JPH09279231A - Production of ferritic stainless steel excellent in corrosion resistance - Google Patents

Production of ferritic stainless steel excellent in corrosion resistance

Info

Publication number
JPH09279231A
JPH09279231A JP8860996A JP8860996A JPH09279231A JP H09279231 A JPH09279231 A JP H09279231A JP 8860996 A JP8860996 A JP 8860996A JP 8860996 A JP8860996 A JP 8860996A JP H09279231 A JPH09279231 A JP H09279231A
Authority
JP
Japan
Prior art keywords
stainless steel
corrosion resistance
ferritic stainless
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8860996A
Other languages
Japanese (ja)
Inventor
Masayuki Abe
阿部  雅之
Ken Kimura
謙 木村
Izumi Muto
泉 武藤
Hiroshi Kihira
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8860996A priority Critical patent/JPH09279231A/en
Publication of JPH09279231A publication Critical patent/JPH09279231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a ferritic stainless steel excellent in corrosion resistance by executing the modification of nonmetallic inclusions causing the generation of rusting in a ferritic stainless steel used in an atmospheric wet environment without deteriorating its productivity. SOLUTION: A steel contg. 0.001 to 0.080% C, 0.001 to 0.050% N, 15.0 to 35.0% Cr, <=0.010% S, <=0.04% P, 0.06 to 0.25% Ti, 0.01 to 1.0% Mn, 0.01 to 1.0% Si and 0.01 to 0.050% Al also so as to satisfy 0.15×Ti or above, <=0.010% O, and the balance inevitable impurities is heated at a heating temp. satisfying the inequality, 0.25>=Ti(%)>=(1.28×10<-3> .HT-1.37)×Mn(%)+0.06 (wherein, HT is heating temp. ( deg.C) before hot rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、屋根や壁等の建築
建材用外装材、鉄道車両等の輸送機器の外板などで湿潤
大気環境中で使用されるフェライト系ステンレス鋼の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ferritic stainless steel used in a humid atmospheric environment for exterior materials for building construction materials such as roofs and walls, and outer panels of transportation equipment such as railway vehicles. Is.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼はオーステナ
イト系ステンレス鋼に比べてNi含有量が少なく低価格
であるため、厨房器具等をはじめ広く使用されている。
また、低コストに加えて熱膨張率が小さいことからMo
を含有させたものは、近年海浜地区等の建材として使用
されることが多くなってきている。
2. Description of the Related Art Ferritic stainless steel is widely used in kitchen appliances and the like because it has a lower Ni content and is less expensive than austenitic stainless steel.
Further, in addition to low cost, the coefficient of thermal expansion is small, so Mo
In recent years, the materials containing s have been increasingly used as building materials in beach areas and the like.

【0003】このような海浜地区も含めた大気湿潤環境
での耐食性を確保するためには、基本成分の高CrやM
o添加が有効であることが知られている。このほかに耐
食性を安定化させるためには、基本成分の高耐食化と同
時に発銹起点となりやすい非金属介在物の制御が必要で
あることも知られている。フェライト系ステンレス鋼で
は、鉄と鋼(1979、P.S329)に開示されているように、
Tiを0.3%以上添加することによって非金属介在物
を改質して耐銹性を改善する方法が知られている。しか
し、Tiを0.3%以上含有させると、鋳造時のノズル
詰まりや疵の発生を招き、また靭性が低下するなど製造
性が著しく劣り、多量のTiを用いない方法が望まれて
いた。
In order to secure the corrosion resistance in the atmospheric humid environment including such beach areas, the basic components such as high Cr and M are contained.
It is known that addition of o is effective. In addition, in order to stabilize the corrosion resistance, it is also known that it is necessary to increase the corrosion resistance of the basic components and at the same time control non-metallic inclusions that tend to be the starting point of rusting. In ferritic stainless steel, as disclosed in Iron and Steel (1979, P.S329),
There is known a method of improving the rust resistance by modifying non-metallic inclusions by adding Ti in an amount of 0.3% or more. However, when Ti is contained in an amount of 0.3% or more, nozzle clogging and flaws are generated during casting, and the toughness is lowered, resulting in markedly poor manufacturability, and a method that does not use a large amount of Ti has been desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、大気湿潤環
境中で使用されるフェライト系ステンレス鋼の製造時の
問題点である鋳造時のノズル詰まりやきずの発生靭性低
下などを発生させることなく、発銹起点となる非金属介
在物の改質を行う耐食性の優れたフェライト系ステンレ
ス鋼の提供を目的とする。
SUMMARY OF THE INVENTION The present invention does not cause problems such as nozzle clogging during casting and flaw generation and toughness reduction during casting, which are problems during the production of ferritic stainless steel used in an atmospheric humid environment. An object of the present invention is to provide a ferritic stainless steel having excellent corrosion resistance, which is capable of modifying a non-metallic inclusion that becomes a starting point of rusting.

【0005】[0005]

【課題を解決するための手段】本発明者等は、多量のT
iを用いずに非金属介在物を制御する方法を検討した。
まず大気暴露試験材の結果から、発銹起点として非金属
介在物のうち特にMnSがその主体をなし、Tiを多量
に添加した場合には、硫化物はMnSではなくTi系の
硫化物となっており、発銹起点にはならないことを確認
した。このことから、発銹起点となりやすいMnSを析
出させないように検討を加えた。また、同時に製造性を
確保するためノズル詰まり、キズ発生、及び熱延板の靭
性についても検討した。その結果、脱酸元素として使用
されるMnとTi及びSの量と熱間圧延前の加熱温度を
制御することで発銹起点となるMnSは析出せず、耐銹
性を大きく改善できることが判明した。
The present inventors have found that a large amount of T
A method for controlling non-metallic inclusions without using i was examined.
First, from the results of the air exposure test material, among the non-metallic inclusions as the rust initiation point, especially MnS is the main component, and when a large amount of Ti is added, the sulfide becomes a Ti-based sulfide instead of MnS. It was confirmed that it did not become the starting point of rusting. From this, the study was conducted so as not to precipitate MnS, which is likely to be a rust initiation point. At the same time, in order to ensure manufacturability, nozzle clogging, scratches, and toughness of the hot rolled sheet were also examined. As a result, by controlling the amounts of Mn, Ti and S used as deoxidizing elements and the heating temperature before hot rolling, MnS, which is the starting point of rusting, did not precipitate, and it was found that rust resistance can be greatly improved. did.

【0006】本発明はこのような知見に基づくものであ
り、その構成は以下の通りである。 (1)重量%で、 C :0.001〜0.080%、 Si:0.01〜1.0%、 Mn:0.01〜1.0%、 S :0.010%以下、 P :0.04%以下、 Cr:15.0〜35.0%、 Ti:0.06〜0.25%、 N :0.001〜0.050%、 Al:0.01〜0.050%でかつ0.15×Ti以上、 O :0.010%以下 を含有し、残部がFeおよび不可避的不純物からなる鋼
を、熱間圧延前に下記式を満たす加熱温度で加熱するこ
とを特徴とする耐食性の優れたフェライト系ステンレス
鋼の製造方法。 0.25≧Ti(%) ≧(1.28×10-3・HT−1.37)×Mn
(%) +0.06 ここで、HT:加熱温度(℃) (2)前記(1)項記載のフェライト系ステンレス鋼成
分に、さらに重量%で、 Mo:0.5〜5.0%、 Ni:0.1〜5.0%、 Cu:0.1:3.0%の1種あるいは2種以上 を含有することを特徴とする前記(1)項記載の耐食性
の優れたフェライト系ステンレス鋼の製造方法。 (3)前記(1)または(2)項記載のフェライト系ス
テンレス鋼成分に、さらに重量%で、 Nb:0.01〜0.5%、 Zr:0.01〜0.5% V :0.01:0.5%の1種あるいは2種以上 を含有することを特徴とする前記(1)または(2)項
記載の耐食性の優れたフェライト系ステンレス鋼の製造
方法。本発明によればフェライト系ステンレス鋼の製造
上の問題点であるノズル詰まりやキズ及び靭性を低下さ
せることなく発銹起点となるMnSを改質し、耐食性を
安定化できる。
The present invention is based on such knowledge, and its constitution is as follows. (1) By weight%, C: 0.001 to 0.080%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, S: 0.010% or less, P: 0.04% or less, Cr: 15.0 to 35.0%, Ti: 0.06 to 0.25%, N: 0.001 to 0.050%, Al: 0.01 to 0.050% Steel containing 0.15 x Ti or more and O: 0.010% or less and the balance being Fe and unavoidable impurities is heated at a heating temperature satisfying the following formula before hot rolling. A method for producing a ferritic stainless steel having excellent corrosion resistance. 0.25 ≧ Ti (%) ≧ (1.28 × 10 −3 · HT-1.37) × Mn
(%) +0.06 Here, HT: heating temperature (° C) (2) In addition to the ferritic stainless steel component described in the above item (1) in weight%, Mo: 0.5 to 5.0%, Ni : 0.1-5.0%, Cu: 0.1: 3.0%, 1 type, or 2 or more types are contained, The ferritic stainless steel excellent in corrosion resistance as described in (1) above. Manufacturing method. (3) In addition to the ferritic stainless steel component according to the above (1) or (2), further by weight%, Nb: 0.01 to 0.5%, Zr: 0.01 to 0.5% V: 0 0.01: 0.5% of 1 type or 2 types or more is contained, The manufacturing method of the ferritic stainless steel excellent in corrosion resistance as described in said (1) or (2) characterized by the above-mentioned. According to the present invention, MnS, which is a starting point of rusting, can be modified and the corrosion resistance can be stabilized without reducing nozzle clogging, scratches and toughness which are problems in manufacturing ferritic stainless steel.

【0007】[0007]

【発明の実施の形態】以下に本発明を詳細に説明する。
MnS系の硫化物による耐食性を防止するために、本願
発明者等は高Crフェライト系ステンレス鋼の硫化物の
組織変化を詳細に検討した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In order to prevent the corrosion resistance due to MnS-based sulfides, the inventors of the present application studied in detail the structural change of sulfides in high Cr ferritic stainless steel.

【0008】26%Cr−2%Mo−30ppm C−60
ppm N鋼を基本成分とするフェライト系ステンレス鋼を
用いて高温加熱時の組織変化に及ぼす合金元素の影響を
調査した。真空溶解でMnを0.05〜3%、Tiを0
〜1.0%、Sを0.0005〜0.05%変化させた
ステンレス鋼を15kg鋼塊に鋳造し、サンプルを採取
後、1000℃〜1300℃の温度で1時間加熱後の析
出物をSEM−EDSおよび電顕観察によって調査し
た。その結果、Mn量とTi量で析出物が変わるだけで
なく、熱処理温度を変えることで析出相がMn主体から
Ti主体へと変化することが判明した。
26% Cr-2% Mo-30 ppm C-60
The effect of alloying elements on the microstructural change during high temperature heating was investigated using ferritic stainless steel containing ppm N steel as a basic component. 0.05 to 3% Mn and 0 Ti in vacuum melting
~ 1.0%, stainless steel with S changed by 0.0005 to 0.05% was cast into a 15 kg ingot, and after taking a sample, precipitates after heating at a temperature of 1000 ° C to 1300 ° C for 1 hour It was investigated by SEM-EDS and electron microscopy. As a result, it was found that not only the Mn content and Ti content change the precipitates, but also the precipitation phase changes from Mn-based to Ti-based by changing the heat treatment temperature.

【0009】S量が100ppm 以下についての結果をま
とめて図1に示す。横軸のK値はMn量と加熱温度によ
って決定される値であり、K値が大きくなるほどMn
量、加熱温度が高くなることを示している。図1の斜線
部になるようにMn量、加熱温度とTi量を決定するこ
とで加熱時のMnSをTi系の析出物に変えることがで
き、発銹起点となるMnSの析出を防止できる。
The results when the S amount is 100 ppm or less are shown together in FIG. The K value on the horizontal axis is a value determined by the amount of Mn and the heating temperature, and the M value increases as the K value increases.
It indicates that the amount and the heating temperature increase. By determining the amount of Mn, the heating temperature and the amount of Ti so as to be in the shaded area in FIG. 1, MnS at the time of heating can be changed to Ti-based precipitates, and the precipitation of MnS that is the starting point of rusting can be prevented.

【0010】即ち、MnとTiと加熱条件を下式を満足
させるようにすることで、熱延以降最終製品にいたるま
で、Mn主体の硫化物が形成されない。但し、下式はS
量が100ppm 以下で成り立ち、この図の関係からTi
系の析出物を析出させる条件として下式を満足すること
が必要である。ここでHT:加熱温度(℃)である。 Ti(%) ≧(1.28×10-3・HT−1.37)×Mn(%) +0.
06 また、26%Cr−2%Mo−30ppm C−60ppm N
を基本成分とするラボ鋼塊を、1100℃で加熱後、6
mmまで熱間圧延を実施し熱延板の靭性を評価した。その
結果を図2に示す。この図より、熱延板の靭性はTi量
によって大きく変化し、Tiを0.25%以下にするこ
とで常温(25℃)での衝撃値を2kg・m/cm2 以上を
確保でき、冷延以降の工程を実施可能なレベルとする。
以上のことから、Ti量の上限は0.25%であり、本
発明においてはS量100ppm 以下で、Mn,Ti及び
加熱温度の関係が次式を満たすことが必要である。 0.25≧Ti(%) ≧(1.28×10-3・HT−1.37)×Mn
(%) +0.06
That is, when Mn and Ti and the heating conditions are made to satisfy the following expressions, sulfides mainly composed of Mn are not formed until the final product after hot rolling. However, the following formula is S
The amount is less than 100ppm, and from the relationship in this figure, Ti
It is necessary to satisfy the following formula as conditions for depositing the system deposits. Here, HT is a heating temperature (° C.). Ti (%) ≧ (1.28 × 10 −3 · HT-1.37) × Mn (%) +0.
06 In addition, 26% Cr-2% Mo-30ppm C-60ppm N
After heating a lab steel ingot containing as a basic component at 1100 ° C.,
Hot rolling was performed up to mm to evaluate the toughness of the hot rolled sheet. The result is shown in FIG. From this figure, the toughness of hot-rolled sheet varies greatly depending on the amount of Ti. By setting Ti to 0.25% or less, the impact value at room temperature (25 ° C) can be secured at 2 kg · m / cm 2 or more, and The post-development process will be at a level that can be implemented.
From the above, the upper limit of the Ti amount is 0.25%, and in the present invention, the S amount is 100 ppm or less, and it is necessary that the relationship between Mn, Ti and the heating temperature satisfies the following equation. 0.25 ≧ Ti (%) ≧ (1.28 × 10 −3 · HT-1.37) × Mn
(%) +0.06

【0011】また加熱温度としては、1100℃未満で
はスケール疵の発生、また1300℃超ではスラブが加
熱中に自重により変形し、圧延が困難となるため110
0℃〜1300℃とするのが望ましい。また、熱延後の
工程における熱延板焼鈍やその他の熱処理に関しては、
鋼中のTi,Mn量を用いて下式から導かれる加熱温度
HT以下にすることで最終製品に至るまで析出物をTi
系を主体とすることができ、耐食性をより安定化するこ
とが可能である。 Ti(%) ≧(1.28×10-3・HT−1.37)×Mn(%) +0.
06
When the heating temperature is less than 1100 ° C., scale defects occur, and when it exceeds 1300 ° C., the slab is deformed by its own weight during heating, which makes rolling difficult.
It is desirable to set the temperature to 0 ° C to 1300 ° C. Regarding the hot rolled sheet annealing and other heat treatments in the steps after hot rolling,
By controlling the heating temperature HT or less, which is derived from the following formula using the amounts of Ti and Mn in the steel, the precipitates are converted to Ti until the final product.
The system can be the main component, and the corrosion resistance can be further stabilized. Ti (%) ≧ (1.28 × 10 −3 · HT-1.37) × Mn (%) +0.
06

【0012】次に、本発明における成分等の限定理由を
述べる。 C:Cは耐食性の点では有害であり、特に溶接部の耐食
性に悪影響を与えるが、強度の観点からはある程度は必
要である。現状では0.001%未満にするには製造コ
ストが高くなり、また0.08%を超えて添加すると加
工性、靭性が劣化するために、Cは0.001〜0.0
8%とした。
Next, the reasons for limiting the components and the like in the present invention will be described. C: C is harmful from the viewpoint of corrosion resistance, and particularly adversely affects the corrosion resistance of the welded portion, but it is necessary to some extent from the viewpoint of strength. At present, if it is less than 0.001%, the manufacturing cost becomes high, and if it is added in excess of 0.08%, the workability and toughness deteriorate, so C is 0.001 to 0.0.
8%.

【0013】Mn:Mnは脱酸元素として添加するが、
0.01%未満では効果が十分ではなく、1%を超えて
添加してもその効果が飽和し、かつMnSの析出が促進
され耐食性が劣化するため0.01〜1.0%で添加す
る。 Si:Siは脱酸剤として使用されるが、0.01%未
満では十分な効果がなく、また1%を超えて添加すると
脆化を著しく促進させ延性、靭性を劣化させるので0.
01〜1.0%で添加する。
Mn: Mn is added as a deoxidizing element,
If it is less than 0.01%, the effect is not sufficient, and if it is added in excess of 1%, the effect is saturated, and the precipitation of MnS is promoted to deteriorate the corrosion resistance. . Si: Si is used as a deoxidizer, but if it is less than 0.01%, it has no sufficient effect, and if it is added in excess of 1%, embrittlement is significantly promoted and ductility and toughness are deteriorated.
Add at 01-1.0%.

【0014】S:Sは延性、靭性等を劣化させ、また耐
食性の観点からも有害であり、本発明においてはMn,
Tiとの関係で熱延板の靭性確保また非金属介在物の改
質による耐食性確保の観点から0.010%以下とす
る。 P:Pは加工性や靭性また耐食性の点でも有害であり、
その含有量は少ないほど望ましく0.040%以下とす
る。
S: S deteriorates ductility, toughness, etc., and is harmful from the viewpoint of corrosion resistance. In the present invention, Mn,
From the viewpoint of securing the toughness of the hot-rolled sheet in relation to Ti and securing the corrosion resistance by modifying the non-metallic inclusions, it is 0.010% or less. P: P is harmful in terms of workability, toughness and corrosion resistance,
The smaller the content, the more desirable and 0.040% or less.

【0015】Cr:Crは本発明のフェライト系ステン
レス鋼の主要元素であり、屋外においてさび発生を抑制
するには15%以上添加する必要がある。しかし、35
%を超えて添加しても耐食性は向上するが、加工性や靭
性が劣化するのでCrの上限は35%とした。
Cr: Cr is a main element of the ferritic stainless steel of the present invention, and must be added in an amount of 15% or more in order to suppress rust generation outdoors. But 35
%, The corrosion resistance is improved, but the workability and toughness are deteriorated. Therefore, the upper limit of Cr is 35%.

【0016】Ti:本発明においてはTiは、Cおよび
Nを固定する以外に、MnSの析出防止の観点から必須
の元素であり、Mn及び熱間圧延時の加熱温度:HT
(℃)との関係、また靭性確保の観点から、0.06〜
0.25%の範囲で、かつ下式を満足することが必要で
ある。 0.25≧Ti(%) ≧(1.28×10-3・HT−1.37)×Mn
(%) +0.06
Ti: In the present invention, Ti is an essential element from the viewpoint of preventing precipitation of MnS in addition to fixing C and N. Mn and heating temperature during hot rolling: HT
From the viewpoint of ensuring the toughness and the relationship with (° C), 0.06 to
It is necessary to satisfy the following expression within the range of 0.25%. 0.25 ≧ Ti (%) ≧ (1.28 × 10 −3 · HT-1.37) × Mn
(%) +0.06

【0017】Al:Alは脱酸元素として使用される
が、本発明においては硫化物をTi系とするため、酸化
物はTi系ではなくAl系の酸化物とすることが重要で
ある。このため、Alは脱酸元素として使用されるTi
の0.15倍以上必要である。また0.05%以上は脱
酸程度も飽和するため上限を0.05%とした。
Al: Al is used as a deoxidizing element. In the present invention, since the sulfide is a Ti-based material, it is important that the oxide is an Al-based oxide rather than a Ti-based oxide. Therefore, Al is Ti used as a deoxidizing element.
0.15 times or more is required. The upper limit was set to 0.05% because the degree of deoxidation is saturated at 0.05% or more.

【0018】N:NはCと同様に含有量が少ないほど耐
食性、加工性が好ましいが、0.001%未満にするこ
とは工業的には困難であり、また0.05%を超えて添
加すると加工性、靭性が劣化するために、Nは0.00
1〜0.05%の範囲で添加する。 O:Oは熱延板の靭性を劣化させたり鋳造時のノズル詰
まりやキズ発生また熱延板の靭性を劣化の原因となるた
め、本発明においては0.01%以下とした。
N: Like C, the smaller the content of N, the more preferable the corrosion resistance and workability are, but it is industrially difficult to make it less than 0.001%, and N is added in excess of 0.05%. Then, the workability and toughness deteriorate, so N is 0.00
Add in the range of 1-0.05%. O: O deteriorates the toughness of the hot rolled sheet, causes nozzle clogging and scratches during casting, and deteriorates the toughness of the hot rolled sheet, so in the present invention, it is set to 0.01% or less.

【0019】本発明では必要に応じてMo,Ni,Cu
のいずれか1種以上を含有させることができる。 Mo:Moは耐食性の点で好ましい元素であり必要に応
じて選択元素として添加できる。0.5未満ではその効
果は十分でなく、また5.0%を超えて添加してもその
効果は飽和し脆化が著しいので0.5〜5.0%とし
た。
In the present invention, if necessary, Mo, Ni, Cu
Any one or more of the above can be contained. Mo: Mo is a preferable element in terms of corrosion resistance, and can be added as a selective element if necessary. If it is less than 0.5, the effect is not sufficient, and even if it exceeds 5.0%, the effect is saturated and the embrittlement is remarkable, so the content was made 0.5 to 5.0%.

【0020】Ni:Niはフェライト系ステンレス鋼の
耐食性を改善する効果があり、選択元素として添加でき
るが、0.1%未満では効果がなく、また5.0%を超
えて添加するとフェライト相を不安定にし、熱間での脆
化を引き起しやすくなるので0.1〜5.0%とした。 Cu:Cuは耐食性の点で好ましい元素であり、選択元
素として添加できるが、0.1未満ではその効果は十分
でなく、また3.0%を超えて添加してもその効果は飽
和するので0.1〜3.0%で添加する。
Ni: Ni has the effect of improving the corrosion resistance of ferritic stainless steel and can be added as a selective element, but if it is less than 0.1% it has no effect, and if it exceeds 5.0% it forms a ferrite phase. Since it becomes unstable and easily causes embrittlement during hot, it is set to 0.1 to 5.0%. Cu: Cu is a preferable element in terms of corrosion resistance and can be added as a selective element, but if it is less than 0.1, its effect is not sufficient, and if it is added in excess of 3.0%, its effect is saturated. Add at 0.1-3.0%.

【0021】本発明では、なお一層の耐食性の向上を図
るため、Nb,Zr,Vの1種以上を含有させることが
できる。 Nb:NbはCやNを固定するため、特に溶接部でのC
r炭窒化物の析出を抑制して耐食性を向上させるため、
選択元素として0.01%以上で添加できる。また0.
5%以上添加しても靭性および延性を低下させるため
0.01〜0.5%とした。
In the present invention, in order to further improve the corrosion resistance, one or more kinds of Nb, Zr and V can be contained. Nb: Nb fixes C and N, so it is especially C at the weld.
In order to suppress the precipitation of r carbonitride and improve the corrosion resistance,
As a selective element, 0.01% or more can be added. Also 0.
Even if added in an amount of 5% or more, the toughness and ductility are reduced, so the content was made 0.01 to 0.5%.

【0022】Zr:ZrはCやNを固定するため、特に
溶接部でのCr炭窒化物の析出を抑制して耐食性を向上
させるため、選択元素として0.01%以上で添加でき
る。また0.5%以上添加しても靭性および延性を低下
させるため0.01〜0.5%とした。 V:VはCやNを固定するため、特に溶接部でのCr炭
窒化物の析出を抑制して耐食性を向上させるため、選択
元素として0.01%以上で添加できる。また0.5%
以上添加しても靭性および延性を低下させるため0.0
1〜0.5%とした。
Zr: Zr can be added as a selective element in an amount of 0.01% or more in order to fix C and N, and particularly to suppress the precipitation of Cr carbonitride in the welded portion and improve the corrosion resistance. Even if added in an amount of 0.5% or more, the toughness and ductility are reduced, so the content was made 0.01 to 0.5%. V: V fixes C and N, and thus can be added in an amount of 0.01% or more as a selective element in order to suppress the precipitation of Cr carbonitride particularly in the welded portion and improve the corrosion resistance. Also 0.5%
Even if added above, the toughness and ductility are reduced, so 0.0
It was set to 1 to 0.5%.

【0023】[0023]

【実施例】表1に示す成分のフェライト系ステンレス鋼
をラボの真空溶解で溶製し、50kg鋼塊を製造した。こ
の後、表1に示す温度で60分均熱後、3mmまで熱間圧
延を行い、1000℃で1分焼鈍後酸洗し、1mmまで冷
間圧延し、1050℃×30秒焼鈍した後に、耐食性評
価用サンプルを作成した。耐食性の評価は、複合サイク
ル腐食試験によって、人工海水35℃−10分→乾燥6
0℃−60分→湿潤:湿度80%:50℃−60分の1
サイクルを100サイクル実施し、発銹程度を評価し
た。
Example A ferritic stainless steel having the components shown in Table 1 was melted by vacuum melting in a lab to manufacture a 50 kg steel ingot. Then, after soaking at the temperature shown in Table 1 for 60 minutes, hot rolling was performed to 3 mm, annealing was performed at 1000 ° C. for 1 minute, pickling, cold rolling to 1 mm, and annealing at 1050 ° C. for 30 seconds, A sample for corrosion resistance evaluation was prepared. Corrosion resistance was evaluated by a combined cycle corrosion test using artificial seawater at 35 ° C. for 10 minutes → drying 6
0 ℃ -60 minutes → Wetness: 80% humidity: 50 ℃ -60th
100 cycles were carried out to evaluate the degree of rusting.

【0024】その結果、表1に示すように、本発明の方
法によって製造された鋼は、発銹もなく、優れた耐食性
を示した。
As a result, as shown in Table 1, the steel produced by the method of the present invention showed no corrosion and showed excellent corrosion resistance.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】上記のように、本発明の方法によれば、
フェライト系ステンレス鋼の発銹起点となる非金属介在
物を、成分と熱延時の加熱温度を規制することによっ
て、発銹起点とならないように改質し、耐食性の優れた
フェライト系ステンレス鋼が製造できる。
As described above, according to the method of the present invention,
By controlling the composition and the heating temperature during hot rolling, the non-metallic inclusions that are the starting point of rusting of ferritic stainless steel are modified so that they do not become the starting point of rusting, producing ferritic stainless steel with excellent corrosion resistance. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】S量が100ppm 以下で、Mn,Ti量と熱延
時の加熱温度による硫化物の変化を示す図。
FIG. 1 is a diagram showing changes in sulfides depending on the amounts of Mn and Ti and the heating temperature during hot rolling when the amount of S is 100 ppm or less.

【図2】熱延板の靭性に及ぼすTi量の影響を示す図。FIG. 2 is a diagram showing the effect of Ti content on the toughness of a hot rolled sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 紀平 寛 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kihira 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.001〜0.080%、 Si:0.01〜1.0%、 Mn:0.01〜1.0%、 S :0.010%以下、 P :0.04%以下、 Cr:15.0〜35.0%、 Ti:0.06〜0.25%、 N :0.001〜0.050%、 Al:0.01〜0.050%でかつ0.15×Ti以
上、 O :0.010%以下 を含有し、残部がFeおよび不可避的不純物からなる鋼
を、熱間圧延前に、下記式を満たす加熱温度で加熱する
ことを特徴とする耐食性の優れたフェライト系ステンレ
ス鋼の製造方法。 0.25≧Ti(%) ≧(1.28×10-3・HT−1.37)×Mn
(%) +0.06 ここで、HT:加熱温度(℃)
1. By weight%, C: 0.001 to 0.080%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, S: 0.010% or less, P: 0.04% or less, Cr: 15.0 to 35.0%, Ti: 0.06 to 0.25%, N: 0.001 to 0.050%, Al: 0.01 to 0.050 % And 0.15 × Ti or more and O: 0.010% or less, the balance of which is Fe and unavoidable impurities, is to be heated at a heating temperature satisfying the following formula before hot rolling. A method for producing a ferritic stainless steel having excellent corrosion resistance. 0.25 ≧ Ti (%) ≧ (1.28 × 10 −3 · HT-1.37) × Mn
(%) +0.06 where HT: Heating temperature (° C)
【請求項2】 請求項1記載のフェライト系ステンレス
鋼成分に、さらに重量%で、 Mo:0.5〜5.0%、 Ni:0.1〜5.0%、 Cu:0.1:3.0% の1種以上を含有することを特徴とする請求項1記載の
耐食性の優れたフェライト系ステンレス鋼の製造方法。
2. The ferritic stainless steel component according to claim 1, further comprising, by weight%, Mo: 0.5 to 5.0%, Ni: 0.1 to 5.0%, Cu: 0.1: 3. The method for producing a ferritic stainless steel having excellent corrosion resistance according to claim 1, wherein the ferritic stainless steel contains at least one of 3.0%.
【請求項3】 請求項1または2記載のフェライト系ス
テンレス鋼成分に、さらに重量%で、 Nb:0.01〜0.5%、 Zr:0.01〜0.5%、 V :0.01:0.5% の1種以上を含有することを特徴とする請求項1または
2記載の耐食性の優れたフェライト系ステンレス鋼の製
造方法。
3. The ferritic stainless steel component according to claim 1 or 2, further comprising, by weight%, Nb: 0.01 to 0.5%, Zr: 0.01 to 0.5%, V: 0. The method for producing a ferritic stainless steel having excellent corrosion resistance according to claim 1 or 2, characterized in that it contains one or more of 01: 0.5%.
JP8860996A 1996-04-10 1996-04-10 Production of ferritic stainless steel excellent in corrosion resistance Pending JPH09279231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8860996A JPH09279231A (en) 1996-04-10 1996-04-10 Production of ferritic stainless steel excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8860996A JPH09279231A (en) 1996-04-10 1996-04-10 Production of ferritic stainless steel excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH09279231A true JPH09279231A (en) 1997-10-28

Family

ID=13947563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8860996A Pending JPH09279231A (en) 1996-04-10 1996-04-10 Production of ferritic stainless steel excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPH09279231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717329A1 (en) * 2004-01-28 2006-11-02 Nisshin Steel Co., Ltd. Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell
WO2007020826A1 (en) * 2005-08-17 2007-02-22 Jfe Steel Corporation Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
CN111235474A (en) * 2020-02-20 2020-06-05 孙志颜 High-corrosion-resistance stainless steel and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717329A1 (en) * 2004-01-28 2006-11-02 Nisshin Steel Co., Ltd. Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell
EP1717329A4 (en) * 2004-01-28 2007-12-26 Nisshin Steel Co Ltd Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell
WO2007020826A1 (en) * 2005-08-17 2007-02-22 Jfe Steel Corporation Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
KR100940474B1 (en) * 2005-08-17 2010-02-04 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet having excellent corrosion resistance and method of manufacturing the same
US8465604B2 (en) 2005-08-17 2013-06-18 Jfe Steel Corporation Ferritic stainless steel sheet having excellent corrosion resistance and method of manufacturing the same
CN111235474A (en) * 2020-02-20 2020-06-05 孙志颜 High-corrosion-resistance stainless steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JP3463500B2 (en) Ferritic stainless steel excellent in ductility and method for producing the same
US4102677A (en) Austenitic stainless steel
JPH04191319A (en) Manufacture of low carbon martensitic stainless steel line pipe
JPH09279231A (en) Production of ferritic stainless steel excellent in corrosion resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP3922740B2 (en) Method for producing ferritic stainless steel sheet with excellent surface characteristics and corrosion resistance
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP3588380B2 (en) Method for producing martensitic stainless steel sheet for line pipe
JP2000178697A (en) Martensitic stainless steel excellent in corrosion resistance and weldability
KR100368553B1 (en) Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JPH11302795A (en) Stainless steel for building construction
JPH0435551B2 (en)
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JP3364040B2 (en) Austenitic stainless steel for press forming with excellent deep drawability and stretchability
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JPH11302737A (en) Production of stainless steel strip for building structure
JPS5980717A (en) Manufacture of unnormalized ni steel for low temperature use with superior toughness at high heat input welded joint
JP2816008B2 (en) Low yield ratio steel material for building with excellent fire resistance and method of manufacturing the same
JP3422591B2 (en) Austenitic stainless steel for press forming with excellent deep drawability and stretchability
JP3420375B2 (en) Ferritic stainless steel sheet with excellent formability and secondary work brittleness resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A02 Decision of refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A02