of producing a silicon compound material and apparatus for producing a silicon compound material
CN111892419A (en) * 2020-08-03 2020-11-06 福赛特(唐山)新材料有限公司 High-shock-resistance silicon carbide boat and preparation method thereof

Also Published As

Publication number Publication date
JP2745208B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
TWI284368B (en) Gas diffusion plate and manufacturing method for the same
JPH08227933A (en) Wafer heater with electrostatic attracting function
US4987016A (en) Component for producing semiconductor devices and process of producing it
JP3892965B2 (en) Manufacturing method of joined body and joined body
JP3963788B2 (en) Heating device with electrostatic adsorption function
JP2000327441A (en) Composite carbonaceous thermal insulant and its production
JPH10242252A (en) Wafer heater
US7935167B2 (en) Composite ceramic body, method of manufacturing the same and ceramic filter assembly
JP2745208B2 (en) Heat treatment furnace components
JP4498477B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP3361385B2 (en) heater
JP3481717B2 (en) Wafer heating device with electrostatic suction function
JP3156201B2 (en) How to glue carbonaceous material
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JP2008007343A (en) Alumina coated material and method of manufacturing the same
JP5258700B2 (en) Porous body with coating
JPH0729866B2 (en) Surface modification method of silicon nitride sintered body and joining method of sintered body
KR20100049996A (en) Silicon carbide coating method and the structure that form interface layer
JPH09232409A (en) Wafer holding apparatus
JP4448915B2 (en) Laminated porous body, method for producing the same, and filter
JP3553744B2 (en) Manufacturing method of laminated member
EP1357098A1 (en) Joining methode for high-purity ceramic parts
JPH06140133A (en) Layered ceramic heater
JP2001073139A (en) Production of silicon carbide molded body
JPH04352678A (en) Retainer for graphite-made wafer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees