JPH09283184A - Method for charging non-aqueous electrolyte secondary battery - Google Patents

Method for charging non-aqueous electrolyte secondary battery

Info

Publication number
JPH09283184A
JPH09283184A JP8091296A JP9129696A JPH09283184A JP H09283184 A JPH09283184 A JP H09283184A JP 8091296 A JP8091296 A JP 8091296A JP 9129696 A JP9129696 A JP 9129696A JP H09283184 A JPH09283184 A JP H09283184A
Authority
JP
Japan
Prior art keywords
voltage
charging
lithium
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8091296A
Other languages
Japanese (ja)
Inventor
Kensuke Yoshida
賢介 吉田
Tamotsu Yamamoto
保 山本
Shinobu Akashi
忍 明石
Isao Watanabe
勲 渡辺
Tsutomu Miyashita
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8091296A priority Critical patent/JPH09283184A/en
Publication of JPH09283184A publication Critical patent/JPH09283184A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the cycle lifetime by charging a battery, of which capacity is consumed by the predetermined quantity, after discharging this battery to a voltage lower than the open circuit voltage at the time of consumption before starting charging. SOLUTION: On the surface of a negative electrode 12 after charging a dendrite 11 is formed. (Fig. (a)) When the consumption progresses, the dendrite 11 is eluted in the electrolyte, and voltage is gradually lowered. Thereafter, discharging regulating voltage is detected and the consumption is concluded, but at this stage, a base part of the dendrite 11 is left and a part of the surface of the negative electrode 12 is eluted. (Fig. (b)) When charging is performed in a conventional way, lithium is concentrically deposited in an end of the left dendrite 13 and a recessed part 14 of the negative electrode, and quantity of the lithium, which can be charged and discharged, is reduced. (Fig. (c)) On the other hand, with this method for charging and discharging since discharging is performed to a voltage lower than the open circuit voltage at the time of consumption at least 70%, the dendrite, which is not eluted and left, can be eliminated as much as possible, and the reduction of lithium, which can be charged and discharged, is avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の充電法に関する。更に詳しくは、本発明は、良好な
サイクル寿命を付与しうる非水電解液二次電池の充電法
に関する。
TECHNICAL FIELD The present invention relates to a method for charging a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a method for charging a non-aqueous electrolyte secondary battery that can provide good cycle life.

【0002】[0002]

【従来の技術】リチウムを負極活物質とする非水電解液
二次電池は、高電圧及び高エネルギー密度を実現しうる
ため数多くの研究がなされている。しかしながら、いま
だ実用化されていない。この理由は、金属リチウムが持
つ反応性の高さに起因している。つまり、金属リチウム
は、その製造時に雰囲気中の炭酸ガス、窒素又は水分等
と反応し、表面に炭酸化物、窒化物又は水酸化物等の不
均一な被膜が形成される。不均一な被膜が形成された金
属リチウムを非水電解液二次電池の負極活物質として使
用した場合、充放電を繰り返すたびに電池容量が低下す
る。この電池容量の低下は、金属リチウム表面に存在す
る不均一な被膜が電極反応を妨げ、局所的にリチウムを
溶解及び析出させ、それにより可逆性の低い金属リチウ
ムを形成させるためであると考えられる。また、析出し
た金属リチウムは、一般にデンドライトと呼ばれる樹枝
状の形態を有しており、このデンドライトは電池容量を
低下させるだけではなく、電池内部での正負極間の短絡
の原因となり、二次電池の安全性を著しく低下させる要
因として知られている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium as a negative electrode active material have been extensively studied because they can realize high voltage and high energy density. However, it has not been put to practical use yet. The reason for this is due to the high reactivity of metallic lithium. That is, metallic lithium reacts with carbon dioxide gas, nitrogen, water or the like in the atmosphere during the production thereof, and a non-uniform coating film of carbonate, nitride, hydroxide or the like is formed on the surface. When metallic lithium on which a non-uniform coating is formed is used as the negative electrode active material of a non-aqueous electrolyte secondary battery, the battery capacity decreases every time charging and discharging are repeated. It is considered that this decrease in battery capacity is due to the non-uniform coating present on the surface of metallic lithium, which interferes with the electrode reaction and locally dissolves and deposits lithium, thereby forming metallic lithium having low reversibility. . Further, the deposited metal lithium has a dendritic form generally called dendrite, and this dendrite not only reduces the battery capacity, but also causes a short circuit between the positive and negative electrodes inside the battery, resulting in a secondary battery. It is known as a factor that significantly reduces the safety of.

【0003】上記充放電の繰り返しに伴う電池容量の低
下を防ぐために、リチウムをアルミニウム、ストロンチ
ウム(特開昭61−32954号公報)等と合金化して
形成された金属間化合物を用いて、該化合物内にリチウ
ムを吸蔵する方法、炭素材料にリチウムイオンを吸蔵す
る方法が報告されている。しかし、これらの方法では電
池反応に関与しない要素が電池内に配置されるので、電
池容量の低下を招くこととなる。更に、金属間化合物の
場合、電極形状への加工が困難であり、そのためコスト
がかかるので、電気機器の主電源用として利用されてい
なかった。
In order to prevent a decrease in battery capacity due to repeated charging / discharging, an intermetallic compound formed by alloying lithium with aluminum, strontium (JP-A-61-32954), or the like is used. A method of occluding lithium inside and a method of occluding lithium ions in a carbon material have been reported. However, in these methods, the elements that are not involved in the battery reaction are arranged in the battery, which leads to a decrease in the battery capacity. Further, in the case of an intermetallic compound, it is difficult to process it into an electrode shape, and therefore it is costly, so that it has not been used as a main power source for electric equipment.

【0004】充放電効率を向上させる別の方法として、
充電終了時又は放電開始時に所定の電流密度で、所定の
時間初期放電を行う方法が報告されている(特開平7−
65867号公報)。この公報による放電によれば、電
池形成前に金属リチウムの表面に存在している不均一な
被膜が除去されるので、金属リチウムの析出形態が改善
され、結果として充放電効率が向上する。
As another method for improving charge / discharge efficiency,
A method of performing initial discharge at a predetermined current density for a predetermined time at the end of charging or at the start of discharging has been reported (Japanese Patent Laid-Open No. 7-
65867). According to the discharge according to this publication, the non-uniform coating film existing on the surface of the metallic lithium is removed before the formation of the battery, so that the form of deposition of metallic lithium is improved and, as a result, the charging / discharging efficiency is improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記公
報に記載された方法でも、金属リチウムを負極に使用し
た際に問題となるデンドライトの成長を抑制することは
できず、更なる充放電効率の向上が望まれていた。
However, even with the method described in the above publication, it is not possible to suppress the growth of dendrite, which is a problem when metallic lithium is used for the negative electrode, and further improve the charge and discharge efficiency. Was desired.

【0006】[0006]

【課題を解決するための手段】本発明の発明者等は、鋭
意検討の結果、リチウム表面の形態が負極活物質として
の金属リチウムの寿命を決定していると考え、所定の放
電電圧を検知後に更に放電を行うことで金属リチウムの
表面の形態、即ち析出形態を制御すれば充放電効率を向
上させることができることを見いだし本発明に至った。
Means for Solving the Problems As a result of intensive studies, the inventors of the present invention have considered that the morphology of the lithium surface determines the life of metallic lithium as a negative electrode active material, and detect a predetermined discharge voltage. It was found that charging and discharging efficiency can be improved by controlling the morphology of the surface of metal lithium, that is, the morphology of precipitation, by further discharging later.

【0007】かくして本発明によれば、金属リチウム又
はリチウム合金からなる負極、正極及び電解液を有する
非水電解液二次電池において、電池容量の少なくとも7
割消費された該非水電解液二次電池を、充電開始前に前
記消費時の開路電圧よりも低い電圧まで更に放電させた
後充電することを特徴とする非水電解液二次電池の充電
法が提供される。
Thus, according to the present invention, in a non-aqueous electrolyte secondary battery having a negative electrode made of metallic lithium or a lithium alloy, a positive electrode and an electrolytic solution, at least 7 of the battery capacity is provided.
A method for charging a non-aqueous electrolyte secondary battery, characterized in that the non-aqueous electrolyte secondary battery that has been consumed by a charge is further discharged before the start of charging to a voltage lower than the open circuit voltage at the time of consumption, and then charged. Will be provided.

【0008】[0008]

【発明の実施の形態】本発明に使用できる非水電解液二
次電池は、リチウムからなる負極活物質を含むものであ
れば、公知の非水電解液二次電池をいずれも使用でき
る。以下では、更に具体的に非水電解液二次電池を説明
する。まず、本発明に使用できる負極には、金属リチウ
ム及びリチウム合金が使用できる。リチウム合金として
は、例えば、リチウム・アルミニウム、リチウム・マグ
ネシウム等が挙げられる。これら負極は、負極活物質と
しても機能する。なお、負極にリチウム・マグネシウム
合金を使用することが好ましい。更に、マグネシウムを
20〜30重量%含むリチウム・マグネシウム合金が好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As the non-aqueous electrolyte secondary battery that can be used in the present invention, any known non-aqueous electrolyte secondary battery can be used as long as it contains a negative electrode active material made of lithium. The non-aqueous electrolyte secondary battery will be described more specifically below. First, metallic lithium and lithium alloys can be used for the negative electrode that can be used in the present invention. Examples of the lithium alloy include lithium aluminum and lithium magnesium. These negative electrodes also function as a negative electrode active material. It is preferable to use a lithium-magnesium alloy for the negative electrode. Further, a lithium-magnesium alloy containing 20 to 30% by weight of magnesium is preferable.

【0009】一方、正極は、例えば、正極活物質、導電
剤及び結着剤等からなる。正極活物質としては、例え
ば、リチウムを含有するカルコゲン化物等が挙げられ、
より具体的には、LiCoO2 、LiNiO2 、LiM
nO2 等が挙げられる。導電剤としては、例えばアセチ
レンブラック、グラファイト、カーボン等が挙げられ
る。
On the other hand, the positive electrode comprises, for example, a positive electrode active material, a conductive agent and a binder. Examples of the positive electrode active material include a chalcogenide containing lithium,
More specifically, LiCoO 2 , LiNiO 2 , LiM
nO 2 and the like can be mentioned. Examples of the conductive agent include acetylene black, graphite and carbon.

【0010】結着剤としては、例えばテフロン樹脂、エ
チレン−プロピレン−ジエン三元共重合体等が挙げられ
る。また、正極及び負極は、必要に応じて、アルミニウ
ム、銅等の金属からなる集電体上に形成されていてもよ
い。電解液は、電解質及び有機溶媒からなる。
Examples of the binder include Teflon resin and ethylene-propylene-diene terpolymer. In addition, the positive electrode and the negative electrode may be formed on a current collector made of a metal such as aluminum or copper, if necessary. The electrolytic solution includes an electrolyte and an organic solvent.

【0011】有機溶媒としては、非水電解液二次電池用
電解液に使用できるものであれば特に限定されない。例
えば、プロピレンカーボネート、テトラヒドロフラン、
ジメチルスルホキシド、γ−ブチロラクロン、1,3−
ジオキソラン、4−メチル−1,3−ジオキソラン、
1,2−ジメトキシエタン、2−メチルテトラヒドロフ
ラン、スルホラン、ジエチルカーボネート、ジメチルホ
ルムアミド、アセトニトリル、ジメチルカーボネート、
エチレンカーボネート等が挙げられる。これら有機溶媒
は、単独でもよいが、組み合わせて使用してもよい。
The organic solvent is not particularly limited as long as it can be used in the electrolytic solution for a non-aqueous electrolytic solution secondary battery. For example, propylene carbonate, tetrahydrofuran,
Dimethyl sulfoxide, γ-butyrolaclone, 1,3-
Dioxolane, 4-methyl-1,3-dioxolane,
1,2-dimethoxyethane, 2-methyltetrahydrofuran, sulfolane, diethyl carbonate, dimethylformamide, acetonitrile, dimethyl carbonate,
Examples thereof include ethylene carbonate. These organic solvents may be used alone or in combination.

【0012】電解質としては、電解液中でリチウムイオ
ンを形成するものであれば特に限定されない。例えば、
LiPF6 、LiClO4 、LiBF4 、LiAs
6 、LiAlCl4 、CF3 CO2 Li、LiCF3
SO3 、LiSbF6 等が挙げられる。これら電解質
は、単独でもよいが、組み合わせて使用してもよい。更
に、正極及び負極の間に、電解液を保持するため及び、
正極と負極の短絡を防止するためにセパレーターを設け
ておいてもよい。セパレーターの材質は、電解液に溶か
されず、加工が容易な絶縁物であれば、特に限定されな
い。より具体的には、多孔質ポリプロピレン、多孔質ポ
リエチレン等が挙げられる。
The electrolyte is not particularly limited as long as it forms lithium ions in the electrolytic solution. For example,
LiPF 6 , LiClO 4 , LiBF 4 , LiAs
F 6 , LiAlCl 4 , CF 3 CO 2 Li, LiCF 3
SO 3 , LiSbF 6 and the like can be mentioned. These electrolytes may be used alone or in combination. Furthermore, for holding an electrolytic solution between the positive electrode and the negative electrode, and
A separator may be provided in order to prevent a short circuit between the positive electrode and the negative electrode. The material of the separator is not particularly limited as long as it is an insulator that is not dissolved in the electrolytic solution and can be easily processed. More specifically, porous polypropylene, porous polyethylene and the like can be mentioned.

【0013】非水電解液二次電池の形状は、円筒型、角
形、ボタン型、シート型等のいずれでもよい。図1にコ
イン型の非水電解液二次電池の概略断面図を示す。この
図1を簡単に説明する。まず、電池缶(1及び2)によ
り形成される容器内には、正極3、負極4、非水電解液
を保持する電解液保持材5及びセパレーター6が設置さ
れている。また、電池缶1と正極3間には集電体7が設
置されている。また、負極4は集電体9の上に設置さ
れ、集電体9と電池缶2との間にはバネ8が介在してい
る。なお、図1は単なる例示であり、本発明を限定する
ものではない。
The shape of the non-aqueous electrolyte secondary battery may be any of cylindrical type, prismatic type, button type, sheet type and the like. FIG. 1 shows a schematic sectional view of a coin type non-aqueous electrolyte secondary battery. This FIG. 1 will be briefly described. First, in the container formed by the battery cans (1 and 2), the positive electrode 3, the negative electrode 4, the electrolytic solution holding material 5 that holds the non-aqueous electrolytic solution, and the separator 6 are installed. A current collector 7 is installed between the battery can 1 and the positive electrode 3. The negative electrode 4 is provided on a current collector 9, and a spring 8 is interposed between the current collector 9 and the battery can 2. Note that FIG. 1 is merely an example and does not limit the present invention.

【0014】上記非水電解液二次電池に対して、本発明
は以下の如き手順で充電を行う。まず、非水電解液二次
電池の電池容量の少なくとも7割消費させる。ここで少
なくとも7割としたのは、7割未満の場合、本発明によ
る定電圧放電によって生じる死にリチウムの量が、本発
明の充電法を行わないことによって生じる死にリチウム
の量より多くなるからである。更に、電池容量の9割以
上放電させることが好ましい。7割消費したか否かの判
断は、例えば該電池の充電に要した電気量に対し、消費
電気量の比率を決定する方法、該電池の開路電圧を測定
し、7割消費時の開路電圧を比較する方法等が挙げられ
るが、これらに限定されるものではない。
The present invention charges the above non-aqueous electrolyte secondary battery in the following procedure. First, at least 70% of the battery capacity of the non-aqueous electrolyte secondary battery is consumed. The reason for setting at least 70% here is that if it is less than 70%, the amount of lithium that will die due to the constant voltage discharge according to the present invention will be greater than the amount of lithium that will die due to not performing the charging method of the present invention. is there. Furthermore, it is preferable to discharge 90% or more of the battery capacity. Whether or not 70% has been consumed is determined by, for example, a method of determining the ratio of the amount of electricity consumed to the amount of electricity required to charge the battery, measuring the open circuit voltage of the battery, and measuring the open circuit voltage at the time of 70% consumption. Examples of the method include, but are not limited to.

【0015】次に、充電開始前に上記消費時の開路電圧
よりも低い電圧まで更に放電する。ここで上記消費時の
開路電圧よりも低い電圧は、放電規制電圧+0.5V以
下の範囲が好ましく、放電規制電圧±0.1Vの範囲が
より好ましい。なお、電圧が、放電規制電圧+0.5V
以下の範囲の場合、電池容量を損なうことなく充放電効
率を改善することができる。更に、上記消費時の開路電
圧よりも低い電圧が、放電規制電圧±0.1Vの範囲の
場合、最大の電池容量が得られると共に正極の劣化を防
止でき、充放電効率を最も改善することができる。具体
的な上記消費時の開路電圧よりも低い電圧としては、放
電規制電圧が3Vのとき、3.5V以下、好ましくは
3.1〜2.9Vの範囲である。また、上記消費時の開
路電圧よりも低い電圧になるまでの放電は、0.1mA
/cm2 以下の電流密度下で行うことが好ましい。
Next, before charging is started, the battery is further discharged to a voltage lower than the open circuit voltage at the time of consumption. Here, the voltage lower than the open circuit voltage at the time of consumption is preferably in the range of discharge regulation voltage +0.5 V or less, and more preferably in the range of discharge regulation voltage ± 0.1 V. The voltage is the discharge regulation voltage + 0.5V
In the following range, the charge / discharge efficiency can be improved without impairing the battery capacity. Further, when the voltage lower than the open circuit voltage at the time of consumption is in the range of the discharge regulation voltage ± 0.1 V, the maximum battery capacity can be obtained, the deterioration of the positive electrode can be prevented, and the charging / discharging efficiency can be most improved. it can. A specific voltage lower than the open circuit voltage at the time of consumption is 3.5 V or less, preferably 3.1 to 2.9 V when the discharge regulation voltage is 3 V. Further, the discharge until the voltage becomes lower than the open circuit voltage at the time of consumption is 0.1 mA.
It is preferable to carry out at a current density of not more than / cm 2 .

【0016】次いで、上記放電した非水系二次電池は、
充電される。充電方法としては、特に限定されず、公知
の方法を使用することができる。例えば、0.5〜1m
A/cm2 の電流密度の定電流で充電規制電圧まで充電
を行うことが挙げられる。ここで、充電規制電圧とは、
非水系二次電池が理論的に完全に充電された際の電圧を
意味する。なお、充電は、充電規制電圧+0.05Vま
で行うことが好ましい。
Next, the discharged non-aqueous secondary battery is
Charged. The charging method is not particularly limited, and a known method can be used. For example, 0.5-1m
Charging to a charging regulation voltage with a constant current having a current density of A / cm 2 can be mentioned. Here, the charge regulation voltage is
It means the voltage when the non-aqueous secondary battery is theoretically fully charged. In addition, it is preferable that the charging is performed up to the charging regulation voltage + 0.05V.

【0017】更に、本発明の充電法は、一般の電気機器
において放電規制電圧を検知することにより消費完了
(満放電)と判断された電池にも適用することができ
る。これは次の理由による。即ち、非水電解液二次電池
の使用時における満放電の検知は、機器使用時に検知さ
れる電池電圧に基づいている。電圧測定時に機器は動作
中であるため、電池内では反応が進行しており、検知さ
れた電圧は、実際の電圧より、反応に起因する分極分だ
け低い値を示している。そのため、満放電検知時に、こ
の分極に基づく電圧分、電極中の活物質の消費が完全に
終了しておらず、デンドライトが存在することとなる。
従って、このような電池の場合に、上記本発明の充電法
を使用すれば、デンドライトの発生を抑制することがで
きる。
Furthermore, the charging method of the present invention can also be applied to a battery which is judged to be completely consumed (fully discharged) by detecting the discharge regulation voltage in a general electric device. This is for the following reason. That is, the detection of full discharge when the non-aqueous electrolyte secondary battery is used is based on the battery voltage detected when the device is used. Since the device is in operation at the time of voltage measurement, the reaction is proceeding in the battery, and the detected voltage shows a value lower than the actual voltage by the polarization amount caused by the reaction. Therefore, when the full discharge is detected, the consumption of the active material in the electrodes is not completely completed by the voltage based on this polarization, and dendrites are present.
Therefore, in the case of such a battery, generation of dendrite can be suppressed by using the charging method of the present invention.

【0018】なお、本発明における放電規制電圧とは、
非水系二次電池が理論的に完全に放電を終了した際の電
圧(即ち電圧−経時の放電曲線において電圧が急激に低
下する際の電圧)を基にして、該電池を使用する機器側
で該電池の放電終了を決定するための規制電圧である。
以下では、図2を参照して、本発明の充電法の概念を更
に説明する。図2中、11及び15はデンドライト、1
2は金属リチウムからなる負極、13は残存デンドライ
ト、14は溶出した負極をそれぞれ示している。
The discharge regulation voltage in the present invention means
Based on the voltage at which the non-aqueous secondary battery theoretically completely discharges (that is, the voltage at which the voltage sharply decreases in the voltage-aging discharge curve), the device side that uses the battery It is a regulation voltage for determining the end of discharge of the battery.
Hereinafter, the concept of the charging method of the present invention will be further described with reference to FIG. In FIG. 2, 11 and 15 are dendrites and 1
2 is a negative electrode made of metallic lithium, 13 is a residual dendrite, and 14 is a negative electrode that has been eluted.

【0019】まず、図2(a)は、n回目の充電後の負
極12の概略断面図である。この図に示すように、負極
の表面にはデンドライト11が形成されている。次に、
消費が進むにつれデンドライト11は電解液中に溶出
し、徐々に電圧が低下する。この後、放電規制電圧が検
知されれば消費が終了するが、この時、負極12の表面
は図2(b)に示す状態となる。つまり、デンドライト
11の基部が残存デンドライト13として残ると共に負
極12表面も一部溶出する(図中、溶出した負極1
4)。デンドライトの基部が残るのは、実際に検知され
た電圧が反応に起因する分極分だけ低い値を示している
ので、活物質を消費する前に消費が停止されるためであ
る。
First, FIG. 2A is a schematic sectional view of the negative electrode 12 after the n-th charge. As shown in this figure, dendrites 11 are formed on the surface of the negative electrode. next,
As the consumption proceeds, the dendrite 11 is eluted into the electrolytic solution, and the voltage gradually decreases. After that, if the discharge regulation voltage is detected, the consumption ends, but at this time, the surface of the negative electrode 12 is in the state shown in FIG. That is, the base of the dendrite 11 remains as the remaining dendrite 13 and the surface of the negative electrode 12 is also partially eluted (in the figure, the negative electrode 1 that has been eluted).
4). The base of the dendrite remains because the actually detected voltage has a value lower by the polarization amount due to the reaction, and the consumption is stopped before the active material is consumed.

【0020】従来では、次に充電を行うため、図2
(c)のように、残存デンドライト13の端部及び溶出
した負極14の凹部にリチウムが集中的に析出し、デン
ドライト15となる。このように従来法では、充放電を
繰り返すたびにデンドライトが多くかつ細かく析出する
こととなり、充放電可能な金属リチウムが減少すること
となる。
In the conventional case, charging is performed next, so that FIG.
As shown in (c), lithium is intensively deposited on the end portion of the residual dendrite 13 and the recessed portion of the negative electrode 14 that has been eluted, and becomes the dendrite 15. As described above, in the conventional method, each time charge / discharge is repeated, a large amount of dendrites are finely deposited, and the chargeable / dischargeable metallic lithium is reduced.

【0021】これに対して、本発明の充電法では、図2
(b)の後、少なくとも7割消費時の開路電圧よりも低
い電圧になるまで放電するので、図2(c)’のよう
に、負極12の表面が平坦になる。つまり、溶出せずに
残存するデンドライトを極力排除することができる。よ
って、充放電可能な金属リチウムの減少を防ぐことがで
きる。なお、図2(c)’の後、充電を行えば、図2
(a)の状態に戻ることとなる。
On the other hand, in the charging method of the present invention, as shown in FIG.
After (b), the discharge is performed until the voltage becomes at least lower than the open circuit voltage at the time of 70% consumption, so that the surface of the negative electrode 12 becomes flat as shown in FIG. That is, dendrites that remain without elution can be eliminated as much as possible. Therefore, it is possible to prevent reduction of chargeable / dischargeable metallic lithium. It should be noted that if charging is performed after FIG.
It returns to the state of (a).

【0022】[0022]

【実施例】【Example】

実施例1 金属リチウムからなる負極、正極活物質としてLiMn
4 、導電剤としてアセチレンブラック、結着剤として
ポリテトラフルオロエチレン(PTFE)を6:1:1
の重量比で混練した正極、エチレンカーボネートとジエ
チルカーボネートの等量混合溶媒に六フッ化リン酸リチ
ウムを1mol/リットル溶解させた電解液からなる非
水系二次電池を使用した。
Example 1 Negative electrode made of metallic lithium, LiMn as positive electrode active material
O 4 , acetylene black as a conductive agent, and polytetrafluoroethylene (PTFE) as a binder are 6: 1: 1.
A non-aqueous secondary battery comprising a positive electrode kneaded at a weight ratio of 1, an electrolytic solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in an equal amount mixed solvent of ethylene carbonate and diethyl carbonate was used.

【0023】まず、上記非水系二次電池に、0.66m
A/cm2 の定電流で充電規制電圧4.3Vまで充電し
た。次いで、放電深度X1 %(X1 は20〜100%の
任意の値)まで定電流で更に放電する定電流放電(放電
電流1mA/cm2 )と、放電規制電圧3.0Vでの定
電圧放電及び0.66mA/cm2 の定電流で充電規制
電圧4.3Vまで充電する定電流充電を1充放電サイク
ルとし、サイクル寿命Y1 (回)を測定した。放電深度
1 %とサイクル寿命Y1 (回)の関係を図3に示し
た。なお、サイクル寿命は、充電後の電池容量が、初期
容量の8割になったときの充放電の繰り返しの回数を意
味する。
First, 0.66 m is added to the non-aqueous secondary battery.
It was charged to a charge regulation voltage of 4.3 V with a constant current of A / cm 2 . Then, a constant current discharge (discharge current 1 mA / cm 2 ) that further discharges with a constant current up to a discharge depth X 1 % (X 1 is an arbitrary value of 20 to 100%), and a constant voltage at a discharge regulation voltage of 3.0 V. The cycle life Y 1 (times) was measured with one charge / discharge cycle consisting of discharging and constant current charging in which the charging regulation voltage was 4.3 V at a constant current of 0.66 mA / cm 2 . The relationship between the depth of discharge X 1 % and the cycle life Y 1 (times) is shown in FIG. The cycle life means the number of times charging and discharging are repeated when the battery capacity after charging reaches 80% of the initial capacity.

【0024】比較例1 0.66mA/cm2 の定電流で充電規制電圧4.3V
まで充電する定電流充電と、放電規制電圧3.0Vとし
て定電流放電を1充放電サイクルとする以外は実施例1
と同様にしてサイクル寿命Y2 (回)を測定した。な
お、放電深度をX 2 %(X2 は20〜100%の任意の
値)とし、放電深度X2 %とサイクル寿命Y2 (回)の
関係を図3に示した。
Comparative Example 1 0.66 mA / cmTwoRegulated voltage of 4.3V with constant current of
Constant current charging to charge up to and discharge regulation voltage 3.0V
Example 1 except that the constant current discharge is one charge / discharge cycle
Cycle life YTwo(Times) was measured. What
Oh, the depth of discharge is X Two% (XTwoIs 20-100% of any
Value) and the depth of discharge XTwo% And cycle life YTwo(Times)
The relationship is shown in FIG.

【0025】図3から明らかなとおり、放電深度が70
%以上となる深い放電(7割以上の消費)を行った電池
では、実施例1に記載された充電法を使用することによ
りサイクル寿命が向上することが判った。これに対し
て、比較例1の電池は、3.0Vまで実際には放電され
ていないため、溶出しきれなかったリチウムが残り、サ
イクル寿命が減少したものと考えられる。
As is apparent from FIG. 3, the depth of discharge is 70.
It has been found that the cycle life is improved by using the charging method described in Example 1 for the battery that has undergone deep discharge of 70% or more (consumption of 70% or more). On the other hand, the battery of Comparative Example 1 was not actually discharged to 3.0 V, so it is considered that lithium that could not be completely eluted remained and the cycle life was reduced.

【0026】実施例2 放電規制電圧B(V)を1.5、2、2.5、2.9、
3、3.1、3.5及び3.7とすること以外は、実施
例1と同様にしてサイクル寿命を測定した。結果を表1
に示した。
Example 2 The discharge regulation voltage B (V) is 1.5, 2, 2.5, 2.9,
The cycle life was measured in the same manner as in Example 1 except that the values were 3, 3.1, 3.5 and 3.7. Table 1 shows the results
It was shown to.

【0027】[0027]

【表1】 [Table 1]

【0028】表1は、放電規制電圧は3.5〜1.5V
の時、良好なサイクル寿命が得られることを示してい
る。この理由は、放電規制電圧を高くすると、放電規制
電圧より低い電圧下では、放電電流ではなく充電電流が
流れることとなる。そのため、負極ではデンドライトが
かえって成長することとなり、サイクル寿命が低下する
と考えられる。一方、放電規制電圧を低くすると、過放
電状態となり、正極が溶出し、劣化するためサイクル寿
命が低下すると考えられる。更に、3.0V(放電規制
電圧)+0.5V以下の範囲の電圧が良好なサイクル寿
命を与え、更に3.0V(放電規制電圧)±0.1Vの
範囲の電圧が最も良好なサイクル寿命を与えることが判
った。
Table 1 shows that the discharge regulation voltage is 3.5 to 1.5V.
At the time of, it shows that a good cycle life is obtained. The reason for this is that when the discharge regulation voltage is increased, the charging current, not the discharge current, flows under a voltage lower than the discharge regulation voltage. Therefore, it is considered that dendrites grow instead on the negative electrode and the cycle life is shortened. On the other hand, when the discharge regulation voltage is lowered, it is considered that the over-discharge state is caused and the positive electrode is eluted and deteriorated, so that the cycle life is shortened. Furthermore, a voltage in the range of 3.0 V (discharge regulation voltage) +0.5 V or less gives good cycle life, and a voltage in the range of 3.0 V (discharge regulation voltage) ± 0.1 V gives the best cycle life. I found out to give.

【0029】実施例3及び比較例2 負極としてマグネシウムを25重量%含むリチウム・マ
グネシウム合金を使用すること以外は、実施例1及び比
較例1と同様にしてサイクル寿命を測定した。結果を表
2に示した。なお、実施例3は実施例1、比較例2は比
較例1にそれぞれ対応している。
Example 3 and Comparative Example 2 The cycle life was measured in the same manner as in Example 1 and Comparative Example 1 except that a lithium-magnesium alloy containing 25% by weight of magnesium was used as the negative electrode. The results are shown in Table 2. In addition, Example 3 corresponds to Example 1 and Comparative Example 2 corresponds to Comparative Example 1, respectively.

【0030】[0030]

【表2】 [Table 2]

【0031】表2から、本発明の充電法には、リチウム
・マグネシウム合金からなる負極を使用することが好ま
しいことが判った。
From Table 2, it was found that it is preferable to use a negative electrode made of a lithium-magnesium alloy in the charging method of the present invention.

【0032】[0032]

【発明の効果】本発明の非水電解液二次電池の充電法
は、金属リチウム又はリチウム合金からなる負極、正極
及び電解液を有する非水電解液二次電池において、電池
容量の少なくとも7割消費された該非水電解液二次電池
を、充電開始前に前記消費時の開路電圧よりも低い電圧
まで更に放電させた後充電することを特徴とする。この
方法によれば、電池のサイクル寿命を向上させることが
できる。
The method for charging a non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery having a negative electrode made of metallic lithium or a lithium alloy, a positive electrode and an electrolytic solution, and at least 70% of the battery capacity. It is characterized in that the consumed non-aqueous electrolyte secondary battery is further discharged to a voltage lower than the open circuit voltage at the time of consumption before charging and then charged. According to this method, the cycle life of the battery can be improved.

【0033】更に、所望の電圧が、放電規制容量+0.
5V以下の範囲、より好ましくは放電規制容量±0.1
Vの範囲であれば、サイクル寿命をより向上させること
ができる。
Furthermore, the desired voltage is the discharge regulation capacity +0.
Range of 5 V or less, more preferably discharge regulation capacity ± 0.1
Within the range of V, the cycle life can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】コイン型の非水電解液二次電池の概略断面図で
ある。
FIG. 1 is a schematic cross-sectional view of a coin type non-aqueous electrolyte secondary battery.

【図2】本発明の充電法の概念説明図である。FIG. 2 is a conceptual explanatory diagram of a charging method of the present invention.

【図3】実施例1及び比較例1の放電深度とサイクル寿
命の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the depth of discharge and cycle life in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1、2 電池缶 3 正極 4、12 負極 5 電解液保持材 6 セパレーター 7、9 集電体 8 バネ 11、15はデンドライト 13 残存デンドライト 14 溶出した負極 1, 2 Battery can 3 Positive electrode 4, 12 Negative electrode 5 Electrolyte holding material 6 Separator 7, 9 Current collector 8 Spring 11, 15 is dendrite 13 Residual dendrite 14 Eluted negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 明石 忍 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 渡辺 勲 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 宮下 勉 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinobu Akashi 4-1-1 Kamitadanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Isamu Watanabe 4-chome, Kamitadanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture No. 1 within Fujitsu Limited (72) Inventor Tsutomu Miyashita 4-1-1 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Within Fujitsu Limited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウム又はリチウム合金からなる
負極、正極及び電解液を有する非水電解液二次電池にお
いて、電池容量の少なくとも7割消費された該非水電解
液二次電池を、充電開始前に前記消費時の開路電圧より
も低い電圧まで更に放電させた後充電することを特徴と
する非水電解液二次電池の充電法。
1. A non-aqueous electrolyte secondary battery having a negative electrode made of metallic lithium or a lithium alloy, a positive electrode, and an electrolyte solution, the non-aqueous electrolyte secondary battery having at least 70% of its battery capacity consumed before starting charging. In the method for charging a non-aqueous electrolyte secondary battery, the battery is further discharged to a voltage lower than the open circuit voltage at the time of consumption and then charged.
JP8091296A 1996-04-12 1996-04-12 Method for charging non-aqueous electrolyte secondary battery Withdrawn JPH09283184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8091296A JPH09283184A (en) 1996-04-12 1996-04-12 Method for charging non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8091296A JPH09283184A (en) 1996-04-12 1996-04-12 Method for charging non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09283184A true JPH09283184A (en) 1997-10-31

Family

ID=14022516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8091296A Withdrawn JPH09283184A (en) 1996-04-12 1996-04-12 Method for charging non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09283184A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP2003518713A (en) * 1999-12-21 2003-06-10 モルテック・コーポレーション How to charge a lithium-sulfur battery
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2009181907A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Charging method and charging system for lithium-ion secondary battery
WO2019139424A1 (en) * 2018-01-11 2019-07-18 주식회사 엘지화학 Method for fabrication of lithium metal secondary battery comprising lithium electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP2003518713A (en) * 1999-12-21 2003-06-10 モルテック・コーポレーション How to charge a lithium-sulfur battery
JP4801304B2 (en) * 1999-12-21 2011-10-26 シオン・パワー・コーポレーション How to charge a lithium-sulfur battery
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2009181907A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Charging method and charging system for lithium-ion secondary battery
WO2019139424A1 (en) * 2018-01-11 2019-07-18 주식회사 엘지화학 Method for fabrication of lithium metal secondary battery comprising lithium electrode
US11699793B2 (en) 2018-01-11 2023-07-11 Lg Energy Solution, Ltd. Method for fabrication of lithium metal secondary battery comprising lithium electrode

Similar Documents

Publication Publication Date Title
US7494746B2 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same
EP0482287B2 (en) A non-aqueous secondary electrochemical battery
JP4049506B2 (en) Lithium secondary battery
KR100802851B1 (en) Non-aqueous electrolyte secondary battery
Tobishima et al. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells
US20030068562A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JPH07122296A (en) Non-aqueous electrolyte secondary battery
KR100644074B1 (en) COPPER COLLECTOR FOR SECONDARY BATTERY COMPRISING Cu-NITRILE COMPOUND COMPLEX FORMED ON SURFACE THEREOF
EP3863085A1 (en) Method for manufacturing anode for secondary battery
US6544685B2 (en) Electrolyte for lithium secondary battery
JP2004185931A (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP2000113909A (en) Storing method for lithium secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP3721734B2 (en) Non-aqueous electrolyte secondary battery
JP2001250559A (en) Lithium secondary cell
JPH09283184A (en) Method for charging non-aqueous electrolyte secondary battery
JP2002042864A (en) Nonaqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JPH09204933A (en) Lithium secondary battery
CN110419140B (en) Method for regenerating lithium secondary battery
JPH07282848A (en) Nonaqueous electrolytic battery and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701