JP2001068088A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001068088A
JP2001068088A JP24480699A JP24480699A JP2001068088A JP 2001068088 A JP2001068088 A JP 2001068088A JP 24480699 A JP24480699 A JP 24480699A JP 24480699 A JP24480699 A JP 24480699A JP 2001068088 A JP2001068088 A JP 2001068088A
Authority
JP
Japan
Prior art keywords
separator
treatment
polyethylene
battery
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24480699A
Other languages
Japanese (ja)
Inventor
Masatoshi Takahashi
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24480699A priority Critical patent/JP2001068088A/en
Publication of JP2001068088A publication Critical patent/JP2001068088A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve wettability of a separator and thereby to sufficiently retain an electrolytic solution, even if a charging-discharging cycle is repeated by forming the separator with a fine porous film made of polyethylene to which a fluorinating treatment, a sulfonating treatment and a corona discharge treatment are applied. SOLUTION: A fine porous film, made of polyethylene used as a separator in this nonaqueous electrolyte secondary battery, is fluorinated in a fluorine gas atmosphere. A power generation element is manufactured by rolling a positive and negative electrodes via the separator and inserted into an armoring can. A cylindrical battery is composed by pouring an electrolytic solution into the armoring can and by sealing it. Alternatively, after the fine porous film made of polyethylene is immersed in fuming sulfuric acid, it is cleaned with dilute sulfuric acid, and sulfuric acid radicals are removed by immersing it in an alkaline aqueous solution. Then, a separator fully cleaned and undergone a sulfonating treatment is used. Alternatively, a separator, to which a corona discharge treatment is applied by carrying out arc-discharging at a high voltage on the surface of the fine porous film made of polyethylene, is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は遷移金属酸化物を主
体とする正極と、炭素材料又は酸化物を主体とする負極
とが、セパレータを介して配置された発電要素を備える
非水電解液二次電池に関するものである。
The present invention relates to a non-aqueous electrolyte comprising a power generating element in which a positive electrode mainly composed of a transition metal oxide and a negative electrode mainly composed of a carbon material or an oxide are arranged via a separator. It relates to the next battery.

【0002】[0002]

【従来の技術】近年、LiCoO2 等の遷移金属酸化物
等を正極材料とする一方、金属リチウム又はリチウムイ
オンを吸蔵、放出し得る合金、酸化物又は炭素材料を負
極材料とする非水電解液二次電池が、高容量化が可能な
電池として注目されている。
2. Description of the Related Art In recent years, a non-aqueous electrolyte using a transition metal oxide such as LiCoO 2 as a positive electrode material and an alloy, oxide or carbon material capable of occluding and releasing metallic lithium or lithium ions as a negative electrode material. Secondary batteries are attracting attention as batteries capable of increasing capacity.

【0003】ここで、上記負極材料のうち金属リチウム
又はリチウムを主体とする材料を用いた場合には、充放
電により樹枝状のリチウムが析出(デンドライトが発
生)し、電池内で短絡するおそれがある。そこで、特開
平5−114394号公報等に示されるように、セパレ
ータをフッ化処理することにより、上記デンドライトの
発生を抑制するような電池が提案されている。
[0003] When metal lithium or a material mainly composed of lithium is used among the above-mentioned negative electrode materials, dendritic lithium is precipitated (dendrite is generated) by charging and discharging, and there is a possibility that a short circuit occurs in the battery. is there. Thus, as disclosed in Japanese Patent Application Laid-Open No. 5-114394, a battery has been proposed which suppresses the generation of the dendrite by subjecting the separator to fluorination treatment.

【0004】一方、前記負極材料のうち酸化物又は炭素
材料を負極材料として用い、正極材料として遷移金属酸
化物を用い、更にこれら材料から成る正負極をポリエチ
レン製の微多孔膜を介して渦巻き状に巻回された非水電
解液二次電池においては、充放電の際、前記デンドライ
トの発生はないので、信頼性の高い電池を得ることがで
きる。
On the other hand, among the above-mentioned negative electrode materials, an oxide or carbon material is used as a negative electrode material, a transition metal oxide is used as a positive electrode material, and positive and negative electrodes made of these materials are spirally interposed through a microporous polyethylene film. In the non-aqueous electrolyte secondary battery wound around, the above-mentioned dendrite does not occur at the time of charging and discharging, so that a highly reliable battery can be obtained.

【0005】しかしながら、上記の非水電解液二次電池
においては、充放電の際の膨張、収縮により、セパレー
タに電解液を保持しておくことが困難となり、充放電サ
イクルが進行するにしたがって、セパレータに保持され
た電解液量が減少する。この結果、充放電サイクル経過
に伴って反応が不均一となって、サイクル特性が低下す
るという課題を有していた。
However, in the above non-aqueous electrolyte secondary battery, it is difficult to hold the electrolyte in the separator due to expansion and contraction at the time of charge and discharge. The amount of electrolyte held in the separator decreases. As a result, there has been a problem that the reaction becomes non-uniform as the charge / discharge cycle progresses, and the cycle characteristics deteriorate.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来の課
題を考慮したものであって、デンドライトの発生を防止
しつつ、充放電サイクルを繰り返してもセパレータに電
解液を保持させることにより、サイクル特性を格段に向
上させることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned conventional problems, and it is intended to prevent the generation of dendrites and maintain the electrolyte in a separator even after repeated charge / discharge cycles. The purpose is to significantly improve the characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、遷移金属酸
化物を主体とする正極と、炭素材料又は酸化物を主体と
する負極とが、セパレータを介して配置された発電要素
を備える非水電解液二次電池であって、上記セパレータ
が、フッ素化処理、スルホン化処理、又はコロナ放電処
理が施されたポリエチレン製微多孔膜から成ることを特
徴とする。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention comprises a positive electrode mainly composed of a transition metal oxide and a carbon material or oxide mainly. The negative electrode is a non-aqueous electrolyte secondary battery including a power generating element disposed via a separator, wherein the separator is a fluorinated, sulfonated, or corona-discharge-treated microporous polyethylene. It is characterized by comprising a film.

【0008】上記の如く、セパレータに、フッ素化処
理、スルホン化処理、又はコロナ放電処理が施されてい
れば、セパレータの濡れ性が向上して、電解液を弾き難
くなる。したがって、充放電サイクルを繰り返し行った
場合であっても、セパレータに電解液を十分に保持させ
ることができる。
As described above, if the separator has been subjected to the fluorination treatment, the sulfonation treatment, or the corona discharge treatment, the wettability of the separator is improved, and it becomes difficult to repel the electrolytic solution. Therefore, even when the charge and discharge cycle is repeatedly performed, the separator can sufficiently retain the electrolytic solution.

【0009】[0009]

【発明の実施の形態】〔第1の形態〕 (正極の作製)正極活物質としてのLiCoO2 を90
重量%と、導電剤としてのカーボンブラックを5重量%
と、結着剤としてのポリフッ化ビニリデンを5重量%
と、溶剤としてのN−メチル−2−ピロリドン(NM
P)溶液とを混合してスラリーを調製した後、このスラ
リーを正極集電体としてのアルミニウム箔(厚み:20
μm)の両面に塗布した。その後、溶剤を乾燥し、ロー
ラーで所定の厚みにまで圧縮した後、所定の幅及び長さ
になるように切断して、正極を作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment (Preparation of Positive Electrode) LiCoO 2 as a positive electrode active material is 90
5% by weight of carbon black as a conductive agent
And 5% by weight of polyvinylidene fluoride as a binder
And N-methyl-2-pyrrolidone (NM
P) solution and a slurry was prepared, and this slurry was used as an aluminum foil (thickness: 20) as a positive electrode current collector.
μm). Thereafter, the solvent was dried, compressed to a predetermined thickness by a roller, and then cut to a predetermined width and length to produce a positive electrode.

