JP5258700B2 - Porous body with coating - Google Patents

Porous body with coating Download PDF

Info

Publication number
JP5258700B2
JP5258700B2 JP2009183886A JP2009183886A JP5258700B2 JP 5258700 B2 JP5258700 B2 JP 5258700B2 JP 2009183886 A JP2009183886 A JP 2009183886A JP 2009183886 A JP2009183886 A JP 2009183886A JP 5258700 B2 JP5258700 B2 JP 5258700B2
Authority
JP
Japan
Prior art keywords
coating
polysilazane
film
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009183886A
Other languages
Japanese (ja)
Other versions
JP2011037645A (en
Inventor
智一 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2009183886A priority Critical patent/JP5258700B2/en
Publication of JP2011037645A publication Critical patent/JP2011037645A/en
Application granted granted Critical
Publication of JP5258700B2 publication Critical patent/JP5258700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Ceramic Products (AREA)
  • Fuel Cell (AREA)

Description

本発明は、他のセラミックスと接合する際に分解し難い多孔質体および他のセラミックスと接合された多孔質体に関する。 The present invention relates to a porous body decomposing hardly porous body and is joined with other ceramics when bonding with other ceramics.

例えば、セラミックスを相互に接合することにより、耐熱性や耐摩耗性が高く且つ大型或いは複雑な形状の構造体を得ることが提案されている(例えば、特許文献1,2を参照)。硬く且つ脆いセラミックスは、加工可能な形状が制限されると共に複雑な形状を得ようとすると加工費用が著しく増大するが、接合して大型化或いは複雑化すれば、加工に伴うこれらの問題が緩和される。   For example, it has been proposed to obtain a large or complex structure having high heat resistance and wear resistance by bonding ceramics to each other (see, for example, Patent Documents 1 and 2). Hard and brittle ceramics are limited in the shape that can be processed, and the processing cost increases significantly when trying to obtain a complicated shape. Is done.

また、例えば、窒化珪素等の珪素系セラミックスは、高強度で高い耐熱性および耐摩耗性を有することから、熱効率向上や軽量化等を目的として、内燃機関等の構造部品材料に使用されている。また、加圧流動床燃焼複合発電や石炭ガス化複合発電等の発電システム用途では、熱効率向上を目的として、例えば1000(℃)程度の或いはそれ以上の高温で使用できる除塵フィルタやガス分離フィルタ、使用温度が800(℃)以上になる溶融炭酸塩形燃料電池発電システム等のメンブレンリアクター等の開発が行われている。このような用途において処理能力向上を目的として大型化する場合にも接合による安価な製造技術は有用である。   Further, for example, silicon-based ceramics such as silicon nitride have high strength and high heat resistance and wear resistance, and are therefore used in structural component materials such as internal combustion engines for the purpose of improving thermal efficiency and reducing weight. . In addition, in power generation system applications such as pressurized fluidized bed combustion combined power generation and coal gasification combined power generation, for the purpose of improving thermal efficiency, for example, a dust removal filter or gas separation filter that can be used at a high temperature of about 1000 (° C) or higher, Development of membrane reactors such as molten carbonate fuel cell power generation systems with operating temperatures of 800 ° C or higher is underway. In such applications, even when the size is increased for the purpose of improving the processing capacity, an inexpensive manufacturing technique by bonding is useful.

従来から種々のセラミックス接合方法が提案されている。例えば、珪素(Si)とカルシウム(Ca)またはマグネシウム(Mg)とを含む合金を用いて窒化珪素系セラミックスを相互に接合するものがある(例えば特許文献1を参照。)。この接合方法において、CaおよびMgは接合材料である合金の融点を低下させて濡れ性を向上させる役割を果たすものと考えられる。また、セラミック焼結体の構成成分である金属或いはその合金を用いて同一組成のセラミック焼結体を相互に接合するものがある(例えば特許文献2を参照。)。これらの接合方法によれば、突き合わせた界面を加圧しつつ加熱して拡散接合する方法や、熱膨張差を利用する嵌め合わせ方法に比較して、複雑な形状であっても接合が容易であることに加え、セラミック焼結体相互の隙間に溶融した金属や合金が入り込むことから接合面の平滑性は要求されないので、接合面の精密加工が無用な利点がある。また、特許文献2の接合方法によれば、接合後に窒化処理や酸化処理を施すことで、接合部の金属が被接合体と同質化させられるので、その接合部の高温強度および耐熱性が高められる。   Conventionally, various ceramic bonding methods have been proposed. For example, there is one in which silicon nitride ceramics are bonded to each other using an alloy containing silicon (Si) and calcium (Ca) or magnesium (Mg) (see, for example, Patent Document 1). In this joining method, Ca and Mg are considered to play a role of improving the wettability by lowering the melting point of the alloy as the joining material. In addition, there is one in which ceramic sintered bodies having the same composition are joined to each other using a metal or an alloy thereof which is a constituent component of the ceramic sintered body (see, for example, Patent Document 2). According to these joining methods, even if the shape is complicated, joining is easy as compared with a method of performing diffusion joining by pressurizing the abutted interface and performing a diffusion joining or a fitting method using a difference in thermal expansion. In addition, since the melted metal or alloy enters the gaps between the sintered ceramics, smoothness of the joint surface is not required, so there is an advantage that precision machining of the joint surface is unnecessary. Moreover, according to the joining method of Patent Document 2, since the metal at the joint is homogenized with the object to be joined by performing nitriding treatment or oxidation treatment after joining, the high-temperature strength and heat resistance of the joint are increased. It is done.

しかしながら、上記従来のセラミック接合体は、その接合部が未だ十分な耐熱性を有するものではなかった。そこで、本願出願人等は、金属シリコンにアルミニウム(Al)またはゲルマニウム(Ge)を添加した接合材料を用いて、珪素系セラミックスを高温・高真空状態で接合することを提案した(特許文献3、4を参照。)。これらの技術によれば、珪素系セラミックスの構成成分とSi、Al、Geとが相互拡散することから、珪素系セラミックスと接合材料とが一体化させられるので、耐熱性が高く且つ高強度の接合体が得られる。   However, the conventional ceramic joined body has not yet had sufficient heat resistance at the joint. Accordingly, the applicants of the present application proposed joining silicon-based ceramics in a high-temperature and high-vacuum state using a joining material obtained by adding aluminum (Al) or germanium (Ge) to metal silicon (Patent Document 3, See 4). According to these technologies, the silicon ceramics and the bonding material are integrated because the silicon ceramic components and Si, Al, and Ge are interdiffused, so the heat resistance is high and the strength is high. The body is obtained.

特開昭61−132569号公報Japanese Patent Application Laid-Open No. 61-13269 特許第3057932号公報Japanese Patent No. 3057932 特開2006−182597号公報JP 2006-182597 A 特開2007−112687号公報JP 2007-112687 A 特開2006−282419号公報JP 2006-282419 A 特開2007−153700号公報JP 2007-153700 A 特開2009−007230号公報JP 2009-007230 A 特開2009−007232号公報JP 2009-007232 A

ところで、前記特許文献3、4に記載の接合体は、例えば多孔質体の表面にガス分離膜を形成してガス分離膜モジュールに用いられるものであるが、ガス分離膜の形成後に気密且つ高強度の接合が困難になるため、その膜形成工程は接合工程の後に実施される。しかしながら、上記特許文献3、4に記載の接合方法では、接合する際に高温に加熱されるので、被接合体が分解してその表面が分解生成物で覆われ易い。分解生成物で表面が覆われると、その表面に均一且つ再現性のあるガス分離膜を形成することが困難になる。この問題は表面積の大きな多孔質体において顕著であり、また、分解し易い非酸化物系材料において特に問題となる。しかも、上記特許文献3、4に示されるような高温・高真空下で接合が行われる場合には、分解が一層生じ易くなる。従来から、多孔質体の接合に関して多数の提案が為されているが、上述した接合時の分解に着目したものはなく、これを抑制することは考慮されていなかった。   By the way, the joined body described in Patent Documents 3 and 4 is used for a gas separation membrane module by forming a gas separation membrane on the surface of a porous body, for example. Since it becomes difficult to bond strength, the film forming process is performed after the bonding process. However, in the joining methods described in Patent Documents 3 and 4, since the members are heated to a high temperature at the time of joining, the objects to be joined are decomposed and the surfaces thereof are easily covered with decomposition products. If the surface is covered with the decomposition product, it becomes difficult to form a uniform and reproducible gas separation membrane on the surface. This problem is conspicuous in a porous body having a large surface area, and is particularly problematic in a non-oxide material that is easily decomposed. Moreover, when bonding is performed under high temperature and high vacuum as shown in Patent Documents 3 and 4, decomposition is more likely to occur. Conventionally, many proposals have been made regarding the joining of porous bodies, but none of the above-described attention has been paid to the decomposition during joining, and suppression of this has not been considered.

例えば、平均気孔径10〜150(μm)、最大気孔径230(μm)以下、気孔全体の95(%)以上が200(μm)以下である多孔質セラミックスを他のセラミックスとロウ材で接合する技術が提案されている(例えば前記特許文献5を参照。)。これらの条件を満たすことで気孔内へのロウ材侵入が抑制され、通気性が損なわれないものとされている。また、750〜1700(℃)で熱処理することにより、炭化珪素多孔質セラミックス内外表面に酸化膜を形成し、その膜形成部分にシリコン系ロウ材を用いて他の炭化珪素セラミックスを接合する技術が提案されている(例えば前記特許文献6を参照。)。この接合技術によれば、多孔質セラミックスの通気性を損なうことなく接合することができる。   For example, porous ceramics having an average pore diameter of 10 to 150 (μm), a maximum pore diameter of 230 (μm) or less, and 95% or more of the entire pores of 200 (μm) or less are joined to other ceramics with a brazing material. A technique has been proposed (see, for example, Patent Document 5). By satisfying these conditions, penetration of the brazing material into the pores is suppressed, and the air permeability is not impaired. In addition, by heat treatment at 750 to 1700 (° C.), an oxide film is formed on the inner and outer surfaces of the silicon carbide porous ceramic, and another silicon carbide ceramic is bonded to the film forming portion using a silicon brazing material. It has been proposed (see, for example, Patent Document 6). According to this joining technique, joining can be performed without impairing the air permeability of the porous ceramics.

また、炭化珪素から成る多孔体相互或いは多孔体と緻密体とをシリコン等を接合材として接合するに際して、多孔体を大気中で熱処理して残留カーボンを除去した後、或いは、アルミニウムまたは硼素の窒化物を多孔体内に浸透させた後、接合面にカーボンを塗布し、接合材を介して接合する方法が提案されている(例えば前記特許文献7、8を参照。)。これらの技術によれば、多孔体内部に接合材が過剰に浸透することが抑制されることから、接合界面に十分な量の接合材が存在するので、高い接合強度を得ることができる。   Further, when bonding porous bodies made of silicon carbide or between porous bodies and dense bodies using silicon or the like as a bonding material, the porous bodies are heat-treated in the atmosphere to remove residual carbon, or nitriding aluminum or boron There has been proposed a method in which an object is infiltrated into a porous body, carbon is applied to a joining surface, and joining is performed through a joining material (see, for example, Patent Documents 7 and 8). According to these techniques, since the bonding material is prevented from excessively penetrating into the porous body, a sufficient amount of the bonding material exists at the bonding interface, so that high bonding strength can be obtained.

しかしながら、上記何れも接合時の被接合体の分解抑制に資するものではなかった。なお、前記特許文献6に記載されているように多孔質セラミックスの表面に酸化膜を形成することでも分解を抑制できる可能性があるが、その酸化処理の際に多孔質セラミックスの強度低下が生ずる問題もある。また、前記特許文献8に示されるように窒化物を浸透させることでも多孔質体の表層部の分解を抑制できるものと考えられるが、この技術は窒化物で気孔が閉塞されることから後工程でこれを除去する必要があるため、接合後に膜形成するような用途には適用が困難である。   However, none of the above contributed to the suppression of the decomposition of the objects to be joined at the time of joining. In addition, as described in Patent Document 6, it may be possible to suppress decomposition by forming an oxide film on the surface of the porous ceramic, but the strength of the porous ceramic is reduced during the oxidation treatment. There is also a problem. In addition, as disclosed in Patent Document 8, it is considered that the decomposition of the surface layer portion of the porous body can also be suppressed by infiltrating the nitride, but this technique is a post-process because the pores are blocked by the nitride. Therefore, it is necessary to remove this, so that it is difficult to apply to applications where a film is formed after bonding.

本発明は、以上の事情を背景として為されたものであって、その目的は、高温・高真空下で分解が生じ難い多孔質体を提供することにある。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a porous body that does not easily decompose under high temperature and high vacuum.

斯かる目的を達成するための発明の被膜付き多孔質体の要旨とするところは、(a)外表面に開口する細孔径が0.01〜10(μm)の範囲内の多数の細孔を備えた多孔質の非酸化物系セラミックスから成る基材と、(b)前記基材の外表面に前記多数の細孔を閉塞することなく且つその外表面近傍ではその基材が露出しないように設けられたポリシラザン系材料由来のセラミックスから成る緻密質の被膜とを、含むことにある。 In order to achieve such an object, the gist of the coated porous body of the present invention includes (a) a large number of pores having a pore diameter of 0.01 to 10 (μm) opening on the outer surface. A base material made of porous non-oxide ceramics, and (b) provided so that the outer surface of the base material does not block the numerous pores and is not exposed in the vicinity of the outer surface. And a dense film made of ceramic derived from the polysilazane material.

このようにすれば、多孔質の非酸化物系セラミックスから成る基材の外表面には、ポリシラザン系材料由来のセラミックスから成る緻密質の被膜が外表面近傍ではその基材が露出しないように設けられていることから、その基材の耐熱性が高められる。例えば1200(℃)以上の高温且つ100(Pa)以下の高真空下においても基材の分解が抑制される。被膜が十分な耐熱性を有し分解し難い場合には、その被膜で基材が保護された状態が保たれるが、耐熱性が不十分であっても、被膜が分解することで基材の外表面近傍の気体分圧が変化してその基材が分解し難い雰囲気が形成される。そのため、例えば金属ロウ材を用いてセラミックスから成る他の部材と接合する際に、基材が上記のような雰囲気に曝されても、その分解が抑制され、延いては、その分解生成物でその外表面が覆われることが抑制されるので、接合後に膜形成が困難になることがない。すなわち、使用する金属ロウ材に応じて定められるため変更が困難な接合時の加熱処理条件を保ったままで、基材の分解を抑制できる。しかも、ポリシラザン系材料由来のセラミックスから成る被膜は、基材外表面の多数の細孔を閉塞することなく設けられることから、その基材の通気性は被膜が設けられない場合と同等に保たれる。なお、「閉塞することなく」とは、理想的には表面に開口する気孔の全てが閉塞されない状態をいうものであるが、被膜形成前の通気性が概ね保たれていれば一部の気孔が閉塞されている場合も含む。ポリシラザン系材料は、Si、N、H、Cから成る物質であり、例えば、[−Si(H)(CH 3 )−NH−]、[−Si(CH 3 ) 2 −NH−]、および[−SiH 2 −NH−]を基本ユニットとする繰り返し構造から成る。ポリシラザン系材料は、常温放置により、或いは焼成処理を施すことにより、架橋・重合反応してセラミックスに転じ、基材外表面上で薄膜化する。その際、体積収縮して緻密化するので、開口上にあったものはその周縁或いは開口内周面に固着させられることから、開口を閉塞することなく外表面を覆う被膜が形成される。 Thus to lever, on the outer surface of the substrate made of a non-oxide ceramic porous, as coating dense consisting polysilazane-based material from the ceramic is not exposed the substrate at the outer surface near Since it is provided, the heat resistance of the base material is enhanced. For example, the decomposition of the base material is suppressed even under a high temperature of 1200 (° C.) or higher and a high vacuum of 100 (Pa) or lower. When the coating has sufficient heat resistance and is difficult to decompose, the substrate is protected by the coating, but the substrate is decomposed even if the heat resistance is insufficient. The gas partial pressure in the vicinity of the outer surface of the substrate changes to form an atmosphere in which the substrate is difficult to decompose. For this reason, for example, when joining to other members made of ceramics using a metal brazing material, even if the base material is exposed to the atmosphere as described above, its decomposition is suppressed, and as a result, Since the outer surface is suppressed from being covered, film formation does not become difficult after bonding. That is, the decomposition of the base material can be suppressed while maintaining the heat treatment conditions at the time of joining, which are difficult to change because they are determined according to the metal brazing material used. In addition, since the coating made of the ceramic derived from the polysilazane material is provided without blocking many pores on the outer surface of the substrate, the air permeability of the substrate is kept equal to the case where the coating is not provided. It is. Note that “without blocking” ideally means a state in which all of the pores opening on the surface are not blocked, but some pores can be used as long as the air permeability before film formation is maintained. Including the case where is blocked. The polysilazane-based material is a substance composed of Si, N, H, and C. For example, [—Si (H) (CH 3 ) —NH—], [—Si (CH 3 ) 2 —NH—], and [ It consists of a repeating structure having —SiH 2 —NH—] as a basic unit. The polysilazane-based material is allowed to stand at room temperature or subjected to a baking treatment to undergo a crosslinking / polymerization reaction to turn into a ceramic, and to form a thin film on the outer surface of the substrate. At this time, since the volume shrinks and densifies, what is on the opening is fixed to the peripheral edge or the inner peripheral surface of the opening, so that a coating covering the outer surface is formed without closing the opening.

ここで、好適には、前記被膜付き多孔質体は、前記基材の外表面に前記ポリシラザン系材料を塗布し、1300〜1500(℃)の範囲内の温度で焼成処理を施すことにより前記多数の細孔を閉塞することなく前記基材の外表面を覆うセラミックスから成る被膜を前記ポリシラザン系材料から生成したものである。架橋・重合反応を十分に促進するためには焼成温度を1300(℃)以上にする必要があり、基材の気孔率を保つためには焼成温度を1500(℃)以下にする必要がある。 Here, preferably, the film with the porous body, the polysilazane-based material is applied to the outer surface of the base material, the number by performing a baking process at a temperature in the range of 1300 to 1500 (° C.) A film made of a ceramic covering the outer surface of the base material without closing the pores is generated from the polysilazane material. In order to sufficiently accelerate the crosslinking / polymerization reaction, the firing temperature needs to be 1300 (° C.) or higher, and in order to maintain the porosity of the substrate, the firing temperature needs to be 1500 (° C.) or lower.

また、好適には、前記被膜付き多孔質体は、セラミックスから成る他の部材が金属ロウ材を介して接合された接合体である。このようにすれば、その接合時における基材の分解が被膜によって抑制されることから、分解生成物が外表面に生成されないので、この接合体の外表面には後工程で膜を容易に形成できる。 Also, preferably, the film with the porous body is a conjugate other parts material made of ceramics is bonded via a metal brazing material. Thus, since the degradation of the substrate during the bonding it is suppressed by coating, because the decomposition products are not generated on the outer surface, easily forming a film in a later step on the outer surface of the joint body it can.

また、好適には、前記ポリシラザン系材料は、オルガノポリシラザンまたはペルヒドロポリシラザンである。ポリシラザン系材料は適宜の組成を有するものを用いることができるが、例えば、オルガノポリシラザンやペルヒドロポリシラザンが好適に用いられる Preferably, the polysilazane material is organopolysilazane or perhydropolysilazane. Although port Rishirazan based material can be used having the composition as appropriate, for example, organopolysilazane and perhydropolysilazane is preferably used.

なお、本発明の被膜付き多孔質体は、アルミナ(Al2O3)等の酸化物系セラミックス、窒化珪素(Si3N4)等の非酸化物系セラミックスを問わず適用可能であるが、酸化物系セラミックスに比較して高温に曝された場合に分解し易い非酸化物系セラミックスに適用した場合に、特に顕著な効果が得られる。発明が適用される非酸化物系セラミックスとしては、上記窒化珪素の他に、サイアロン(SiAlON)、炭化珪素(SiC)、窒化アルミニウム(AlN)等が挙げられる。 The coated porous body of the present invention can be applied to any oxide ceramics such as alumina (Al 2 O 3 ) and non-oxide ceramics such as silicon nitride (Si 3 N 4 ). When applied to non-oxide ceramics that are easily decomposed when exposed to high temperatures compared to oxide ceramics, a particularly remarkable effect is obtained. Examples of non-oxide ceramics to which the present invention is applied include sialon (SiAlON), silicon carbide (SiC), aluminum nitride (AlN) and the like in addition to the above silicon nitride.

また、好適には、前記基材および前記被膜はそれぞれ窒化珪素から成るものである。ポリシラザン系材料から生成される被膜の組成は、架橋・重合反応する際の雰囲気で異なるもので、酸化雰囲気では例えばシリカが生成され、窒素雰囲気やアンモニア雰囲気などでは窒化珪素が生成される。窒化珪素から成る基材はガス分離膜の支持体として好適であるが、熱膨張量の相違に起因する破損を防止する等の観点から、被膜は基材と同一材料や同一系材料で構成されていることが好ましい。そのため、基材が窒化珪素から成る場合には、被膜も窒化珪素から成ることが好ましい。   Preferably, the substrate and the coating are each made of silicon nitride. The composition of the coating produced from the polysilazane-based material differs depending on the atmosphere during the crosslinking / polymerization reaction. For example, silica is produced in an oxidizing atmosphere, and silicon nitride is produced in a nitrogen atmosphere or an ammonia atmosphere. A substrate made of silicon nitride is suitable as a support for the gas separation membrane, but the coating is made of the same material or the same system material as the substrate from the viewpoint of preventing breakage due to differences in the amount of thermal expansion. It is preferable. Therefore, when the substrate is made of silicon nitride, the coating is preferably made of silicon nitride.

また、好適には、前記多数の細孔の細孔径は0.01〜10(μm)の範囲内である。このようにすれば、前記被膜付き多孔質体をガス分離膜の支持体として好適に用い得る。支持体に要求される機械的強度を確保するために必要な厚みを考慮すると、細孔径が0.01(μm)未満では通気性が著しく低くなるので分離性能が得られない。一方、細孔径が10(μm)を超えると外表面に形成する分離膜に欠陥が生じ易くなる。   Preferably, the pore diameter of the large number of pores is within a range of 0.01 to 10 (μm). If it does in this way, the said porous body with a film can be used suitably as a support body of a gas separation membrane. Considering the thickness required to ensure the mechanical strength required for the support, if the pore diameter is less than 0.01 (μm), the air permeability is remarkably lowered, so that the separation performance cannot be obtained. On the other hand, when the pore diameter exceeds 10 (μm), defects tend to occur in the separation membrane formed on the outer surface.

また、前記他の部材の材質は特に限定されず、酸化物系セラミックスにも非酸化物系セラミックスにも適用される。但し、基材、被膜、他の部材、およびロウ材の材質は、高い接合強度が得られるように、熱膨張率や接合性等を考慮して定めることが好ましい。例えば、基材として珪素系セラミックスが用いられる場合には、被膜や他の部材も珪素系セラミックスで構成することが好ましく、また、ロウ材としては珪素系ロウ材を用いることが好ましい。このようにすれば、接合時に珪素やセラミックスの他の構成元素が相互に拡散することによって基材と他の部材とがロウ材を介して一体化するので、構成部材が高い接合強度を以て一体化させられた複雑な構造の接合体を得ることができる。 The material of the prior SL other member is not particularly limited, also applies to non-oxide ceramics to oxide ceramics. However, the material of the base material, the coating film, the other members, and the brazing material is preferably determined in consideration of the coefficient of thermal expansion and the bonding property so that high bonding strength can be obtained. For example, when silicon-based ceramics are used as the substrate, it is preferable that the coating film and other members are also composed of silicon-based ceramics, and it is preferable to use a silicon-based brazing material as the brazing material. In this way, since the base material and the other member are integrated through the brazing material by diffusion of other constituent elements of silicon and ceramics to each other during joining, the constituent members are integrated with high joint strength. A joined body having a complicated structure can be obtained.

また、上記のように各構成部材が珪素系セラミックスである場合において、前記ロウ材は重量比で9:1のSi-Al合金ロウを用いることが好ましく、前記被膜付き多孔質体と前記他の部材との接合は100(Pa)以下の雰囲気中で1400(℃)に加熱して行うことが好ましい。珪素は高融点であることから、単独でロウ材として用いることは困難であるが、それよりも低融点で珪素と共晶(共融混合物とも言う)を作るアルミニウムを混合すると、その混合割合に応じてロウ材の融点が低下する。混合量が多くなるほど融点が低くなるため、接合体の耐熱性を確保するためにはアルミニウムの混合量が少ない方が好ましいが、珪素系セラミックスの分解や変形を抑制するためには、アルミニウムの混合量を十分に多くして接合時の処理温度を1400(℃)以下に留めることが好ましい。上記重量比は、これらの兼ね合いを考慮して、加熱処理温度が1400(℃)になるように定められたものである。また、接合処理時の珪素系セラミックスの分解やロウ材の酸化等を抑制するためには、可及的に真空度が高いことが望ましく、少なくとも100(Pa)以下が好ましい。因みに、珪素およびアルミニウムは酸化し易いことから、加熱雰囲気中の真空度が低いとロウ材が溶けにくくなる。   Further, in the case where each constituent member is a silicon-based ceramic as described above, it is preferable that the brazing material is a Si—Al alloy brazing material having a weight ratio of 9: 1. The joining with the member is preferably performed by heating to 1400 (° C.) in an atmosphere of 100 (Pa) or less. Since silicon has a high melting point, it is difficult to use it alone as a brazing material, but when aluminum that forms a eutectic (also called eutectic mixture) with silicon at a lower melting point is mixed, the mixing ratio is increased. Accordingly, the melting point of the brazing material is lowered. Since the melting point becomes lower as the mixing amount increases, it is preferable that the aluminum mixing amount is small in order to ensure the heat resistance of the joined body. However, in order to suppress the decomposition and deformation of the silicon-based ceramics, the mixing of aluminum is preferable. It is preferable to keep the treatment temperature during bonding to 1400 (° C.) or less by increasing the amount sufficiently. The weight ratio is determined so that the heat treatment temperature is 1400 (° C.) in consideration of these balances. In order to suppress decomposition of the silicon-based ceramics and oxidation of the brazing material during the bonding process, it is desirable that the degree of vacuum is as high as possible, and at least 100 (Pa) or less is preferable. Incidentally, since silicon and aluminum are easily oxidized, the brazing material becomes difficult to melt if the degree of vacuum in the heating atmosphere is low.

なお、上記のように珪素系セラミックスをSi-Al合金ロウで接合するに際して、基材と他の部材とを気密に接合するためには、100(Pa)以下の高真空下において、ロウ材をその融点よりも10〜50(℃)だけ高い温度で加熱することが好ましい。例えば、前記のような9:1のSi-Al合金ロウを用いる場合には、処理温度が1400〜1450(℃)になるが、基材が窒化珪素から成る場合にはこの温度では分解し易い問題がある。理論的にも、窒化珪素の標準生成自由エネルギーと温度との関係から、1400(℃)では100(Pa)以下で容易に分解する。特に、多孔質材料の場合には、表面積が大きいことから一層分解し易くなる。   In addition, when joining the silicon-based ceramics with the Si-Al alloy brazing as described above, in order to airtightly join the base material and other members, the brazing material is used under a high vacuum of 100 (Pa) or less. It is preferable to heat at a temperature 10-50 (° C.) higher than the melting point. For example, when the 9: 1 Si—Al alloy brazing as described above is used, the processing temperature is 1400 to 1450 (° C.). However, when the substrate is made of silicon nitride, it is easily decomposed at this temperature. There's a problem. Theoretically, due to the relationship between the standard free energy of formation of silicon nitride and the temperature, 1400 (° C.) easily decomposes at 100 (Pa) or less. In particular, in the case of a porous material, since the surface area is large, it becomes easier to decompose.

また、好適には、前記被膜付き多孔質体は、(a)前記基材の外表面に前記ポリシラザン系材料を塗布する塗布工程と、(b)1300〜1500(℃)の範囲内の温度で焼成処理を施すことにより前記多数の細孔を閉塞することなく前記外表面を覆うセラミックスから成る被膜を前記ポリシラザン系材料から生成する焼成工程とを、含む各工程により製造される。
また、好適には、上記製造方法は、前記塗布工程の後に、ポリシラザン系材料が塗布された基材を非酸化性雰囲気下で乾燥する乾燥工程と、その乾燥後に非酸化性雰囲気下で前記焼成工程よりも低温で熱処理を施す予備熱処理工程とを含み、前記焼成工程は、その予備熱処理工程の後に実施されるものである。塗布工程の後に焼成工程を直ちに或いは乾燥工程を施しただけで実施すると、ポリシラザン系材料から生成された被膜に亀裂等の欠陥が生じる場合があるが、上記のように予備熱処理工程を入れることにより、欠陥の発生を抑制できる。上記乾燥工程は例えば窒素雰囲気下において室温で実施され、上記予備熱処理工程は例えばアンモニア雰囲気下において600〜800(℃)の範囲内の温度、例えば650(℃)で実施される。
Preferably, the porous body with a coating comprises: (a) an application step of applying the polysilazane material to the outer surface of the substrate; and (b) a temperature within a range of 1300 to 1500 (° C.). It is manufactured by each process including a baking process in which a coating film made of ceramics covering the outer surface is formed from the polysilazane-based material without blocking the numerous pores by performing a baking process.
Preferably, the manufacturing method includes a drying step of drying the substrate coated with the polysilazane-based material in a non-oxidizing atmosphere after the coating step, and the baking in the non-oxidizing atmosphere after the drying. Including a preliminary heat treatment step in which heat treatment is performed at a lower temperature than the step, and the firing step is performed after the preliminary heat treatment step. If the baking process is carried out immediately after the coating process or just by performing the drying process, defects such as cracks may occur in the coating produced from the polysilazane-based material, but by applying the preliminary heat treatment process as described above The occurrence of defects can be suppressed. The drying step is performed, for example, at room temperature under a nitrogen atmosphere, and the preliminary heat treatment step is performed, for example, at a temperature within the range of 600 to 800 (° C.), for example, 650 (° C.), under an ammonia atmosphere.

また、好適には、前記予備熱処理工程の後に、その予備熱処理でポリシラザン系材料から生成された膜の上にポリシラザン系材料を塗布する第2塗布工程と、これに非酸化性雰囲気で乾燥処理を施す第2乾燥工程と、その乾燥後に非酸化性雰囲気下で前記焼成工程と前記予備熱処理工程の中間の温度で熱処理を施す第2予備熱処理工程とが実施され、前記焼成工程は、その第2予備熱処理工程の後に実施されるものである。このように塗布および予備熱処理を繰り返すことにより、被膜に欠陥が生ずる可能性を減じることができ、また、その膜厚を容易に制御できる。すなわち、必要とされる保護性能に応じて、被膜を適度な膜厚で設けることができる。上記第2乾燥工程は例えば窒素雰囲気下において室温で実施され、上記第2予備熱処理工程は例えばアンモニア雰囲気下において800〜950(℃)の範囲内の温度、例えば950(℃)で実施される。   Preferably, after the preliminary heat treatment step, a second coating step of coating the polysilazane material on the film generated from the polysilazane material by the preliminary heat treatment, and a drying treatment in a non-oxidizing atmosphere are applied thereto. A second drying step to be applied, and a second preliminary heat treatment step in which heat treatment is performed at a temperature intermediate between the baking step and the preliminary heat treatment step in a non-oxidizing atmosphere after the drying. This is performed after the preliminary heat treatment step. By repeating the coating and preliminary heat treatment in this manner, the possibility of defects in the coating can be reduced, and the film thickness can be easily controlled. That is, the coating can be provided with an appropriate film thickness according to the required protection performance. The second drying step is performed, for example, at room temperature under a nitrogen atmosphere, and the second preliminary heat treatment step is performed, for example, at a temperature within a range of 800 to 950 (° C.), for example, 950 (° C.), under an ammonia atmosphere.

また、好適には、前記焼成工程は窒素雰囲気で実施される。このようにすれば、基材の表面に窒化珪素から成る被膜が形成される。なお、例えば基材が窒化珪素から成る場合には被膜を同系材料で構成するために窒素雰囲気とすることが好ましい。例えば、前述したように、焼成工程が窒素雰囲気で行われる場合には、前記予備熱処理工程や第2予備熱処理工程は前述したアンモニア雰囲気等の非酸化雰囲気で行われることが好ましい。   Preferably, the firing step is performed in a nitrogen atmosphere. In this way, a film made of silicon nitride is formed on the surface of the substrate. For example, when the base material is made of silicon nitride, it is preferable to use a nitrogen atmosphere in order to form the coating film with a similar material. For example, as described above, when the firing step is performed in a nitrogen atmosphere, the preliminary heat treatment step and the second preliminary heat treatment step are preferably performed in a non-oxidizing atmosphere such as the ammonia atmosphere described above.

また、好適には、前記塗布工程は前記ポリシラザン系材料を適宜の溶剤で希釈してその溶液に前記基材を浸すものである。このようにすれば、基材の表面にポリシラザン系材料を容易に塗布することができる。 Preferably, in the coating step, the polysilazane material is diluted with an appropriate solvent and the substrate is immersed in the solution. In this way, the polysilazane material can be easily applied to the surface of the substrate.

本発明の被膜付き多孔質体の一実施例の支持体の全体を示す斜視図である。It is a perspective view which shows the whole support body of one Example of the porous body with a film of this invention. 図1の支持体の断面構造を説明する図であって、(a)は長手方向における一部分を示したもの、(b)は(a)のb部を拡大して模式的に示したものである。It is a figure explaining the cross-sectional structure of the support body of FIG. 1, Comprising: (a) showed the part in a longitudinal direction, (b) expanded and showed the b part of (a) typically. is there. 図2(b)の断面の表面近傍を拡大して示す図である。It is a figure which expands and shows the surface vicinity of the cross section of FIG.2 (b). 図1の支持体の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the support body of FIG. 複数本の図1の支持体をエンドキャップと接合した接合体の全体を示す斜視図である。It is a perspective view which shows the whole joining body which joined the support body of FIG. 1 of multiple pieces with the end cap. 図5の接合体の断面構造を説明する図である。It is a figure explaining the cross-sectional structure of the conjugate | zygote of FIG. 被膜を設けていない基材表面の電子顕微鏡写真である。It is an electron micrograph of the base-material surface which has not provided the film. 図7の基材表面のXRDチャートである。It is an XRD chart of the base-material surface of FIG. 被膜を設けた支持体表面の電子顕微鏡写真である。It is an electron micrograph of the support surface which provided the film. 図9の支持体に高温・高真空処理を施した後の表面の電子顕微鏡写真である。10 is an electron micrograph of the surface after the support of FIG. 9 has been subjected to high temperature and high vacuum treatment. 図10の支持体表面のXRDチャートである。It is a XRD chart of the support surface of FIG. 図7の基材に高温・高真空処理を施した後の表面の電子顕微鏡写真である。It is an electron micrograph of the surface after giving the high temperature and high vacuum process to the base material of FIG. 図12の基材表面のXRDチャートである。FIG. 13 is an XRD chart of the substrate surface in FIG. 12.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の被膜付き多孔質体の一実施例である支持体10の全体を示す斜視図である。この支持体10は有底円筒状を成す多孔質体で、例えば、外径が12(mm)程度、内径が9(mm)程度、長さ寸法が500(mm)程度の大きさを備えている。   FIG. 1 is a perspective view showing the entire support 10 which is an embodiment of the coated porous body of the present invention. The support 10 is a porous body having a bottomed cylindrical shape, and has, for example, an outer diameter of about 12 (mm), an inner diameter of about 9 (mm), and a length dimension of about 500 (mm). Yes.

