JPH09283926A - Multilayer board manufacturing method - Google Patents

Multilayer board manufacturing method

Info

Publication number
JPH09283926A
JPH09283926A JP8527896A JP8527896A JPH09283926A JP H09283926 A JPH09283926 A JP H09283926A JP 8527896 A JP8527896 A JP 8527896A JP 8527896 A JP8527896 A JP 8527896A JP H09283926 A JPH09283926 A JP H09283926A
Authority
JP
Japan
Prior art keywords
circuit
resin
multilayer board
inorganic filler
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8527896A
Other languages
Japanese (ja)
Inventor
Masayuki Noda
雅之 野田
Minoru Yonekura
稔 米倉
Masataka Hasegawa
雅孝 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8527896A priority Critical patent/JPH09283926A/en
Publication of JPH09283926A publication Critical patent/JPH09283926A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a multilayer circuit board which 13 superior in heat radiation and has a high reliability, without causing voids or cracks in through- holes. SOLUTION: This multilayer board manufacturing method is to hot compression-form inner layer circuit board and metal foils for forming circuits of surface layers through adhesive prepregs into a multilayer board. The metal foils for forming circuits of the surface layers are each 100μm thick or more, the adhesive prepregs adhered to the circuit faces use a glass nonwoven cloth for its base and inorg. filler-contained thermosetting resin for the impregnation resin. The inorg. filler content is pref. 50wt. parts or more to 100wt. parts of the thermosetting resin and resin content of the prepreg (incl. the inorg. filler) is pref. 75wt.% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放熱性に優れ、か
つ内層にボイドができない多層板の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer board which has excellent heat dissipation and has no voids in its inner layer.

【0002】[0002]

【従来の技術】近時の高密度化・高集積化・小型化され
た電子電気機器に組み込まれるMPU(Micro Processi
ng Unit)は、クロック周波数が高速化し総ピン数も増
えている。これに伴って、MPUの消費する電力と発熱
量も増大している。発熱量の大きいMPUを搭載するプ
リント配線板としては、放熱性をよくするために、金属
板(アルミニウム、鉄、ステンレス等)を芯材とした金
属ベースプリント配線板が使用されている。金属ベース
プリント配線板に導通スルーホールを形成して高密度配
線にしようとする場合、金属ベースとスルーホール壁の
間を絶縁しなければならない。絶縁をするためには、金
属ベースのスルーホールを形成すべき位置にスルーホー
ルより大きい貫通穴をあけ、貫通穴に樹脂を充填する。
そして、当該樹脂部分に貫通穴をあけて導通スルーホー
ルを形成する。金属ベースにあけた貫通穴壁と導通スル
ーホール壁の間には前記充填した樹脂が存在し、両者の
間を絶縁している。しかし、前記充填した樹脂には熱ス
トレス等によりクラックが発生しやすく、絶縁信頼性が
低い。また、金属ベースプリント配線板は芯材が導電性
を有しているために、これに電源層やアース層の回路を
形成することができず、回路を多層化して高密度にする
ことを困難にしている。一方、厚み70μm以上の金属
箔を所定の回路形状に打抜き加工してこれをプリプレグ
層の層中に介在させ、表面に配置した金属箔と共に加熱
加圧成形して一体化した多層板が提案されている(特開
平1−190419号公報)。この多層板は、内層の回
路を構成する金属箔が厚いので放熱性は期待できる。し
かし、内層の回路部分は、回路のある所とない所の凹凸
の差が大きいので、凹部を樹脂で十分に埋めることがで
きずボイドが発生しやすい。また、プリプレグを構成す
る熱硬化性樹脂に充填材が含有されていないので、熱ス
トレス等によりクラックが発生しやすい。
2. Description of the Related Art Recently, MPU (Micro Processi) to be incorporated into electronic and electrical equipment which has been highly densified, highly integrated and miniaturized.
ng Unit) has a higher clock frequency and an increased total number of pins. Along with this, the power consumed by the MPU and the amount of heat generated are also increasing. A metal base printed wiring board having a metal plate (aluminum, iron, stainless steel, etc.) as a core material is used as a printed wiring board on which an MPU having a large amount of heat generation is mounted in order to improve heat dissipation. When a conductive through hole is formed in a metal base printed wiring board to form a high density wiring, it is necessary to insulate between the metal base and the through hole wall. In order to insulate, a through hole larger than the through hole is formed at a position where the through hole of the metal base is to be formed, and the through hole is filled with resin.
Then, a through hole is formed in the resin portion to form a conductive through hole. The filled resin is present between the wall of the through hole formed in the metal base and the wall of the conductive through hole to insulate them from each other. However, cracks are likely to occur in the filled resin due to heat stress and the like, and insulation reliability is low. In addition, since the core material of the metal-based printed wiring board has conductivity, it is not possible to form circuits for the power supply layer and the ground layer on it, and it is difficult to make the circuits multi-layered to achieve high density. I have to. On the other hand, there is proposed a multilayer board in which a metal foil having a thickness of 70 μm or more is punched into a predetermined circuit shape and is inserted in a layer of a prepreg layer, and heat-pressed together with the metal foil arranged on the surface to be integrated. (Japanese Patent Laid-Open No. 1-190419). This multi-layer board can be expected to have heat dissipation because the metal foil forming the circuit of the inner layer is thick. However, in the circuit portion of the inner layer, there is a large difference in unevenness between the place where the circuit is present and the place where the circuit is not present, so that the recess cannot be sufficiently filled with the resin, and a void is likely to occur. Further, since the thermosetting resin forming the prepreg contains no filler, cracks are likely to occur due to heat stress or the like.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、電源層やアース層の回路を形成できる多層
板において、放熱性を優れたものにし、熱ストレス等に
よるクラック発生の心配をなくしてスルーホール絶縁信
頼性を高くすることである。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a multilayer board capable of forming a circuit of a power supply layer and an earth layer with excellent heat dissipation and to avoid the risk of cracking due to thermal stress. To improve the reliability of through-hole insulation.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る多層板の製造法は、内層回路板と表面
層の回路となる金属箔を接着プリプレグを介して加熱加
圧成形し一体化する製造法において、内層回路板の少な
くとも1層の回路を構成する金属箔の厚さを100μm
以上にする。そして、当該100μm以上の金属箔で構
成される回路面に当接する接着プリプレグには、その基
材としてガラス不織布を使用すると共に含浸樹脂として
無機充填材含有熱硬化性樹脂を使用する。
In order to solve the above-mentioned problems, a method of manufacturing a multilayer board according to the present invention is such that an inner circuit board and a metal foil to be a circuit of a surface layer are heated and pressed through an adhesive prepreg. In the manufacturing method in which the metal foil for forming at least one layer of the inner layer circuit board is 100 μm thick
Above. Then, a glass nonwoven fabric is used as the base material and an inorganic filler-containing thermosetting resin is used as the impregnating resin for the adhesive prepreg that comes into contact with the circuit surface composed of the metal foil of 100 μm or more.

【0005】内層回路の少なくとも一層を構成する金属
箔として厚さ100μm以上のものを使用しているので
放熱性が良好であり、発熱量の大きい高集積MPUを搭
載できる。内層回路板の厚さ100μm以上の金属箔で
構成された回路層は、回路のある所とない所の凹凸が大
きい。しかし、多層板の加熱加圧成形工程で、前記回路
層に当接している接着プリプレグが軟化し流動した無機
充填材含有熱硬化性樹脂が、前記回路のない凹部に流れ
込み当該凹部を埋める。このとき、接着プリプレグの基
材であるガラス不織布を構成しているガラス繊維も一緒
に凹部に流れ込むので、凹部が十分に埋められボイドの
ない多層板を製造することができる。無機充填材を含有
した熱硬化性樹脂であるため、熱硬化性樹脂熱の熱膨張
率が小さくなり、熱ストレスなどによるクラックの発生
を抑制することができる。
Since a metal foil having a thickness of 100 μm or more is used as at least one layer of the inner layer circuit, the heat dissipation is good and a highly integrated MPU having a large heat generation amount can be mounted. The circuit layer formed of a metal foil having a thickness of 100 μm or more of the inner layer circuit board has a large unevenness in the place where the circuit exists and where it does not exist. However, in the heat and pressure molding step of the multilayer board, the thermosetting resin containing an inorganic filler, which is softened and fluidized by the adhesive prepreg in contact with the circuit layer, flows into the concave portion without the circuit and fills the concave portion. At this time, since the glass fibers constituting the glass nonwoven fabric which is the base material of the adhesive prepreg also flow into the recesses together, the recesses are sufficiently filled and a multilayer board without voids can be manufactured. Since it is a thermosetting resin containing an inorganic filler, the coefficient of thermal expansion of the heat of the thermosetting resin is small, and the generation of cracks due to thermal stress can be suppressed.