【0010】(負極の作製)負極活物質としての黒鉛粉
末を95重量%と、結着剤としてのポリフッ化ビニリデ
ンを5重量%と、溶剤としてのNMP溶液とを混合して
スラリーを調製した後、このスラリーを負極集電体とし
ての銅箔(厚み:16μm)の両面に塗布した。その
後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮し
た後、所定の幅及び長さになるように切断して、負極を
作製した。
(Preparation of Negative Electrode) A slurry was prepared by mixing 95% by weight of graphite powder as an active material for an anode, 5% by weight of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. The slurry was applied to both surfaces of a copper foil (thickness: 16 μm) as a negative electrode current collector. Thereafter, the solvent was dried, compressed to a predetermined thickness by a roller, and then cut to a predetermined width and length to produce a negative electrode.

【0011】(セパレータの作製)ポリエチレン製微多
孔膜をフッ素ガス雰囲気中におくことにより、フッ素化
処理がされたセパレータ(厚み:25μm)を作製し
た。
(Preparation of Separator) A fluorinated separator (thickness: 25 μm) was prepared by placing a microporous polyethylene membrane in a fluorine gas atmosphere.

【0012】(電池の作製)上記正極と負極とを上記セ
パレータを介して巻回して発電要素を作製した後、この
発電要素を有底筒状の外装缶内に挿入した。最後に、E
C(エチレンカーボネート)とDEC(ジエチルカーボ
ネート)とが体積比で40:60の割合で混合された混
合溶媒に、LiPF6 が1M(モル/リットル)の割合
で溶解された電解液を外装缶内に注入した後、封口板を
外装缶の開口端部にかしめ固定することにより、円筒形
の電池(直径18mm、高さ650mm)を作製した。
(Preparation of Battery) After the positive electrode and the negative electrode were wound with the separator interposed therebetween to prepare a power generating element, the power generating element was inserted into a bottomed cylindrical outer can. Finally, E
An electrolytic solution in which LiPF 6 is dissolved at a ratio of 1 M (mol / liter) in a mixed solvent in which C (ethylene carbonate) and DEC (diethyl carbonate) are mixed at a volume ratio of 40:60 is placed in an outer can. After that, a cylindrical battery (diameter 18 mm, height 650 mm) was produced by caulking and fixing the sealing plate to the open end of the outer can.

【0013】〔第2の形態〕以下のようにしてセパレー
タを作製する他は、上記第1の形態と同様にして電池を
作製した。ポリエチレン製微多孔膜を発煙硫酸中に1〜
2分間浸漬した後、希硫酸で数回洗浄し、更にアルカリ
水溶液(KOH)に浸漬して硫酸根を除去し、十分洗浄
することにより、スルホン化処理がされたセパレータ
(厚み:25μm)を作製した。
[Second Embodiment] A battery was manufactured in the same manner as in the first embodiment except that a separator was manufactured as follows. A polyethylene microporous membrane is placed in fuming sulfuric acid for 1 to
After soaking for 2 minutes, washing with dilute sulfuric acid several times, further immersing in an alkaline aqueous solution (KOH) to remove sulfate groups, and washing sufficiently to produce a sulfonated separator (thickness: 25 μm) did.

【0014】〔第3の形態〕以下のようにしてセパレー
タを作製する他は、上記第1の形態と同様にして電池を
作製した。ポリエチレン製微多孔膜の表面で高電圧でア
ーク放電することにより、コロナ放電処理がされたセパ
レータ(厚み:25μm)を作製した。
[Third Embodiment] A battery was manufactured in the same manner as in the first embodiment except that a separator was manufactured as follows. By performing arc discharge at a high voltage on the surface of the polyethylene microporous membrane, a separator (thickness: 25 μm) subjected to corona discharge treatment was produced.

【0015】ここで、上記正極材料としては上記LiC
oO2 の他、例えば、LiNiO2、LiMn2 4
いはこれらの複合体等が好適に用いられ、また負極材料
としては上記炭素材料の他、酸化物(スズとリンとの混
合物の酸化物、鉄の酸化物、タングステンの酸化物)等
が好適に用いられる。更に、電解液の溶媒としては上記
のものに限らず、プロピレンカーボネート、ビニレンカ
ーボネート、γ−ブチロラクトンなどの比較的比誘電率
が高い溶液と、ジエチルカーボネート、メチルエチルカ
ーボネート、テトラヒドロフラン、1,2−ジメトキシ
エタン、1,3−ジオキソラン、2−メトキシテトラヒ
ドロフラン、ジエチルエーテル等の低粘度低沸点溶媒と
を適度な比率で混合した溶媒を用いることができる。ま
た、電解液の電解質としては、上記LiPF6 の他、L
iAsF6 、LiClO4 、LiBF4 、LiCF3
3 等を用いることができる。
Here, as the positive electrode material, the above LiC is used.
In addition to oO 2 , for example, LiNiO 2 , LiMn 2 O 4 or a composite thereof is suitably used. In addition to the above-mentioned carbon materials, oxides (oxides of a mixture of tin and phosphorus, Iron oxide, tungsten oxide) and the like are preferably used. Furthermore, the solvent of the electrolytic solution is not limited to the above, and a solution having a relatively high relative dielectric constant such as propylene carbonate, vinylene carbonate, γ-butyrolactone, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxy A solvent obtained by mixing a low-viscosity low-boiling solvent such as ethane, 1,3-dioxolan, 2-methoxytetrahydrofuran, or diethyl ether at an appropriate ratio can be used. Further, as the electrolyte of the electrolytic solution, in addition to the above-mentioned LiPF 6 ,
iAsF 6 , LiClO 4 , LiBF 4 , LiCF 3 S
O 3 or the like can be used.

【0016】[0016]

【実施例】〔実施例1〕実施例1としては、上記発明の
実施の形態における第1の形態に示す方法と同様の方法
にて作製した電池を用いた。このようにして作製した電
池を、以下、本発明電池A1と称する。
[Example 1] In Example 1, a battery manufactured by a method similar to the method shown in the first embodiment in the above embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention.

【0017】〔実施例2〕実施例2としては、上記発明
の実施の形態における第2の形態に示す方法と同様の方
法にて作製した電池を用いた。このようにして作製した
電池を、以下、本発明電池A2と称する。
Example 2 In Example 2, a battery manufactured by a method similar to the method described in the second embodiment in the above embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A2 of the invention.

【0018】〔実施例3〕実施例3としては、上記発明
の実施の形態における第3の形態に示す方法と同様の方
法にて作製した電池を用いた。このようにして作製した
電池を、以下、本発明電池A3と称する。
Example 3 In Example 3, a battery manufactured by a method similar to the method described in the third embodiment in the above embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A3 of the invention.

【0019】〔比較例1〕セパレータにフッ素化処理を
施さない(ポリエチレン製微多孔膜をそのままセパレー
タとして用いる)他は、上記実施例1と同様にして電池
を作製した。このようにして作製した電池を、以下、比
較電池X1と称する。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that the separator was not subjected to fluorination treatment (a polyethylene microporous membrane was used as the separator as it was). The battery fabricated in this manner is hereinafter referred to as Comparative Battery X1.

【0020】〔比較例2〜5〕負極活物質として、黒鉛
の代わりにリチウム金属を用いる他は、上記実施例1〜
実施例3及び比較例1と同様にして電池を作製した。こ
のようにして作製した電池を、以下それぞれ、比較電池
X2〜X5と称する。
[Comparative Examples 2 to 5] Except that lithium metal was used instead of graphite as the negative electrode active material,
A battery was produced in the same manner as in Example 3 and Comparative Example 1. The batteries fabricated in this manner are hereinafter referred to as comparative batteries X2 to X5, respectively.

【0021】〔実験〕本発明電池A1〜A3及び比較電
池X1〜X5において、下記の条件で200サイクル充
放電を行い、初期容量と200サイクル後の容量とを調
べたので、その結果を表1に示す。
[Experiment] The batteries A1 to A3 of the present invention and the comparative batteries X1 to X5 were charged and discharged for 200 cycles under the following conditions, and the initial capacity and the capacity after 200 cycles were examined. Shown in

【0022】充電条件:定電流、定電圧充電であり、具
体的には、1600mAの電流で電池電圧が4.1Vに
なるまで充電。 放電条件:定電流放電であり、具体的には、1600m
Aの電流で電池電圧が2.75Vになるまで放電。
Charging conditions: Constant current and constant voltage charging, specifically charging at a current of 1600 mA until the battery voltage reaches 4.1V. Discharge condition: constant current discharge, specifically 1600 m
Discharge until the battery voltage reaches 2.75 V with the current A.

【0023】[0023]

【表1】 [Table 1]

【0024】上記表1から明らかなように、初期容量を
比較した場合には、本発明電池A1〜A3と比較電池X
1とは略同等であるが、200サイクル後の容量を比較
した場合には、本発明電池A1〜A3は比較電池X1に
比べて容量が大きくなっていることが認められる。
As is clear from Table 1, when the initial capacities were compared, the batteries A1 to A3 of the present invention and the comparative battery X
However, when the capacities after 200 cycles are compared, it is recognized that the batteries A1 to A3 of the present invention have larger capacities than the comparative battery X1.

【0025】これは、本発明電池A1〜A3ではセパレ
ータに、フッ素化処理、スルホン化処理、又はコロナ放
電処理が施されているので、セパレータの濡れ性が向上
して、電解液を弾き難くなる。したがって、充放電サイ
クルを繰り返し行った場合であっても、セパレータに電
解液を十分に保持させることができるので、サイクル特
性が向上する。これに対して、比較電池X1では上記処
理がなされていないため、セパレータの濡れ性が悪く、
電解液を弾き易くなる。したがって、充放電サイクルを
繰り返し行った場合には、セパレータに電解液を十分に
保持させることができず、サイクル特性が低下する。
This is because in the batteries A1 to A3 of the present invention, the separator is subjected to the fluorination treatment, the sulfonation treatment, or the corona discharge treatment, so that the wettability of the separator is improved and the electrolyte is hardly repelled. . Therefore, even when the charge / discharge cycle is repeatedly performed, the separator can sufficiently retain the electrolytic solution, so that the cycle characteristics are improved. On the other hand, in the comparative battery X1, the above treatment was not performed, so that the wettability of the separator was poor.
It becomes easier to flip the electrolyte. Therefore, when the charge / discharge cycle is repeatedly performed, the electrolyte cannot be sufficiently held in the separator, and the cycle characteristics deteriorate.

【0026】また、初期容量を比較した場合には、本発
明電池A1〜A3と比較電池X2〜X5とは略同等であ
るが、200サイクル後の容量を比較した場合には、本
発明電池A1〜A3は比較電池X2〜X5に比べて容量
が格段に大きくなっていることが認められる。したがっ
て、本発明は、負極に黒鉛等の炭素材料を用いた場合に
おいて、十分に発揮されることが分かる。
When the initial capacities are compared, the batteries A1 to A3 of the present invention are almost the same as the comparative batteries X2 to X5, but when the capacities after 200 cycles are compared, the batteries A1 to A1 of the present invention are compared. It is recognized that the capacity of A3 is much larger than those of the comparative batteries X2 to X5. Therefore, it can be seen that the present invention is sufficiently exerted when a carbon material such as graphite is used for the negative electrode.

【0027】但し、本発明者らが実験したところ、負極
に、スズとリンとの混合物の酸化物、鉄の酸化物、又は
タングステンの酸化物等の酸化物を用いた場合であって
も、上記と同様の効果を発揮しうることを確認した。
However, according to experiments conducted by the present inventors, even when an oxide such as an oxide of a mixture of tin and phosphorus, an oxide of iron, or an oxide of tungsten is used for the negative electrode, It was confirmed that the same effect as above could be exerted.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
セパレータの濡れ性が向上して、電解液を弾き難くなる
ので、充放電サイクルを繰り返し行った場合であって
も、セパレータに電解液を十分に保持させることがで
き、この結果デンドライトの発生を防止しつつ、サイク
ル特性を飛躍的に向上させることができるといった優れ
た効果を奏する。
As described above, according to the present invention,
Since the separator wettability is improved and the electrolyte is less likely to be repelled, even if the charge / discharge cycle is repeated, the separator can sufficiently retain the electrolyte, thereby preventing the generation of dendrite. In addition, there is an excellent effect that the cycle characteristics can be dramatically improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属酸化物を主体とする正極と、炭
素材料又は酸化物を主体とする負極とが、セパレータを
介して配置された発電要素を備える非水電解液二次電池
であって、 上記セパレータが、フッ素化処理、スルホン化処理、又
はコロナ放電処理が施されたポリエチレン製微多孔膜か
ら成ることを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery including a power generating element in which a positive electrode mainly composed of a transition metal oxide and a negative electrode mainly composed of a carbon material or an oxide are arranged via a separator. A non-aqueous electrolyte secondary battery, wherein the separator is made of a polyethylene microporous membrane that has been subjected to a fluorination treatment, a sulfonation treatment, or a corona discharge treatment.
JP24480699A 1999-08-31 1999-08-31 Nonaqueous electrolyte secondary battery Pending JP2001068088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24480699A JP2001068088A (en) 1999-08-31 1999-08-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24480699A JP2001068088A (en) 1999-08-31 1999-08-31 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001068088A true JP2001068088A (en) 2001-03-16