図2(a)、(b)に断面構造を模式的に示すように、上記の支持体10は、多孔質セラミックスから成る基材12の外周面にこれを覆う緻密質セラミックスから成る被膜14が設けられたものである。基材12は、内周側に位置する厚さ寸法が1.5(mm)程度の内層16と、その内層16の表面18を覆う厚さ寸法が20〜50(μm)程度の外層20とを備えている。上記被膜14は、この外層20よりも極めて薄い200(nm)程度の膜厚で設けられている。   As schematically shown in the cross-sectional structure in FIGS. 2A and 2B, the support 10 has a coating 14 made of a dense ceramic covering the outer peripheral surface of a substrate 12 made of a porous ceramic. It is provided. The base material 12 includes an inner layer 16 having a thickness dimension of about 1.5 (mm) located on the inner peripheral side, and an outer layer 20 having a thickness dimension of about 20 to 50 (μm) covering the surface 18 of the inner layer 16. ing. The coating 14 is provided with a film thickness of about 200 (nm) which is much thinner than the outer layer 20.

上記の内層16は、例えば細孔径が1.0(μm)以上で気孔率が30〜38(%)程度の多孔質体である。また、外層20は、例えば細孔径が0.3(μm)以下で気孔率が42〜50(%)程度の多孔質体である。すなわち、外層20は、内層16に比べて細孔径が小さく且つ気孔率が高くなっている。これら内層16および外層20は、何れも焼結助剤としてアルミナおよびイットリアを含む窒化珪素で構成されている。また、前記被膜14も同様な窒化珪素から成るものであり、支持体10は全体が窒化珪素で構成されている。   The inner layer 16 is a porous body having a pore diameter of 1.0 (μm) or more and a porosity of about 30 to 38 (%), for example. The outer layer 20 is a porous body having a pore diameter of 0.3 (μm) or less and a porosity of about 42 to 50 (%), for example. That is, the outer layer 20 has a smaller pore diameter and a higher porosity than the inner layer 16. Both the inner layer 16 and the outer layer 20 are made of silicon nitride containing alumina and yttria as sintering aids. The coating 14 is also made of similar silicon nitride, and the support 10 is entirely made of silicon nitride.

図3は、上記外層20の表面22近傍を拡大して模式的に示した断面図である。外層20には、表面22に開口する多数の細孔24が備えられている。前記図2(b)に示す内層16にも内周面26に開口する図示しない多数の細孔が備えられており、上記細孔24はその内層16の細孔に連通している。そのため、基材12には、その内外周面22,26間を貫通する多数の細孔が備えられている。   FIG. 3 is a cross-sectional view schematically showing an enlarged vicinity of the surface 22 of the outer layer 20. The outer layer 20 is provided with a large number of pores 24 that open to the surface 22. The inner layer 16 shown in FIG. 2B is also provided with a large number of pores (not shown) that open to the inner peripheral surface 26, and the pores 24 communicate with the pores of the inner layer 16. Therefore, the base material 12 is provided with a large number of pores penetrating between the inner and outer peripheral surfaces 22 and 26.

なお、前記図2(b)では、基材12の表面全体が被膜14で完全に覆われているように描かれているが、これは被膜14が表面全体に設けられている状態を模式的に表したものである。実際の膜形成状況は、前記図3に示される通りで、被膜14は、外層20の表面22と、その表面22に開口する前記細孔24の内壁面28のうち表面22近傍の部分に、それら表面22および内壁面28に沿って形成されている。被膜14は、気孔率が略0(%)の緻密質に構成されているが、上記のように内壁面28等に沿って薄い膜厚で形成されていることから、細孔24は閉塞されていない。また、このように被膜14が外層20の表面22の凹凸に沿って形成されていることから、少なくともその表面22近傍ではその外層20が露出していない。   In FIG. 2 (b), the entire surface of the substrate 12 is drawn so as to be completely covered with the coating 14, but this is a typical state in which the coating 14 is provided on the entire surface. It is shown in The actual film formation state is as shown in FIG. 3, and the coating 14 is formed on the surface 22 of the outer layer 20 and the inner wall 28 of the pore 24 that opens to the surface 22 in the vicinity of the surface 22. They are formed along the surface 22 and the inner wall surface 28. The coating 14 is dense with a porosity of approximately 0 (%). However, since the coating 14 is formed with a thin film thickness along the inner wall surface 28 and the like, the pores 24 are blocked. Not. Further, since the coating film 14 is formed along the irregularities of the surface 22 of the outer layer 20 as described above, the outer layer 20 is not exposed at least in the vicinity of the surface 22.

因みに、上記基材12の水素ガス透過速度を被膜14の形成前後で比較したところ、被膜14の形成前では5×10-6〜9×10-6(mol/m2/Pa/s)程度であったのに対し、形成後は5×10-7〜7×10-7(mol/m2/Pa/s)程度であった。細孔24の内壁面28に被膜14が形成されることによって細孔径がやや縮小されるものの、形成後にも十分に高い水素ガス透過速度に保たれることが確かめられた。 Incidentally, when the hydrogen gas permeation rate of the base material 12 was compared before and after the formation of the coating film 14, before the formation of the coating film 14, it was about 5 × 10 −6 to 9 × 10 −6 (mol / m 2 / Pa / s). On the other hand, after the formation, it was about 5 × 10 −7 to 7 × 10 −7 (mol / m 2 / Pa / s). Although the pore diameter was slightly reduced by forming the coating film 14 on the inner wall surface 28 of the pore 24, it was confirmed that a sufficiently high hydrogen gas permeation rate was maintained after the formation.

図4は、前記支持体10の製造方法すなわち基材12に被膜14を形成する方法を説明するための工程図である。図4において、ディッピング工程P1では、前記特性を備えた多孔質の窒化珪素製有底円筒から成る基材12を用意し、これをポリシラザン溶液に浸す。ポリシラザン溶液は、例えばチッソ社製ペルヒドロポリシラザン(製品番号:NCP100H)をトルエン等の溶剤で30(%)程度に希釈して調製した。なお、含浸時間は例えば10秒程度であり、これにより、基材12の表層部にポリシラザン溶液が浸透する。   FIG. 4 is a process diagram for explaining a method of manufacturing the support 10, that is, a method of forming the coating film 14 on the substrate 12. In FIG. 4, in the dipping step P1, a base material 12 made of a porous silicon nitride bottomed cylinder having the above-mentioned characteristics is prepared and immersed in a polysilazane solution. The polysilazane solution was prepared, for example, by diluting perhydropolysilazane (product number: NCP100H) manufactured by Chisso Corporation to about 30% with a solvent such as toluene. The impregnation time is about 10 seconds, for example, and the polysilazane solution penetrates into the surface layer portion of the substrate 12.

次いで、乾燥工程P2では、ポリシラザン溶液から取り出した基材12をグローブボックスに入れ、例えば窒素雰囲気中で室温で3時間程度放置することにより、乾燥処理を施す。ポリシラザンは室温でも架橋・重合反応が生じやすいため、この乾燥工程P2においても空気中で放置すると、後の工程で窒化処理することが困難になる。   Next, in the drying step P2, the base material 12 taken out from the polysilazane solution is placed in a glove box, and left for about 3 hours at room temperature in a nitrogen atmosphere, for example, to perform a drying process. Since polysilazane easily undergoes crosslinking and polymerization reaction even at room temperature, if it is left in the air in this drying step P2, it will be difficult to perform nitriding in a later step.

次いで、アンモニア焼成工程P3では、グローブボックスから取り出した基材12に、例えば3N以上の高純度のアンモニア雰囲気中において、例えば650(℃)で焼成処理を施す。これにより、溶液中の有機溶媒が焼失させられると共に、ポリシラザンが架橋・重合反応して窒化珪素から成る膜が形成される。なお、ピーク温度での保持時間は例えば1時間程度である。   Next, in the ammonia firing step P3, the base material 12 taken out from the glove box is subjected to a firing treatment at, for example, 650 (° C.) in a high purity ammonia atmosphere of, for example, 3N or more. As a result, the organic solvent in the solution is burned out, and polysilazane is crosslinked and polymerized to form a film made of silicon nitride. The holding time at the peak temperature is, for example, about 1 hour.

次いで、ディッピング工程P4では、前記ディッピング工程P1と同様に、ポリシラザン溶液に基材12を浸し、上記各工程で生成された膜上にポリシラザンを塗布する。なお、この工程では、ポリシラザン溶液の濃度を10(%)としたが、他の条件はディッピング工程P1と同一である。これにより、ポリシラザンから生成された膜の上に工程P1よりも薄いポリシラザン膜が形成される。   Next, in the dipping step P4, as in the dipping step P1, the substrate 12 is immersed in a polysilazane solution, and polysilazane is applied on the film generated in each of the above steps. In this step, the concentration of the polysilazane solution is 10 (%), but other conditions are the same as those in the dipping step P1. As a result, a polysilazane film thinner than the process P1 is formed on the film generated from polysilazane.

次いで、乾燥工程P5およびアンモニア焼成工程P6では、前記乾燥工程P2と同様にして乾燥処理を施した後、アンモニア雰囲気で焼成処理を施す。焼成処理条件は、ピーク温度を950(℃)とする他は前記アンモニア焼成工程P3と同一である。これにより、前記窒化珪素膜の表面に窒化珪素膜が積層形成される。   Next, in the drying step P5 and the ammonia firing step P6, the drying treatment is performed in the same manner as the drying step P2, and then the firing treatment is performed in an ammonia atmosphere. The firing conditions are the same as in the ammonia firing step P3 except that the peak temperature is 950 (° C.). Thereby, a silicon nitride film is laminated on the surface of the silicon nitride film.

なお、上記のディッピング工程P4〜アンモニア焼成工程P6は、窒化珪素膜が基材12の表面に欠陥無く形成されるように、念のために行われるもので、欠陥が生じなければ2回目の膜形成工程は無用である。また、2回の工程でも欠陥が生じ得る場合には、上記工程P4〜P6を必要なだけ繰り返すことができる。   The dipping step P4 to the ammonia baking step P6 are performed as a precaution so that the silicon nitride film is formed on the surface of the substrate 12 without any defects. If no defects occur, the second film is formed. The forming process is unnecessary. Moreover, when a defect can occur even in two steps, the steps P4 to P6 can be repeated as necessary.

次いで、窒化処理工程P7では、上記の窒化珪素膜が形成された基材12に、例えば3N以上の高純度窒素雰囲気中で例えば1400(℃)で焼成処理を施す。ピーク温度での保持時間は例えば1時間程度である。このように窒素雰囲気中で加熱することにより、前記工程P1〜P6で形成された窒化珪素膜が完全に窒化されると共に、緻密化させられて前記被膜14が得られる。すなわち、前記支持体10が得られる。   Next, in the nitriding treatment step P7, the base material 12 on which the silicon nitride film is formed is subjected to a firing treatment at 1400 (° C.), for example, in a high purity nitrogen atmosphere of 3N or more. The holding time at the peak temperature is, for example, about 1 hour. By thus heating in a nitrogen atmosphere, the silicon nitride film formed in the steps P1 to P6 is completely nitrided and densified to obtain the coating film 14. That is, the support 10 is obtained.

上記のようにして被膜14を形成した支持体10の利用態様の一例である接合体30を図5に示す。この接合体30は、例えば7本の支持体10を用意して、それらの開放端部を別途製造した円板状のエンドキャップ32に接合して一体化させたもので、支持体10の表面にはガス分離膜として機能する多孔質膜などが接合後に設けられる。これにより、多孔質膜の外周面と支持体10の内周面との間をその多孔質膜の細孔径に応じた特定の気体が選択的に透過可能となるので、混合気体から特定の気体を分離するためのガス分離膜モジュールが得られる。例えば水素分離に利用する場合には、0.5(nm)程度の細孔径を有する多孔質膜を設ければよい。   FIG. 5 shows a joined body 30 which is an example of a utilization mode of the support 10 on which the coating 14 is formed as described above. The joined body 30 is prepared by, for example, preparing seven support bodies 10 and joining them to a disc-shaped end cap 32 which is separately manufactured, and integrating them. Is provided with a porous membrane functioning as a gas separation membrane after bonding. Thereby, since the specific gas according to the pore diameter of the porous film can selectively permeate between the outer peripheral surface of the porous film and the inner peripheral surface of the support 10, the specific gas is changed from the mixed gas. A gas separation membrane module for separating the gas is obtained. For example, when used for hydrogen separation, a porous membrane having a pore diameter of about 0.5 (nm) may be provided.

図6は、上記の接合体30の支持体10の長手方向に沿った断面を表した断面図である。エンドキャップ32は、例えば緻密質の窒化珪素から成るもので、厚み方向に貫通する7個の段付き孔34を備えている。その段付き孔34には、その大径側から前記支持体10の開放端部が挿入され、小径側の環状突部36に突き当てられた状態でロウ材38によって気密に固着されている。ロウ材38は、例えば90(重量%)程度のSiと10(重量%)程度のAlとから成るものである。   FIG. 6 is a cross-sectional view showing a cross section of the bonded body 30 along the longitudinal direction of the support 10. The end cap 32 is made of, for example, dense silicon nitride, and includes seven stepped holes 34 penetrating in the thickness direction. An open end of the support 10 is inserted into the stepped hole 34 from the large diameter side, and is airtightly fixed by a brazing material 38 in a state of being abutted against the annular protrusion 36 on the small diameter side. The brazing material 38 is made of, for example, about 90 (wt%) Si and about 10 (wt%) Al.

このように構成された接合体30の支持体10に多孔質膜を設けたガス分離膜モジュールによれば、例えばその支持体10の外周から混合気体を供給すると、多孔質膜の細孔径よりも十分に小さい動径を有する気体は、その周壁40を透過して支持体10内に流入し、その開放端を経由してエンドキャップ32の段付き孔34の小径部から流出させられる。したがって、ガス分離膜モジュールを気密容器内に配置し、そのエンドキャップ32の段付き孔34をその気密容器外部に接続すれば、気密容器内に供給した混合気体から所望の気体を分離して回収することができる。なお、混合気体の供給側と分離気体の回収側とは、上記とは反対に構成されていても差し支えない。   According to the gas separation membrane module in which the porous membrane is provided on the support 10 of the bonded body 30 configured as described above, for example, when a mixed gas is supplied from the outer periphery of the support 10, the pore diameter of the porous membrane is larger than that of the porous membrane. A gas having a sufficiently small moving diameter passes through the peripheral wall 40 and flows into the support 10, and flows out from the small diameter portion of the stepped hole 34 of the end cap 32 through the open end. Therefore, if the gas separation membrane module is disposed in the airtight container and the stepped hole 34 of the end cap 32 is connected to the outside of the airtight container, the desired gas is separated and recovered from the mixed gas supplied into the airtight container. can do. Note that the mixed gas supply side and the separation gas recovery side may be configured oppositely to the above.

ところで、上記の支持体10とエンドキャップ32との接合は、例えば以下のようにして行われる。まず、ロウ材38を構成するためのSi粉末とAl粉末との混合粉末に、バインダーおよび溶剤を添加してロウ材ペーストを調製する。Si粉末としては例えば平均粒径が15(μm)程度のもの等が用いられ、Al粉末としては例えば平均粒径が18(μm)程度のもの等が用いられる。また、バインダーは例えばアクリル樹脂、溶剤は例えばターピネオールである。ペーストを調製するに際しては、Si粉末およびAl粉末の混合粉末をバインダーと混合し、溶剤を加えて粘性を調節した。   By the way, joining of said support body 10 and end cap 32 is performed as follows, for example. First, a binder and a solvent are added to a mixed powder of Si powder and Al powder for constituting the brazing material 38 to prepare a brazing material paste. As the Si powder, for example, an average particle diameter of about 15 (μm) is used, and as the Al powder, for example, an average particle diameter of about 18 (μm) is used. The binder is, for example, an acrylic resin, and the solvent is, for example, terpineol. In preparing the paste, a mixed powder of Si powder and Al powder was mixed with a binder, and a solvent was added to adjust the viscosity.

次いで、エンドキャップ32および支持体10に上記のペーストを塗布して、前記図5、図6に示されるように支持体10とエンドキャップ32とを組み付ける。次いで、例えば1400(℃)、0.1(Pa)で1時間程度の加熱処理を施すことにより、ペースト中のバインダーおよび溶剤が焼失させられる共に混合粉末が溶融させられ、生成されたロウ材38によってエンドキャップ32と支持体10とが接合される。なお、上記加熱処理温度は、混合粉末の融点が1375(℃)程度であることから、これよりも十分に高い温度に定められている。   Next, the paste is applied to the end cap 32 and the support 10, and the support 10 and the end cap 32 are assembled as shown in FIGS. 5 and 6. Next, for example, by performing a heat treatment at 1400 (° C.) and 0.1 (Pa) for about 1 hour, the binder and the solvent in the paste are burned off, and the mixed powder is melted, and the produced brazing material 38 ends. The cap 32 and the support body 10 are joined. The heat treatment temperature is set to a temperature sufficiently higher than this because the melting point of the mixed powder is about 1375 (° C.).

また、多孔質膜の形成は、例えば、以下のようにして行われる。まず、ポリシラザンをトルエン等の適宜の有機溶剤で希釈して製膜用溶液を調製する。溶液の濃度は形成しようとする膜厚に応じて適宜定められるが、例えば50〜60(wt%)程度である。次いで、この製膜用溶液に前記支持体10を浸して、その表面に溶液を付着させ、例えば室温〜100(℃)で乾燥する。浸漬時間は溶液の粘度や組成等に応じて適宜定められるが、例えば5〜10秒程度でよい。なお、上記のような塗布方法に代えて、スピンコート法、スプレー法、転写法等の公知の種々の方法も用い得る。塗布回数は所望の膜厚が得られるように定められるものであり、1回または2回以上である。次いで、例えば、アンモニア雰囲気中において650(℃)で焼成処理を施すことにより、有機溶媒が焼失させられると共に、架橋・重合反応によりポリシラザンから窒化珪素膜が生成される。   Moreover, formation of a porous membrane is performed as follows, for example. First, polysilazane is diluted with an appropriate organic solvent such as toluene to prepare a film forming solution. The concentration of the solution is appropriately determined according to the film thickness to be formed, and is, for example, about 50 to 60 (wt%). Next, the support 10 is immersed in the film-forming solution, and the solution is adhered to the surface of the support 10 and dried at, for example, room temperature to 100 (° C.). The immersion time is appropriately determined according to the viscosity, composition, etc. of the solution, and may be, for example, about 5 to 10 seconds. Note that various known methods such as a spin coating method, a spray method, and a transfer method may be used instead of the coating method as described above. The number of coatings is determined so as to obtain a desired film thickness, and is once or twice or more. Next, for example, by performing a baking process at 650 (° C.) in an ammonia atmosphere, the organic solvent is burned out, and a silicon nitride film is formed from polysilazane by a crosslinking / polymerization reaction.

上述したように、本実施例の支持体10は、エンドキャップ32と接合され、更に、多孔質膜が設けられて用いられる。接合の際には、前述したように1400(℃)、0.1(Pa)の高温・高真空で処理されるが、基材12は分解することなく表面状態も概ね初期のままに保たれる。また、その結果、接合後の多孔質膜形成において、その多孔質膜が支持体10にむら無く強固に固着されるので、分離性能の高い分離膜モジュールが得られる。   As described above, the support 10 of this embodiment is used by being joined to the end cap 32 and further provided with a porous membrane. As described above, the bonding is performed at a high temperature and high vacuum of 1400 (° C.) and 0.1 (Pa), as described above. However, the substrate 12 is kept in a substantially initial state without being decomposed. As a result, in forming the porous membrane after joining, the porous membrane is firmly fixed to the support 10 without unevenness, so that a separation membrane module with high separation performance can be obtained.

ここで、前記被膜14の有無による支持体10および基材12の耐熱性の相違を評価した試験結果について説明する。図7は、前記被膜14を設けていない基材12表面の電子顕微鏡写真、図8は、その表面のXRDチャートである。このXRDチャートの下には、窒化珪素(Si3N4)のピーク位置が示されている。基材12表面には、微粉窒化珪素原料に由来する微細且つ一様な大きさの結晶が並んでおり、比較的平滑な表面性状を有する。また、XRDチャートによれば、この基材12表面からは窒化珪素のピークのみが認められる。なお、焼結助剤として含まれているアルミナやイットリアは微量であるため観察できる程度に顕著なピークは生じていない。 Here, the test result which evaluated the difference in the heat resistance of the support body 10 and the base material 12 by the presence or absence of the said film | membrane 14 is demonstrated. FIG. 7 is an electron micrograph of the surface of the substrate 12 on which the coating film 14 is not provided, and FIG. 8 is an XRD chart of the surface. Below this XRD chart, the peak position of silicon nitride (Si 3 N 4 ) is shown. On the surface of the base material 12, fine and uniform crystals derived from the finely divided silicon nitride raw material are arranged and have a relatively smooth surface property. Further, according to the XRD chart, only the silicon nitride peak is recognized from the surface of the base material 12. In addition, since the alumina and yttria contained as a sintering aid are trace amounts, a remarkable peak is not generated to the extent that it can be observed.

図9は、上記の基材12に前記被膜14が設けられたもの、すなわち前記支持体10の表面の電子顕微鏡写真である。被膜14は極めて薄いことから、図7と対比すれば明らかなように、これを設けても表面状態の変化は特に認められない。   FIG. 9 is an electron micrograph of the surface of the support 10 in which the coating film 14 is provided on the substrate 12. Since the coating 14 is extremely thin, as is apparent from comparison with FIG.

図10は、支持体10に前記接合処理条件と同一の1400(℃)、0.1(Pa)の高温・高真空下の熱処理を施した後の表面の電子顕微鏡写真である。図9と対比すると、表面性状の変化は認められるが僅かなものに留まっている。図11にこの図10表面のXRDチャートを示す。このXRDチャートの下には、上段に窒化珪素のピーク位置を、下段にアルミナ(Al2O3)のピーク位置をそれぞれ示した。前記図8に示す熱処理前のXRDチャートと対比すれば明らかなように、アルミナの小さなピークが僅かに認められるものの、窒化珪素のピークが略維持されている。これら図10、図11に示されるように、支持体10に高温・高真空下の熱処理を施しても分解は殆ど生じない。 FIG. 10 is an electron micrograph of the surface after the support 10 is subjected to heat treatment under the same high temperature and high vacuum of 1400 (° C.) and 0.1 (Pa) as the above-mentioned bonding treatment conditions. In contrast to FIG. 9, changes in the surface properties are recognized but remain slight. FIG. 11 shows an XRD chart of the surface of FIG. Below the XRD chart, the peak position of silicon nitride is shown in the upper part, and the peak position of alumina (Al 2 O 3 ) is shown in the lower part. As is clear from comparison with the XRD chart before the heat treatment shown in FIG. 8, although a small peak of alumina is observed slightly, the peak of silicon nitride is substantially maintained. As shown in FIGS. 10 and 11, even when the support 10 is subjected to heat treatment under high temperature and high vacuum, the decomposition hardly occurs.

図12は、被膜14を設けていない基材12に、接合処理条件と同一の1400(℃)、0.1(Pa)の高温・高真空下の熱処理を施した後の表面の電子顕微鏡写真である。熱処理前の前記図7と対比すると、熱処理によって表面性状が著しく変化し、大きな凹凸が生じていることが判る。変化の程度は、被膜14が設けられた図10と著しく相違する。図13にこの図12表面のXRDチャートを示す。XRDチャートの下には、上段から順に窒化珪素、イットリウムアルミガーネット(Al5Y3O12:YAG)、アルミニウムイットリウム(Al2Y)、イットリア(Y2O3)のピーク位置をそれぞれ示した。窒化珪素の他の化合物のピークが顕著に現れており、熱処理によって分解が生じたことが明らかである。 FIG. 12 is an electron micrograph of the surface after the base material 12 not provided with the coating 14 is subjected to heat treatment under the same high temperature and high vacuum of 1400 (° C.) and 0.1 (Pa) as the bonding processing conditions. . Compared with FIG. 7 before the heat treatment, it can be seen that the surface properties are remarkably changed by the heat treatment and large irregularities are generated. The degree of change is significantly different from that in FIG. FIG. 13 shows an XRD chart of the surface of FIG. Below the XRD chart, the peak positions of silicon nitride, yttrium aluminum garnet (Al 5 Y 3 O 12 : YAG), aluminum yttrium (Al 2 Y), and yttria (Y 2 O 3 ) are shown in order from the top. The peak of other compounds of silicon nitride appears prominently, and it is clear that decomposition occurred by heat treatment.

上記の試験結果によれば、基材12は、何ら処置を施さなければロウ材38を用いた接合時の高温・高真空下の熱処理によって分解するが、これにポリシラザン由来の窒化珪素から成る被膜14を設けた支持体10は、同様な熱処理条件での分解が十分に抑制される。なお、熱処理による分解生成物が基材12の表面に生ずると、その表面に前記分離膜として機能する多孔質膜を均一且つ再現性良く設けることが困難になる。被膜14を設けることで分解が抑制されるので、多孔質膜を欠陥無く強固に固着できる利点がある。   According to the above test results, the base material 12 is decomposed by heat treatment under high temperature and high vacuum at the time of joining using the brazing material 38 unless any treatment is performed, but this is a coating made of silicon nitride derived from polysilazane. The support 10 provided with 14 is sufficiently suppressed from being decomposed under the same heat treatment conditions. In addition, when the decomposition product by heat processing arises on the surface of the base material 12, it will become difficult to provide the porous membrane which functions as the said separation membrane on the surface uniformly and with sufficient reproducibility. Since the decomposition is suppressed by providing the coating 14, there is an advantage that the porous film can be firmly fixed without defects.

要するに、本実施例によれば、多孔質窒化珪素から成る基材12の表面22にポリシラザン由来の窒化珪素から成る被膜14が設けられていることから、その基材12の耐熱性が高められ、1400(℃)、0.1(Pa)の高温・高真空下で熱処理する際にも分解が抑制される。そのため、Si-Al合金ロウ材38を用いてエンドキャップ32と接合する際に、基材12の分解が抑制されるので、その後に分離膜として機能する多孔質膜を容易に形成できる。しかも、上記被膜14は基材12の細孔を閉塞しないので、被膜14を設けない場合に遜色ない通気性が保たれる利点がある。   In short, according to the present embodiment, since the coating film 14 made of polysilazane-derived silicon nitride is provided on the surface 22 of the base material 12 made of porous silicon nitride, the heat resistance of the base material 12 is enhanced, Decomposition is also suppressed during heat treatment at high temperatures and high vacuum of 1400 (° C) and 0.1 (Pa). For this reason, when the Si—Al alloy brazing material 38 is used to join the end cap 32, decomposition of the base material 12 is suppressed, so that a porous membrane that functions as a separation membrane can be easily formed thereafter. Moreover, since the coating film 14 does not block the pores of the substrate 12, there is an advantage that the air permeability that is inferior when the coating film 14 is not provided is maintained.

また、本実施例によれば、基材12は接合時の分解が生じ易い非酸化物セラミックスの一つである窒化珪素から成ることから、被膜14を設けることによる効果が一層顕著に得られる。   In addition, according to the present embodiment, the base material 12 is made of silicon nitride, which is one of non-oxide ceramics that are likely to be decomposed at the time of joining, so that the effect of providing the coating film 14 can be obtained more remarkably.

また、本実施例によれば、被膜14がポリシラザンの塗布、乾燥、焼成処理を2回繰り返すことによって2層に形成されることから、1層のみで構成される場合に比較して被膜14に欠陥が生じ難い。そのため、接合時の基材12の分解を一層抑制できる利点がある。   Moreover, according to the present Example, since the coating film 14 is formed in two layers by repeating the application, drying, and baking processes of polysilazane twice, the coating film 14 is formed as compared with the case where it is composed of only one layer. Defects are unlikely to occur. Therefore, there exists an advantage which can suppress further decomposition | disassembly of the base material 12 at the time of joining.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

10:支持体、12:基材、14:被膜、16:内層、18:表面、20:外層、22:表面、24:細孔、26:内周面、28:内壁面、30:接合体、32:エンドキャップ 10: support, 12: base material, 14: coating, 16: inner layer, 18: surface, 20: outer layer, 22: surface, 24: pore, 26: inner peripheral surface, 28: inner wall surface, 30: joined body , 32: End cap

Claims (4)

外表面に開口する細孔径が0.01〜10(μm)の範囲内の多数の細孔を備えた多孔質の非酸化物系セラミックスから成る基材と、
前記基材の外表面に前記多数の細孔を閉塞することなく且つその外表面近傍ではその基材が露出しないように設けられたポリシラザン系材料由来のセラミックスから成る緻密質の被膜と
を、含むことを特徴とする被膜付き多孔質体。
A substrate made of porous non-oxide ceramics having a large number of pores having a pore diameter of 0.01 to 10 (μm) opening on the outer surface;
A dense coating made of a ceramic derived from a polysilazane material provided so as not to block the large number of pores on the outer surface of the base material and so that the base material is not exposed in the vicinity of the outer surface. A porous body with a film characterized by the above.
前記ポリシラザン系材料は、オルガノポリシラザンまたはペルヒドロポリシラザンである請求項1の被膜付き多孔質体。 The coated porous body according to claim 1 , wherein the polysilazane material is organopolysilazane or perhydropolysilazane . 前記基材の外表面に前記ポリシラザン系材料を塗布し、1300〜1500(℃)の範囲内の温度で焼成処理を施すことにより前記多数の細孔を閉塞することなく前記基材の外表面を覆うセラミックスから成る被膜を前記ポリシラザン系材料から生成したものである請求項1または請求項2の被膜付き多孔質体。 The polysilazane-based material is applied to the outer surface of the base material, the outer surface of the substrate without occluding the number of pores by applying a baking treatment at a temperature in the range of 1300 to 1500 (° C.) The porous body with a coating according to claim 1 or 2, wherein a coating made of ceramic to cover is produced from the polysilazane-based material . ラミックスから成る他の部材が金属ロウ材を介して接合されたものである請求項1乃至請求項3の何れか1項に記載の被膜付き多孔質体。 A coated porous body according to any one of claims 1 to 3 other parts material made of ceramics are those that are joined via a brazing filler metal.
JP2009183886A 2009-08-06 2009-08-06 Porous body with coating Active JP5258700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183886A JP5258700B2 (en) 2009-08-06 2009-08-06 Porous body with coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183886A JP5258700B2 (en) 2009-08-06 2009-08-06 Porous body with coating

Publications (2)

Publication Number Publication Date
JP2011037645A JP2011037645A (en) 2011-02-24
JP5258700B2 true JP5258700B2 (en) 2013-08-07

Family

ID=43765854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183886A Active JP5258700B2 (en) 2009-08-06 2009-08-06 Porous body with coating

Country Status (1)

Country Link
JP (1) JP5258700B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042665B1 (en) * 2017-08-21 2019-11-08 서울시립대학교 산학협력단 Surface treating method for porous member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770791B2 (en) * 2000-12-19 2006-04-26 株式会社ノリタケカンパニーリミテド High temperature type membrane reformer
JP4384540B2 (en) * 2004-05-07 2009-12-16 株式会社ノリタケカンパニーリミテド Hydrogen separation material and method for producing the same
JP2007076993A (en) * 2005-09-16 2007-03-29 Noritake Co Ltd Method of manufacturing silicon nitride porous body and gas separating material
JP4482016B2 (en) * 2007-06-29 2010-06-16 株式会社ノリタケカンパニーリミテド Composite ceramic manufacturing method, composite ceramic, and ceramic filter assembly

Also Published As

Publication number Publication date
JP2011037645A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
US7595114B2 (en) Environmental barrier coating for a component and method for fabricating the same
JP4482016B2 (en) Composite ceramic manufacturing method, composite ceramic, and ceramic filter assembly
US8048544B2 (en) Ceramics made of preceramic paper or board structures, method of producing the same and use thereof
EP1587773B1 (en) Method for treating the surface of a part made of a heat-structured composite material and use thereof in brazing parts made of a heat-structured composite material
JP2007197307A5 (en)
KR20010020524A (en) Ceramic with oxidisable layer
JP2000327441A (en) Composite carbonaceous thermal insulant and its production
CN113698223A (en) Sandwich structure C/C ultrahigh-temperature ceramic composite material and preparation method thereof
JP2003506308A (en) Silicon nitride parts with protective coating
US20180045260A1 (en) System and Method for Ceramic Doping of Carbon Fiber Composite Structures
CN115286390B (en) ZrC-SiC anti-ablation coating on surface of C/C composite material and composite preparation method combining brushing method and gas phase reaction
JP5773331B2 (en) Manufacturing method of ceramic joined body
US10723658B2 (en) Method of fabricating a ceramic from a chemical reaction
JP5258700B2 (en) Porous body with coating
JP2018090488A (en) Method for joining ceramic member and aluminum member, and joined body
JP4571059B2 (en) Method for manufacturing porous cylindrical module
CN107074671B (en) Environmental resistant coating
JP6406753B2 (en) Method for joining ceramic member and aluminum member
JP5069050B2 (en) Joining method and joined body
JP4633449B2 (en) Silicon carbide based porous material and method for producing the same
US20240279128A1 (en) Methods for Joining Composite Components to Form a Unitary Composite Component
JP5009095B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4942038B2 (en) Joining method and joined body
JP2006182597A (en) Silicon-based ceramic joining material, joined body and its manufacturing method
JPH03126669A (en) Production of silicon carbide porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533