【0006】100μm以上の金属箔で構成される回路
面に当接する接着プリプレグの基材としてガラス織布を
使用した場合は、たとえプリプレグの含浸樹脂を無機充
填材含有熱硬化性樹脂にしたとしても、ガラス繊維が回
路のない凹部に移動しないので無機充填材含有熱硬化性
樹脂で当該凹部を十分に埋めることはできない。本発明
においては、100μm以上の金属箔で構成される回路
面に当接する接着プリプレグにその基材としてガラス不
織布を使用すると共に含浸樹脂として無機充填材含有熱
硬化性樹脂を使用することにより、初めて所期の課題を
解決することができる。
When a glass woven cloth is used as a base material of an adhesive prepreg that comes into contact with a circuit surface composed of a metal foil of 100 μm or more, even if the impregnating resin of the prepreg is a thermosetting resin containing an inorganic filler. Since the glass fiber does not move to the concave portion having no circuit, the concave portion cannot be sufficiently filled with the inorganic filler-containing thermosetting resin. In the present invention, for the first time, a glass nonwoven fabric is used as a base material for an adhesive prepreg that comes into contact with a circuit surface composed of a metal foil of 100 μm or more and a thermosetting resin containing an inorganic filler is used as an impregnating resin. It is possible to solve the intended problem.

【0007】[0007]

【発明の実施の形態】ガラス不織布に無機充填材含有熱
硬化性樹脂を含浸した接着プリプレグにおいて、前記無
機充填材の含有量は、熱硬化性樹脂100重量部に対し
て50重量部以上が好ましい。そうすることにより、熱
ストレスによるクラックの発生を抑制する上で好都合で
ある。また、前記接着プリプレグの樹脂量(無機充填材
を含む)は、75重量%以上が好ましい。回路のない凹
部を無機充填材含有熱硬化性樹脂で埋める上で、一層有
利となる。接着プリプレグの基材であるガラス不織布
は、ガラス繊維同士をバインダで結着して構成したもの
であるが、バインダ中にはカップリング剤を含有してい
ることが好ましい。カップリング剤は、フェニルアミノ
シランが好ましい。多層板の耐湿絶縁性を良好にするこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION In an adhesive prepreg obtained by impregnating a glass nonwoven fabric with an inorganic filler-containing thermosetting resin, the content of the inorganic filler is preferably 50 parts by weight or more based on 100 parts by weight of the thermosetting resin. . By doing so, it is convenient for suppressing the generation of cracks due to thermal stress. The resin amount (including the inorganic filler) of the adhesive prepreg is preferably 75% by weight or more. This is more advantageous in filling the recesses having no circuit with the thermosetting resin containing the inorganic filler. The glass non-woven fabric, which is the base material of the adhesive prepreg, is formed by binding glass fibers together with a binder, and it is preferable that the binder contains a coupling agent. The coupling agent is preferably phenylaminosilane. It is possible to improve the moisture resistance of the multilayer board.

【0008】本発明においては、厚さ100μm以上の
金属箔で構成される回路面に当接する接着プリプレグに
は上記のガラス不織布基材のプリプレグを用いるが、そ
れ以外の箇所に用いる接着プリプレグの基材及び熱硬化
性樹脂の種類は特に限定するものではない。また、内層
回路板の絶縁基板となる積層板を製造するのに使用する
基材及び熱硬化性樹脂の種類についても、特に限定する
ものではない。本発明を実施するに当たり、厚さ100
μm以上の金属箔(金属シート)の材質は、銅、アルミ
ニウム、ニッケルなどであり、導電性の金属であれば特
に限定するものではないが、既存の回路加工設備を使用
する点から銅箔(銅シート)を使用するのが望ましい。
本発明で使用する熱硬化性樹脂は、エポキシ樹脂、シア
ネート樹脂、ポリイミド樹脂など耐熱性の樹脂が良好で
ある。特に、エポキシ樹脂は、樹脂に靭性があり熱スト
レスなどに対して優れている。多層板の加熱加圧成形に
おいて内層回路板の回路面と樹脂の接着性を良好にする
ために、回路面を予め粗化処理しておく。粗化の方法
は、機械的なものと化学的なものがあるが、樹脂との接
着性の点では化学的粗化の方が望ましい。また、多層板
の加熱加圧成形は、真空ないし減圧雰囲気中で行なうの
がボイドの発生をさらに抑制する上から望ましい。ガラ
ス不織布を構成するガラス繊維の材質は、通常電気絶縁
用に使用されるEガラス、Sガラス、Dガラス等であ
り、特に限定するものではない。
In the present invention, the above-mentioned glass nonwoven fabric base material prepreg is used as the adhesive prepreg that comes into contact with the circuit surface made of a metal foil having a thickness of 100 μm or more, but the base of the adhesive prepreg used at other locations. The types of materials and thermosetting resins are not particularly limited. Further, the types of the base material and the thermosetting resin used for producing the laminated board which becomes the insulating substrate of the inner layer circuit board are not particularly limited. In carrying out the present invention, a thickness of 100
The material of the metal foil (metal sheet) having a thickness of μm or more is copper, aluminum, nickel or the like, and is not particularly limited as long as it is a conductive metal, but from the viewpoint of using existing circuit processing equipment, copper foil ( It is preferable to use a copper sheet).
The thermosetting resin used in the present invention is preferably a heat resistant resin such as an epoxy resin, a cyanate resin or a polyimide resin. In particular, the epoxy resin is tough and has excellent resistance to heat stress. In order to improve the adhesiveness between the circuit surface of the inner layer circuit board and the resin in the heat and pressure molding of the multilayer board, the circuit surface is roughened in advance. There are mechanical and chemical roughening methods, but chemical roughening is preferable from the viewpoint of adhesiveness to the resin. In addition, it is desirable that the heat and pressure molding of the multilayer plate is performed in a vacuum or reduced pressure atmosphere in order to further suppress the generation of voids. The material of the glass fiber forming the glass nonwoven fabric is E glass, S glass, D glass or the like which is usually used for electrical insulation, and is not particularly limited.

【0009】[0009]

【実施例】【Example】

実施例1〜9,比較例1〜2 ビスフェノールA型エポキシ樹脂(油化シェル製「Ep
−1045」,エポキシ当量:500)とクレゾールノ
ボラック型エポキシ樹脂(東都化成製「YDCN−70
4」,エポキシ当量:210)に硬化剤としてジシアン
ジアミド、硬化促進剤として2−エチル4−メチルイミ
ダゾールを配合しワニスAを調整した。また、ワニスA
に、エポキシ樹脂組成物100重量部に対して各表に示
した各種割合で無機充填材(水酸化アルミニウム)を添
加してワニスを調製した。ワニスAをガラス織布(重
量:210g/m2)に含浸乾燥し樹脂量42重量%のプ
リプレグAを得た。また、上記の各種無機充填材添加ワ
ニスを、バインダ中のカップリング剤が各表に示したと
おりであるガラス不織布(重量:35g/m2)に含浸乾
燥し、各表に示した各種樹脂量の接着プリプレグを得
た。ここで示した樹脂量は、次の(式1)で計算され
る。
Examples 1-9, Comparative Examples 1-2 Bisphenol A type epoxy resin ("Ep made by Yuka Shell
-1045 ", epoxy equivalent: 500) and cresol novolac type epoxy resin (" YDCN-70 "manufactured by Tohto Kasei)
4 ", epoxy equivalent: 210) was mixed with dicyandiamide as a curing agent and 2-ethyl-4-methylimidazole as a curing accelerator to prepare varnish A. Also, varnish A
A varnish was prepared by adding the inorganic filler (aluminum hydroxide) at various ratios shown in each table to 100 parts by weight of the epoxy resin composition. A woven glass cloth (weight: 210 g / m 2 ) was impregnated with varnish A and dried to obtain a prepreg A having a resin amount of 42% by weight. Further, the above-mentioned various inorganic filler-added varnishes were impregnated and dried in a glass nonwoven fabric (weight: 35 g / m 2 ) in which the coupling agent in the binder was as shown in each table, and each resin amount shown in each table was dried. The adhesive prepreg of was obtained. The resin amount shown here is calculated by the following (Formula 1).

【0010】[0010]

【数1】 [Equation 1]

【0011】内層回路板を次のようにして製造した。ま
ず、プリプレグAを2枚重ねその両側に表1に示した各
種厚さの銅箔を1枚ずつ重ねて減圧雰囲気で加熱加圧成
形し、絶縁層の板厚0.4mmの両面銅張り積層板を製造
した。両面の銅箔を通常の方法でエッチング加工し、ア
ース層と電源層の回路を形成して内層回路板とした。そ
の回路パターンを図1に示す。多層板の加熱加圧成形に
先立ち、前記内層回路板の回路表面は通常の方法で黒化
処理(化学的粗化処理)をした。この内層回路板の両面
の回路面に当接して上記の無機充填材添加ワニスで調製
した接着プリプレグをそれぞれ1枚配置し、さらにその
外側にプリプレグAをそれぞれ1枚配置し、最表面には
厚さ18μmの銅箔を配置して減圧雰囲気で加熱加圧成
形により4層の多層板を製造した。その特性を各表に併
せて示す。
The inner layer circuit board was manufactured as follows. First, two prepregs A are stacked, one on each side of each of the copper foils of various thicknesses shown in Table 1, and heat-pressed in a reduced pressure atmosphere to form a double-sided copper-clad laminate with an insulating layer thickness of 0.4 mm. A board was manufactured. The copper foils on both sides were etched by a usual method to form circuits for the ground layer and the power supply layer to obtain an inner layer circuit board. The circuit pattern is shown in FIG. Prior to the heat and pressure molding of the multilayer board, the circuit surface of the inner layer circuit board was blackened (chemically roughened) by a usual method. One adhesive prepreg prepared with the above-mentioned inorganic filler-added varnish is placed in contact with the circuit surfaces on both sides of this inner layer circuit board, and one prepreg A is placed outside the adhesive prepreg. A copper foil having a thickness of 18 μm was arranged, and heat-press molding was performed in a reduced-pressure atmosphere to produce a four-layer multilayer board. The characteristics are also shown in each table.

【0012】従来例 実施例1における内層回路板の両面の回路面にプリプレ
グAを2枚ずつ配置し、最表面には厚さ18μmの銅箔
を配置して加熱加圧成形により4層の多層板を製造し
た。その特性を表3に併せて示す。
Conventional Example Two prepregs A are disposed on each of the circuit surfaces on both sides of the inner layer circuit board in Example 1, and a copper foil having a thickness of 18 μm is disposed on the outermost surface, and four layers are laminated by heat and pressure molding. A board was manufactured. The characteristics are also shown in Table 3.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】上記の各表に示した特性の評価方法は次の
とおりである。クラック発生個数:多層板に5個のスル
ーホールを形成し、260℃で10秒と20℃で20秒
を1サイクルとして繰り返す熱衝撃試験後にスルーホー
ル断面を観察してクラックが発生したスルーホール個数
を調べる。 ボイドの個数:多層板に5個のスルーホールを形成し、
スルーホール断面を観察してボイドが発生しているスル
ーホール個数を調べる。 絶縁特性:JIS C6481に準拠して測定する。 熱伝導率:京都電子製「QTM−D3」を使用して測定
する。
The evaluation methods for the characteristics shown in the above tables are as follows. Number of cracks generated: The number of through holes in which cracks occurred by observing the cross section of the through hole after a thermal shock test in which 5 through holes were formed in the multilayer board and repeated at 260 ° C. for 10 seconds and 20 ° C. for 20 seconds Find out. Number of voids: 5 through holes are formed in the multilayer board,
Observe the cross section of the through hole and check the number of through holes with voids. Insulation characteristics: Measured according to JIS C6481. Thermal conductivity: Measured using "QTM-D3" manufactured by Kyoto Electronics.

【0017】各表から、内層回路板の回路を構成する金
属箔の厚さを100μm以上にすることにより放熱性が
良好になることがわかる。また、本発明に係る実施例に
おいては、クラックとボイドの抑制効果も良好であるこ
とがわかる。実施例1〜2及び6と実施例7〜8との比
較から、無機充填材含有量を樹脂100重量部に対して
50重量部以上にすると、より一層クラック発生が抑制
されることがわかる。実施例5及び9と実施例4との比
較から、接着プリプレグの樹脂量を75重量%以上にす
ることにより一層ボイドの発生が抑制されることがわか
る。ガラス不織布バインダ中のカップリング剤をフェニ
ルアミノシランにすると、絶縁特性が向上することもわ
かる(実施例3と他の実施例の比較)。
From each table, it can be seen that the heat dissipation becomes good when the thickness of the metal foil forming the circuit of the inner layer circuit board is 100 μm or more. Further, it can be seen that in the examples according to the present invention, the effect of suppressing cracks and voids is also good. From a comparison between Examples 1 to 2 and 6 and Examples 7 to 8, it can be seen that when the content of the inorganic filler is 50 parts by weight or more based on 100 parts by weight of the resin, crack generation is further suppressed. From the comparison between Examples 5 and 9 and Example 4, it can be seen that generation of voids is further suppressed by setting the resin amount of the adhesive prepreg to 75% by weight or more. It can also be seen that when phenylaminosilane is used as the coupling agent in the glass nonwoven fabric binder, the insulating properties are improved (comparison between Example 3 and other examples).

【0018】[0018]

【発明の効果】上述のように本発明に係る方法によれ
ば、放熱性に優れ、スルーホール壁におけるボイドやク
ラックの発生を抑制した信頼性の高い多層回路板を製造
することができる。接着プリプレグの樹脂中の無機充填
材の含有量を、樹脂100重量部に対して50重量部以
上にすれば、熱ストレスによりクラックが発生するのを
抑制する効果がさらに大きくなる。接着プリプレグの樹
脂量を75重量%以上にすれば、ボイドの発生を抑制す
る効果がさらに大きくなる。接着プリプレグの基材であ
るガラス不織布として、ガラス繊維同士を結着するバイ
ンダ中にフェニルアミノシランを添加したものを使用す
ると、多層板の耐湿絶縁性を良好にすることができる。
As described above, according to the method of the present invention, it is possible to manufacture a highly reliable multilayer circuit board which is excellent in heat dissipation and suppresses the generation of voids and cracks in the through hole wall. When the content of the inorganic filler in the resin of the adhesive prepreg is 50 parts by weight or more with respect to 100 parts by weight of the resin, the effect of suppressing the occurrence of cracks due to thermal stress becomes even greater. If the resin amount of the adhesive prepreg is 75% by weight or more, the effect of suppressing the generation of voids becomes even greater. When the glass non-woven fabric that is the base material of the adhesive prepreg is one in which phenylaminosilane is added to the binder that binds the glass fibers together, the moisture resistance of the multilayer board can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】内層回路板の回路パターンを示す平面図であ
る。
FIG. 1 is a plan view showing a circuit pattern of an inner layer circuit board.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内層回路板と表面層の回路となる金属箔を
接着プリプレグを介して加熱加圧成形し一体化する多層
板の製造において、 内層回路板の少なくとも1層の回路を構成する金属箔の
厚さを100μm以上とし、 前記100μm以上の金属箔で構成される回路面に当接
する接着プリプレグには、その基材としてガラス不織布
を使用すると共に含浸樹脂として無機充填材含有熱硬化
性樹脂を使用することを特徴とする多層板の製造法。
1. In the manufacture of a multilayer board in which a metal foil to be a circuit of an inner layer circuit board and a circuit of a surface layer is heat-pressed through an adhesive prepreg to be integrated, a metal constituting at least one layer of a circuit of the inner layer circuit board. The adhesive prepreg, which has a foil thickness of 100 μm or more and is in contact with a circuit surface made of a metal foil having a thickness of 100 μm or more, uses a glass nonwoven fabric as a base material and an inorganic filler-containing thermosetting resin as an impregnating resin. A method for producing a multilayer board, characterized in that.
【請求項2】無機充填材の含有量が熱硬化性樹脂100
重量部に対して50重量部以上であることを特徴とする
請求項1記載の多層板の製造法。
2. A thermosetting resin having an inorganic filler content of 100.
The method for producing a multilayer board according to claim 1, wherein the amount is 50 parts by weight or more with respect to parts by weight.
【請求項3】100μm以上の金属箔で構成される回路
面に当接する接着プリプレグの樹脂量(無機充填材を含
む)が75重量%以上であることを特徴とする請求項1
又は2記載の多層板の製造法。
3. The resin amount (including the inorganic filler) of the adhesive prepreg that is in contact with the circuit surface composed of a metal foil of 100 μm or more is 75% by weight or more.
Or the method for producing a multilayer board according to item 2.
【請求項4】ガラス不織布が、ガラス繊維同士を結着し
ているバインダ中にカップリング剤を含有していること
を特徴とする請求項1〜3のいずれかに記載の多層板の
製造法。
4. The method for producing a multilayer board according to claim 1, wherein the glass non-woven fabric contains a coupling agent in a binder that binds glass fibers together. .
【請求項5】カップリング剤がフェニルアミノシランで
あることを特徴とする請求項4記載の多層板の製造法。
5. The method for producing a multilayer board according to claim 4, wherein the coupling agent is phenylaminosilane.
JP8527896A 1996-04-08 1996-04-08 Multilayer board manufacturing method Pending JPH09283926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8527896A JPH09283926A (en) 1996-04-08 1996-04-08 Multilayer board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8527896A JPH09283926A (en) 1996-04-08 1996-04-08 Multilayer board manufacturing method

Publications (1)

Publication Number Publication Date
JPH09283926A true JPH09283926A (en) 1997-10-31

Family

ID=13854105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8527896A Pending JPH09283926A (en) 1996-04-08 1996-04-08 Multilayer board manufacturing method

Country Status (1)

Country Link
JP (1) JPH09283926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276936A (en) * 2004-03-23 2005-10-06 Mitsubishi Electric Corp Printed wiring board and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276936A (en) * 2004-03-23 2005-10-06 Mitsubishi Electric Corp Printed wiring board and its production process

Similar Documents

Publication Publication Date Title
EP1360067B1 (en) Lightweight circuit board with conductive constraining cores
US4769270A (en) Substrate for a printed circuit board
JP5353241B2 (en) Multilayer printed wiring board and semiconductor device
US20030066683A1 (en) Circuit board and production of the same
JP2011091423A (en) Multilayered printed circuit board and fabricating method thereof
JP3119577B2 (en) Laminated board
JP4992342B2 (en) Method for manufacturing printed wiring board
JPH11298153A (en) Multilayered printed circuit board
JP3969477B2 (en) Multilayer wiring board and manufacturing method thereof
JP2692508B2 (en) Manufacturing method of laminated board
JP3982233B2 (en) Wiring board manufacturing sheet material and multilayer board
JP4804671B2 (en) Prepreg
JPH09283926A (en) Multilayer board manufacturing method
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP4802541B2 (en) Method for producing metal foil-clad laminate and multilayer printed wiring board
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JPH09232757A (en) Manufacture of multilayered circuit board
JP2000252631A (en) Multilayer printed wiring board and its manufacture
JPH0992974A (en) Manufacture of multilayer board
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JP2633286B2 (en) Manufacturing method of electric laminate
JP2005023117A (en) Adhesive sheet for multilayered wiring board, multilayered wiring board and electronic part using the same
JP2858521B2 (en) Metal foil clad laminate and method for producing the same
JP2917579B2 (en) Multilayer printed wiring board
JPH11163527A (en) Manufacture of multilayer wiring board