Family

ID=17124230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24480699A Pending JP2001068088A (en) 1999-08-31 1999-08-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001068088A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412997B2 (en) 2013-05-31 2016-08-09 Sony Corporation Battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system
CN106784553A (en) * 2016-12-27 2017-05-31 深圳中兴创新材料技术有限公司 The preparation method of ceramic coating MIcroporous polyolefin film, MIcroporous polyolefin film and application
KR101823461B1 (en) * 2013-10-30 2018-01-30 주식회사 엘지화학 Winding processing system for fabricating electrode assembly of secondary battery
WO2020231121A1 (en) * 2019-05-14 2020-11-19 주식회사 엘지화학 Lithium secondary battery
CN115020917A (en) * 2022-06-30 2022-09-06 江苏中兴派能电池有限公司 Ceramic composite diaphragm, preparation method thereof and lithium ion battery
US11984616B2 (en) 2019-05-14 2024-05-14 Lg Energy Solution, Ltd. Lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412997B2 (en) 2013-05-31 2016-08-09 Sony Corporation Battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system
US9548486B2 (en) 2013-05-31 2017-01-17 Sony Corporation Battery
US9673445B2 (en) 2013-05-31 2017-06-06 Sony Corporation Battery
US9819006B2 (en) 2013-05-31 2017-11-14 Sony Corporation Battery
US10431809B2 (en) 2013-05-31 2019-10-01 Murata Manufacturing Co., Ltd. Battery
KR101823461B1 (en) * 2013-10-30 2018-01-30 주식회사 엘지화학 Winding processing system for fabricating electrode assembly of secondary battery
CN106784553A (en) * 2016-12-27 2017-05-31 深圳中兴创新材料技术有限公司 The preparation method of ceramic coating MIcroporous polyolefin film, MIcroporous polyolefin film and application
WO2020231121A1 (en) * 2019-05-14 2020-11-19 주식회사 엘지화학 Lithium secondary battery
US11984616B2 (en) 2019-05-14 2024-05-14 Lg Energy Solution, Ltd. Lithium secondary battery
CN115020917A (en) * 2022-06-30 2022-09-06 江苏中兴派能电池有限公司 Ceramic composite diaphragm, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
JP4049506B2 (en) Lithium secondary battery
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
US10205164B2 (en) Porous silicon-based anode active material, method for preparing the same, and lithium secondary battery comprising the same
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
CN112335077B (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
JP2000021407A (en) Lithium secondary battery
JP2001250559A (en) Lithium secondary cell
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JPH06310126A (en) Nonaquous electrolytic secondary battery
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP2001068088A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP4711319B2 (en) Non-aqueous secondary battery
JPH11312516A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP3877147B2 (en) Method for producing positive electrode for lithium battery
JP2004273132A (en) Electrode and battery using the same
JP2004095463A (en) Lithium secondary battery and its manufacturing method
JP3596225B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP2001015168A (en) Lithium secondary battery
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JPH0750162A (en) Negative electrode for lithium secondary battery
JP2000058118A (en) Nonaqueous electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery