JPH09278408A - Ozone generator - Google Patents

Ozone generator

Info

Publication number
JPH09278408A
JPH09278408A JP11844496A JP11844496A JPH09278408A JP H09278408 A JPH09278408 A JP H09278408A JP 11844496 A JP11844496 A JP 11844496A JP 11844496 A JP11844496 A JP 11844496A JP H09278408 A JPH09278408 A JP H09278408A
Authority
JP
Japan
Prior art keywords
ozone
container
supply port
discharge
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11844496A
Other languages
Japanese (ja)
Inventor
Hideaki Ike
池  英昭
Hideo Narita
秀夫 成田
Etsuji Fujii
悦司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP11844496A priority Critical patent/JPH09278408A/en
Publication of JPH09278408A publication Critical patent/JPH09278408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone generator which is compact, is inexpensive and has high ozone generation efficiency and cooling efficiency. SOLUTION: This ozone generator is constituted to have a vessel 1 provided with a supply port 11 and a discharge port 12, an ozone generating element 2 which is disposed in this vessel 1 and is provided with a discharge electrode 23 and counter electrode 22 across a flat planar dielectric substance and a power source 3 for impressing a high-frequency voltage on the discharge electrode 23. In such a case, the one flank of the vessel 1 is provided with the supply port 11 and the discharge port 12. The ozone generating element 2 is arranged with the vessel 1 between the supply port 11 and the discharge port 12 and is provided with a space C between the end of the ozone generating element 2 and the other flank 1b of the vessel 1 so that the gaseous raw material is supplied from the supply port 11 via the space C to the discharge electrode 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、沿面放電によりオ
ゾンを発生させるオゾン発生装置に関する。
The present invention relates to an ozone generator for generating ozone by creeping discharge.

【0002】[0002]

【従来の技術】従来、沿面放電式オゾン発生装置は、例
えば図2に示すように、耐オゾン性の高い材料からなる
容器1の中に、1個あるいは複数の放電電極を同一平面
状に配列したオゾン発生素子2を備え、さらにそのオゾ
ン発生素子2を同一平面状に並列に配列したものが開示
されている(例えば、特開平6−183702号公
報)。この場合、オゾン発生素子2は、平板状のセラミ
ックスからなる誘電体21の中に平板状の対向電極22
を埋め込み、誘電体21の表面には平板状の放電電極2
3を配置し、電源3により放電電極23に高周波高電圧
を印加するようにしてある。容器1の一方側には供給口
11を設け、矢印で示すように、酸素分子を含有する原
料ガスを容器1内に供給するようにしてあり、他方側に
は排出口12を設け、オゾン化ガスを排出するようにし
てある。放電電極23に高周波高電圧を印加すると、放
電電極23の端面から誘電体21の沿面方向に放電が発
生する。原料ガス中の酸素分子が沿面放電領域内に存在
すると、その一部がオゾンになり、排出口12から排出
される。また、例えば図3に示すように、容器1の中に
管状のオゾン発生素子2を形成したものが開示されてい
る(特開平6−234507号公報)。すなわち、一方
端が閉塞したガラス管からなる管状の誘電体21の内壁
に放電電極23を形成し、誘電体21の外側に空隙を介
して対向電極22を配置してある。対向電極22の外側
には冷却のための冷却水ジャケット13を設けてある。
この場合、矢印で示すように、管状の誘電体21の開口
部から供給パイプ14により閉塞部の方向に原料ガスを
供給し、原料ガスが閉塞部から開口部に回る途中で放電
電極23による放電によりオゾン化されて、開口部から
誘電体21の外側を通り、容器1外部に排出される。
2. Description of the Related Art Conventionally, as shown in FIG. 2, a creeping discharge type ozone generator has one or more discharge electrodes arranged in the same plane in a container 1 made of a material having high ozone resistance. Japanese Patent Application Laid-Open No. 6-183702 discloses a device including the ozone generating element 2 described above, and the ozone generating elements 2 arranged in parallel on the same plane. In this case, the ozone generating element 2 has a flat plate-shaped counter electrode 22 in a dielectric 21 made of flat plate-shaped ceramics.
And a flat discharge electrode 2 on the surface of the dielectric 21.
3 is arranged and a high frequency high voltage is applied to the discharge electrode 23 by the power supply 3. A supply port 11 is provided on one side of the container 1 so that a raw material gas containing oxygen molecules is supplied into the container 1 as shown by an arrow, and an exhaust port 12 is provided on the other side to perform ozonization. It is designed to discharge gas. When a high frequency high voltage is applied to the discharge electrode 23, discharge is generated from the end face of the discharge electrode 23 in the creeping direction of the dielectric 21. If oxygen molecules in the raw material gas are present in the creeping discharge region, a part thereof becomes ozone and is discharged from the discharge port 12. Further, for example, as shown in FIG. 3, a container 1 in which a tubular ozone generating element 2 is formed is disclosed (JP-A-6-234507). That is, the discharge electrode 23 is formed on the inner wall of the tubular dielectric body 21 made of a glass tube whose one end is closed, and the counter electrode 22 is arranged outside the dielectric body 21 with a gap. A cooling water jacket 13 for cooling is provided outside the counter electrode 22.
In this case, as shown by the arrow, the raw material gas is supplied from the opening of the tubular dielectric 21 in the direction of the closed portion by the supply pipe 14, and the discharge by the discharge electrode 23 is performed while the raw material gas is flowing from the closed portion to the opening. Is converted into ozone and is discharged from the opening to the outside of the container 1 through the outside of the dielectric 21.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記前者の
従来技術では、オゾン発生素子が同一平面上に並列に配
列されているのため、原料ガスが供給口から各放電電極
の放電領域に拡散するとき、供給口から各放電電極まで
の距離が変わり、原料ガスの分布が不均一となり、オゾ
ン発生素子の放電面への原料ガスの供給が非効率的にな
るという問題があった。また、原料ガスは誘電体の一方
の面に接触して流れるだけであるので、冷却効率が悪
く、誘電体の温度上昇を招き、オゾン発生効率が低下す
るという問題があった。後者の従来技術では、オゾン発
生素子が管状であるため、容量を増やすためには直径を
大きくする必要があり、したがってオゾン発生素子自体
の体積が大きくなり、平板状のオゾン発生素子を備えた
オゾン発生装置より高価となるという問題があった。本
発明は、平板状のオゾン発生素子を使用し、原料ガスを
放電電極に対して均一に分布するようにして、コンパク
トで安価でオゾン発生効率および冷却効率の高いオゾン
発生装置を提供することを目的とするものである。
However, in the former prior art, since the ozone generating elements are arranged in parallel on the same plane, the raw material gas diffuses from the supply port to the discharge region of each discharge electrode. At this time, there is a problem that the distance from the supply port to each discharge electrode changes, the distribution of the raw material gas becomes non-uniform, and the supply of the raw material gas to the discharge surface of the ozone generating element becomes inefficient. Further, since the raw material gas only flows in contact with one surface of the dielectric, the cooling efficiency is poor, the temperature of the dielectric rises, and the ozone generation efficiency decreases. In the latter conventional technique, since the ozone generating element is tubular, it is necessary to increase the diameter in order to increase the capacity. Therefore, the volume of the ozone generating element itself becomes large, and the ozone having the flat ozone generating element is required. There is a problem that it is more expensive than the generator. The present invention provides a compact, inexpensive ozone generator with high ozone generation efficiency and cooling efficiency by using a flat-plate ozone generation element and by uniformly distributing a source gas with respect to a discharge electrode. It is intended.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、供給口と排出口とを設けた容器と、前記
容器の中に設けられ、平板状の誘電体を挟んで放電電極
と対向電極とを設けたオゾン発生素子と、前記放電電極
に高周波高電圧を印加する電源とを備えたオゾン発生装
置において、前記供給口と前記排出口は前記容器の一方
の側面に設けられ、前記オゾン発生素子は前記容器を前
記供給口と前記排出口との間に配置され、かつ前記オゾ
ン発生素子の端部と前記容器の他方の側面との間に空間
を設けてあり、原料ガスが前記供給口から前記空間を介
して前記放電電極に供給されるようにしてあるものであ
る。また、前記対向電極は表面を覆う絶縁板が設けら
れ、前記絶縁板の表面に前記原料ガスの流れの沿って伸
びる冷却フィンを有するヒートシンクを設けてあるもの
である。また、前記冷却フィンは隣り合う冷却フィンと
の間のピッチが、前記供給口に近くなるほど小さくなる
ように配置されているものである。
In order to solve the above-mentioned problems, the present invention relates to a container having a supply port and a discharge port, and a discharge electrode provided in the container with a flat plate-shaped dielectric material interposed therebetween. In an ozone generator comprising an ozone generating element having a counter electrode and a power source for applying a high frequency high voltage to the discharge electrode, the supply port and the discharge port are provided on one side surface of the container, The ozone generating element has the container arranged between the supply port and the discharge port, and a space is provided between the end of the ozone generating element and the other side surface of the container, and the source gas is The discharge electrode is supplied from the supply port through the space. Further, the counter electrode is provided with an insulating plate covering the surface thereof, and the surface of the insulating plate is provided with a heat sink having cooling fins extending along the flow of the raw material gas. Further, the cooling fins are arranged such that the pitch between the adjacent cooling fins becomes smaller as the pitch becomes closer to the supply port.

【0005】[0005]

【発明の実施の形態】以下、本発明を図に示す実施例に
ついて説明する。図1は本発明の実施例を示す(a)正
断面図,(b)側断面図および(c)下面を示す平断面
図である。図において、1は容器、11は容器1の一方
側の側面1aほぼ上半分の位置に設けた供給口で、酸素
分子を含有する原料ガスを容器1内に供給するようにし
てあり、12は側面1aのほぼ下半分の位置に設けた排
出口で、オゾン化ガスを排出するようにしてある。2は
容器1の中の中央に配置されたオゾン発生素子で、その
両面と容器1との間には空間A,Bが形成されている。
21は平板状のセラミックスからなる誘電体で、その一
方端が側面1aの供給口11と排出口12に挟まれた位
置に固定され、他方端は容器1の他方の側面1bとの間
に空間Cをあけて対向している。22は誘電体21の表
面に設けられた平板状の対向電極、23は誘電体21の
対向電極22を設けた側の反対側の表面に等間隔を置い
て並列に配置された複数の平板状の放電電極、24は対
向電極を覆う絶縁板、3は放電電極23に高周波高電圧
を印加する電源である。4は絶縁板24の表面に設けら
れ、かつ端面が容器1に密着されたアルミニウムなどの
熱伝導率の高い材料からなるヒートシンクで、供給口1
1から側面1bに向かって原料ガスの流れに沿って伸び
る複数の冷却フィン41を備えており、隣り合う冷却フ
ィン41との間のピッチが、供給口11に近くなるほど
小さくなるように配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 is a front sectional view (a), a side sectional view (b) and a plane sectional view (c) showing an embodiment of the present invention. In the figure, 1 is a container, 11 is a supply port provided at the position of the upper half of one side surface 1a on one side of the container 1, and a source gas containing oxygen molecules is supplied into the container 1; The ozonized gas is discharged through the discharge port provided at the position of the lower half of the side surface 1a. Reference numeral 2 denotes an ozone generating element arranged in the center of the container 1, and spaces A and B are formed between both surfaces of the ozone generating element and the container 1.
Reference numeral 21 is a dielectric made of flat ceramics, one end of which is fixed at a position sandwiched between the supply port 11 and the discharge port 12 of the side surface 1a, and the other end of which is a space between the other side surface 1b of the container 1. Opposite with C open. Reference numeral 22 denotes a flat plate-shaped counter electrode provided on the surface of the dielectric body 21, and 23 denotes a plurality of flat plate-shaped electrodes arranged in parallel on the surface of the dielectric body 21 on the opposite side to the side where the counter electrode 22 is provided. 2 is an insulating plate that covers the counter electrode, and 3 is a power source that applies a high frequency high voltage to the discharge electrode 23. Reference numeral 4 denotes a heat sink provided on the surface of the insulating plate 24 and having an end surface closely attached to the container 1 and made of a material having high thermal conductivity such as aluminum.
1 is provided with a plurality of cooling fins 41 extending along the flow of the raw material gas toward the side surface 1b, and the pitch between the cooling fins 41 adjacent to each other is arranged so that the pitch becomes closer to the supply port 11 and becomes smaller. There is.

【0006】このような構成により、供給口11から供
給された原料ガス22は、ヒートシンク4の冷却フィン
41の間の空間Aを通り、オゾン発生素子2を冷却し
て、オゾン発生素子2の幅方向に拡散しながら空間Cで
反転して空間Bに入る。空間Bで原料ガスは放電電極2
3の表面を流れてオゾン化され、排出口12から外部に
取り出される。このように、原料ガスは冷却フィンによ
って幅の狭い供給口11からオゾン発生素子2の幅方向
に拡散し、放電電極23のある誘電体21の表面に流さ
れるので、原料ガスの分布が幅方向にほぼ均一となり、
オゾン発生素子の放電面への原料ガスの供給の効率が向
上する。また、誘電体21は原料ガスが誘電体21の幅
方向に拡散して冷却するので、誘電体21の冷却効率が
向上する。
With such a configuration, the raw material gas 22 supplied from the supply port 11 passes through the space A between the cooling fins 41 of the heat sink 4 to cool the ozone generating element 2 and the width of the ozone generating element 2. While diffusing in the direction, it is inverted in the space C and enters the space B. In the space B, the source gas is the discharge electrode 2
3 is made ozonized and flows out of the exhaust port 12 to the outside. In this way, the source gas is diffused in the width direction of the ozone generating element 2 from the narrow supply port 11 by the cooling fin and is flowed to the surface of the dielectric 21 having the discharge electrode 23, so that the distribution of the source gas is in the width direction. Becomes almost uniform,
The efficiency of supplying the source gas to the discharge surface of the ozone generating element is improved. Further, since the raw material gas diffuses in the width direction of the dielectric 21 and is cooled, the dielectric 21 improves the cooling efficiency of the dielectric 21.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、容
器の中に設けた平板状のオゾン発生素子の一方の面から
他方の面に原料ガスが流れるように、原料ガスの供給口
と排出口を設け、オゾン発生素子の一方の面にヒートシ
ンクを配置し、ヒートシンクの冷却フィンによって原料
ガスが供給口からオゾン発生素子の幅方向に拡散するよ
うにして、放電電極の表面に流される原料ガスの分布が
幅方向にほぼ均一になるようにしてあるので、オゾン発
生効率を向上させるとともに、冷却効率を向上させるこ
とができるコンパクトなオゾン発生装置を提供できる効
果がある。
As described above, according to the present invention, the source gas supply port is provided so that the source gas flows from one surface to the other surface of the flat plate-shaped ozone generating element provided in the container. And a discharge port, a heat sink is arranged on one surface of the ozone generating element, and the cooling fins of the heat sink cause the raw material gas to diffuse from the supply port in the width direction of the ozone generating element and flow to the surface of the discharge electrode. Since the distribution of the source gas is made substantially uniform in the width direction, there is an effect that it is possible to provide a compact ozone generator capable of improving not only the ozone generation efficiency but also the cooling efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す(a)正断面図、
(b)側断面図および(c)平断面図である。
FIG. 1A is a front sectional view showing an embodiment of the present invention,
(B) Side sectional view and (c) Plan sectional view.

【図2】 従来例を示す正断面図である。FIG. 2 is a front sectional view showing a conventional example.

【図3】 他の従来例を示す正断面図である。FIG. 3 is a front sectional view showing another conventional example.

【符号の説明】[Explanation of symbols]

1:容器、1a、1b:側面、11:供給口、12:排
出口、2:オゾン発生素子、21:誘電体、22:対向
電極、23:放電電極、3:電源、4:ヒートシンク、
41:冷却フィン
1: container, 1a, 1b: side surface, 11: supply port, 12: discharge port, 2: ozone generating element, 21: dielectric, 22: counter electrode, 23: discharge electrode, 3: power supply, 4: heat sink,
41: Cooling fin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 供給口と排出口とを設けた容器と、前記
容器の中に設けられ、平板状の誘電体を挟んで放電電極
と対向電極とを設けたオゾン発生素子と、前記放電電極
に高周波高電圧を印加する電源とを備えたオゾン発生装
置において、前記供給口と前記排出口は前記容器の一方
の側面に設けられ、前記オゾン発生素子は前記容器を前
記供給口と前記排出口との間に配置され、かつ前記オゾ
ン発生素子の端部と前記容器の他方の側面との間に空間
を設けてあり、原料ガスが前記供給口から前記空間を介
して前記放電電極に供給されるようにしてあることを特
徴とするオゾン発生装置。
1. A container provided with a supply port and a discharge port, an ozone generating element provided in the container and having a discharge electrode and a counter electrode sandwiching a flat plate-shaped dielectric, and the discharge electrode. In an ozone generator having a power supply for applying a high-frequency high voltage to the container, the supply port and the discharge port are provided on one side surface of the container, and the ozone generation element includes the container for the supply port and the discharge port. And a space is provided between the end of the ozone generating element and the other side surface of the container, and a source gas is supplied from the supply port to the discharge electrode through the space. An ozone generator characterized in that.
【請求項2】 前記対向電極は表面を覆う絶縁板が設け
られ、かつ前記絶縁板の表面に前記原料ガスの流れに沿
って伸びる冷却フィンを有するヒートシンクを設けられ
ている請求項1記載のオゾン発生装置。
2. The ozone according to claim 1, wherein the counter electrode is provided with an insulating plate covering the surface thereof, and the surface of the insulating plate is provided with a heat sink having cooling fins extending along the flow of the source gas. Generator.
【請求項3】 前記冷却フィンは隣り合う冷却フィンと
の間のピッチが、前記供給口に近くなるほど小さくなる
ように配置されている請求項2記載のオゾン発生装置。
3. The ozone generator according to claim 2, wherein the cooling fins are arranged such that a pitch between the adjacent cooling fins becomes smaller as the pitch becomes closer to the supply port.
JP11844496A 1996-04-15 1996-04-15 Ozone generator Pending JPH09278408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11844496A JPH09278408A (en) 1996-04-15 1996-04-15 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11844496A JPH09278408A (en) 1996-04-15 1996-04-15 Ozone generator

Publications (1)

Publication Number Publication Date
JPH09278408A true JPH09278408A (en) 1997-10-28

Family

ID=14736802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11844496A Pending JPH09278408A (en) 1996-04-15 1996-04-15 Ozone generator

Country Status (1)

Country Link
JP (1) JPH09278408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084403A (en) * 2005-09-26 2007-04-05 Sumitomo Precision Prod Co Ltd Discharge cell for ozone generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084403A (en) * 2005-09-26 2007-04-05 Sumitomo Precision Prod Co Ltd Discharge cell for ozone generator

Similar Documents

Publication Publication Date Title
EP0679608B1 (en) Method for the generation of ozone
US4232229A (en) Ozonizer
JP3848538B2 (en) Ozone generator
US5901167A (en) Air cooled gas laser
JPH09329058A (en) Thermoelectric generator
US3973133A (en) Ozone generator
JPH09278408A (en) Ozone generator
JPH10160249A (en) Hot water device
JPH01133902A (en) Ozone generator cell
WO2000032514A1 (en) Ozone generator
US6247524B1 (en) Thermal switches and methods for improving their performance
JP3982071B2 (en) Column thermostat
JPH07223805A (en) Double pipe type ozone-generator
JP2000252098A (en) Non-equilibrium plasma generator
JP3804229B2 (en) Ozonizer
JPH0474281B2 (en)
JP4658298B2 (en) Ozone generator
JP2601293B2 (en) Ozone generator
JPH09241004A (en) Ozone generator
JPH09241005A (en) Ozone generator
JPH10287407A (en) Ozone generator
JPH06196192A (en) Solid electrolyte type fuel cell
JP3292471B2 (en) Discharge cell for ozone generator
JPH10145065A (en) Cooling material
JP2002160906A (en) Ozone generator