JPH09273923A - Data-processing apparatus and displacement sensor using the apparatus - Google Patents

Data-processing apparatus and displacement sensor using the apparatus

Info

Publication number
JPH09273923A
JPH09273923A JP11014096A JP11014096A JPH09273923A JP H09273923 A JPH09273923 A JP H09273923A JP 11014096 A JP11014096 A JP 11014096A JP 11014096 A JP11014096 A JP 11014096A JP H09273923 A JPH09273923 A JP H09273923A
Authority
JP
Japan
Prior art keywords
waveform
signal waveform
difference
points
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11014096A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nishio
佳晃 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP11014096A priority Critical patent/JPH09273923A/en
Publication of JPH09273923A publication Critical patent/JPH09273923A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a displacement sensor which can measure a displacement of a surface to be measured with the use of a data-processing apparatus capable of moving an input signal waveform by the amount of a shift to a reference signal waveform. SOLUTION: An input signal waveform (actually measured waveform) representing a displacement pattern of a surface to be detected is induced by a control part 19 from measuring results of a measuring part 15 consisting of a light beam-scanning means 1, a photodetecting means 14, etc. The presence/absence of candidate points on the actually measured waveform which show approximately the same positional relationship as that of a plurality of characteristic points on a reference signal waveform set by a setting part 22 (reference waveform) is checked by a processing part 23. If there are candidate points, the actually measured waveform is moved until the candidate points come to the same position as the corresponding characteristic points. At this time, a ratio of an absolute value of a difference between a reference difference which is a difference of signal value of the characteristic points and a difference of signal value of the candidate points to the reference difference is calculated by the processing part 23, weighed in a predetermined manner and turned to scores. A minimum score is decided as the candidate point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、アナログの入力
信号波形の基準信号波形に対するずれを求め、そのずれ
分だけ入力信号波形を移動させる処理を行うデータ処理
装置及びそれを用いて対象物表面の変位を測定する変位
計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data processing device for obtaining a deviation of an analog input signal waveform from a reference signal waveform and moving the input signal waveform by the deviation, and a data processing device using the data processing device. The present invention relates to a displacement meter that measures displacement.

【0002】[0002]

【従来の技術】対象物の変位を測定する装置として三角
測量法を応用した光学式の変位測定装置があり、発光素
子と位置検出素子(PSD)との組み合わせで構成され
ており、発光素子としては発光ダイオードや半導体レー
ザが用いられている。この光学式変位測定装置では、投
光レンズにより発光素子からの光を集光して対象物に照
射し、対象物からの反射光の一部を受光レンズによって
位置検出素子上にスポットを結び、対象物が移動する毎
に位置検出素子上のスポットの位置が移動することか
ら、そのスポットの位置を検出することによって対象物
までの変位量を測定するようになっている。
2. Description of the Related Art As a device for measuring the displacement of an object, there is an optical displacement measuring device to which a triangulation method is applied, which is composed of a combination of a light emitting element and a position detecting element (PSD). Is a light emitting diode or a semiconductor laser. In this optical displacement measuring device, the light from the light emitting element is condensed by the light projecting lens and applied to the object, and a part of the reflected light from the object is connected to the spot on the position detecting element by the light receiving lens. Since the position of the spot on the position detecting element moves each time the object moves, the amount of displacement to the object is measured by detecting the position of the spot.

【0003】[0003]

【発明が解決しようとする課題】しかし、この種従来の
変位測定装置の場合には測定点が1点であるため、対象
物の1次元的な変位は測定できても2次元的な変位を測
定することはできない。
However, in the case of the conventional displacement measuring apparatus of this kind, since there is only one measuring point, the one-dimensional displacement of the object can be measured, but the two-dimensional displacement can be measured. It cannot be measured.

【0004】一方、2次元的な変位を測定する装置であ
っても対象物がコンベアなどによってライン上を搬送さ
れるような場合には、コンベアのうねり等によって搬送
される対象物の上下方向或いは左右方向の位置が変動し
て測定毎に対象物の位置が変動するため、このように測
定毎に対象物の位置が変動すると、例えば対象物表面の
凹凸等の性状が予め定められた通りかどうかの判定や対
象物表面の異物の付着等の異常の判定などを行うとき
に、正確にかつ安定した判定を行うことができないとい
う問題がある。
On the other hand, even in the case of an apparatus for measuring a two-dimensional displacement, when an object is conveyed on a line by a conveyor or the like, the object conveyed by the swell of the conveyor or the like may be moved in the vertical direction or Since the position of the object changes for each measurement due to the position change in the left-right direction, if the position of the object changes for each measurement in this way, for example, the property such as unevenness of the object surface may be as predetermined. There is a problem in that it is not possible to make an accurate and stable determination when making a determination as to whether or not an abnormality such as adhesion of foreign matter on the surface of an object is made.

【0005】この発明が解決しようとする課題は、入力
信号波形を基準信号波形に対するずれ分だけ移動させる
ことが可能なデータ処理装置、及びそれを用いて対象物
表面の変位を正確且つ安定して測定できる変位計を提供
することにある。
A problem to be solved by the present invention is to provide a data processing device capable of moving an input signal waveform by a shift amount with respect to a reference signal waveform, and a device for accurately and stably displacing an object surface using the data processing device. It is to provide a displacement meter that can measure.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
入力信号の波形を記憶する入力波形記憶部と、前記入力
信号波形の比較基準となる基準信号波形を予め記憶した
基準波形記憶部と、前記基準信号波形上にその波形が特
徴的に変化する複数個の特徴点を設定操作するための設
定部と、前記設定部により設定された前記各特徴点それ
ぞれの間の位置関係とほぼ同じ位置関係になる前記入力
信号波形上の候補点の有無を調べ、これら候補点がある
ときにその候補点がこれに対応する前記特徴点と同じ位
置に前記入力信号波形を移動させる処理部とを備えたこ
とを特徴としている。
According to the first aspect of the present invention,
An input waveform storage unit that stores a waveform of an input signal, a reference waveform storage unit that stores in advance a reference signal waveform that serves as a comparison reference of the input signal waveform, and a plurality of waveforms that characteristically change on the reference signal waveform. The presence / absence of a candidate point on the input signal waveform that has substantially the same positional relationship as the positional relationship between the setting unit for setting and operating the individual characteristic points and each of the characteristic points set by the setting unit is checked. When there are these candidate points, the processing unit moves the input signal waveform to the same position as the characteristic point corresponding to the candidate point.

【0007】このとき、前記処理部が、請求項2記載の
ように、移動したのちの前記入力信号波形を前記基準信
号波形と比較判定する機能を有し、或いは請求項3記載
のように、前記候補点がないときにその旨を表示或いは
出力する手段を備えているとよい。
At this time, the processing unit has a function of comparing and determining the input signal waveform after the movement with the reference signal waveform as described in claim 2, or as described in claim 3, It is preferable to have means for displaying or outputting the fact when there is no candidate point.

【0008】さらに、請求項4記載のように、前記処理
部が、前記各特徴点それぞれの信号値の差である基準差
と前記各候補点それぞれの信号値の差との差分値の前記
基準差に対する比率を算出し、算出した前記比率に対し
所定の重み付けを行って点数化し、点数の積算値が最小
となるものを候補点とする機能を有していると効果的で
ある。
Further, according to a fourth aspect of the present invention, the processing unit causes the reference value of the difference value between the reference difference, which is the difference between the signal values of the feature points, and the difference between the signal values of the candidate points, respectively. It is effective to have a function of calculating a ratio with respect to the difference, weighting the calculated ratio by a predetermined weight to make a score, and making a candidate having a minimum integrated value of the scores.

【0009】また、請求項5記載のように、前記処理部
が、前記設定部の操作により設定された前記各特徴点に
対し導出される前記候補点が複数あるときに警告を発す
る表示手段または出力手段を備えているとよい。
In addition, as described in claim 5, the processing unit displays a warning when there are a plurality of the candidate points derived for each of the feature points set by the operation of the setting unit, or It is preferable to have an output means.

【0010】ところで、請求項6記載の発明は、請求項
1、3、4または5記載のデータ処理装置を用いた変位
計であって、対象物の物理的変化量を電気信号に変換す
る変換部と、前記電気信号に基づき入力信号波形を導出
する入力信号波形導出部と、所定の走査面内で光ビーム
を走査する光ビーム走査手段、及び前記光ビーム走査手
段による光ビームを対象物表面に投光したときの前記対
象物からの反射光を受光して受光信号を出力する受光手
段とから成る測定部と、前記受光信号に基づき前記対象
物表面の各投光点の変位パターンを表わす入力信号波形
を導出する入力信号波形導出部と、前記処理部により移
動したのちの前記入力信号波形中に前記基準信号波形に
対して許容範囲を越えるようなずれ部分があるかどうか
を判断して前記対象物の良否判定を行う良否判定部と備
えていることを特徴としている。
By the way, a sixth aspect of the present invention is a displacement meter using the data processing device according to the first, third, fourth or fifth aspect, which is for converting a physical change amount of an object into an electric signal. Section, an input signal waveform deriving section for deriving an input signal waveform based on the electric signal, a light beam scanning means for scanning a light beam in a predetermined scanning plane, and a light beam by the light beam scanning means for subject surface. And a measuring unit including a light receiving unit that receives reflected light from the object when the light is projected onto the object and outputs a light receiving signal, and represents a displacement pattern of each light projecting point on the surface of the object based on the light receiving signal. An input signal waveform deriving unit for deriving an input signal waveform, and determining whether or not there is a deviation portion in the input signal waveform after being moved by the processing unit that exceeds an allowable range with respect to the reference signal waveform. The pair It is characterized in that it comprises a quality determination unit for performing quality determination of the object.

【0011】このような変位計によれば、対象物が例え
ばコンベア等により搬送され、コンベアのうねりによっ
て上下左右に変動するなど測定毎に対象物の位置が変動
する場合であっても、常に基準信号波形と同じ位置で移
動後の入力信号波形を基準信号波形と対比することがで
き、コンベアなどのうねりによる対象物の変動に関係な
く入力信号波形の異常の有無を判断して対象物の良否判
定を行うことが可能になる。
According to such a displacement meter, the object is always conveyed by, for example, a conveyor, and even if the position of the object changes for each measurement such as vertical and horizontal changes due to the swell of the conveyor, the reference is always maintained. The input signal waveform after moving at the same position as the signal waveform can be compared with the reference signal waveform, and whether the input signal waveform is abnormal or not is judged regardless of the fluctuation of the object due to the swell of the conveyor etc. It becomes possible to make a judgment.

【0012】[0012]

【発明の実施の形態】この発明の一実施形態について、
図1ないし図7を参照しつつ説明する。まず、図1は変
位計の概略構成を示しており、同図において、1は光ビ
ームを所定の走査面内で走査する光ビーム走査手段であ
り、例えば、ドライバ2により駆動されるレーザーダイ
オードなどの発光素子及びコリメータレンズの組み合わ
せ等から成り光ビームを発生する光ビーム発生器3と、
モータ及びその制御回路から成る走査制御部4と、この
走査制御部4により駆動され光ビーム発生器3からの光
ビームを偏向する反射鏡5とにより構成され、これらに
よって光ビームが走査面(例えば水平面)内において走
査され、表面に溝7を有し図外の搬送用コンベア等によ
り搬送される対象物(以下ワークという)8に、この溝
7の方向に走査方向がほぼ直交するように光ビームが投
光される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described.
This will be described with reference to FIGS. 1 to 7. First, FIG. 1 shows a schematic configuration of a displacement meter. In FIG. 1, reference numeral 1 is a light beam scanning means for scanning a light beam within a predetermined scanning plane, for example, a laser diode driven by a driver 2 or the like. A light beam generator 3 for generating a light beam, which comprises a combination of the light emitting element and the collimator lens of
It is composed of a scanning control unit 4 including a motor and its control circuit, and a reflecting mirror 5 that is driven by the scanning control unit 4 and deflects the light beam from the light beam generator 3. An object (hereinafter referred to as a work) 8 that is scanned in a horizontal plane) and has a groove 7 on the surface and is conveyed by a conveyor such as a conveyor (not shown) is irradiated with light so that the scanning direction is substantially orthogonal to the direction of the groove 7. The beam is projected.

【0013】さらに、11はワーク8により反射される
光ビームを集光する集光レンズ、12は集光レンズ11
により集光される反射光のスポット位置に応じた受光信
号を出力する位置検出素子(以下PSDという)、13
はPSD12の出力信号を増幅する増幅部であり、これ
ら集光レンズ11,PSD12及び増幅部13により受
光手段14が構成され、この受光手段14と光ビーム走
査手段1とにより、ワーク8の表面の各投光点における
物理的変化量である変位を測定する変換部としての測定
部15が構成されている。
Further, 11 is a condenser lens for condensing the light beam reflected by the work 8, and 12 is a condenser lens 11.
A position detection element (hereinafter referred to as PSD) that outputs a light reception signal according to the spot position of the reflected light condensed by
Is an amplifying section for amplifying the output signal of the PSD 12, and the light receiving means 14 is constituted by the condensing lens 11, the PSD 12 and the amplifying section 13. The light receiving means 14 and the light beam scanning means 1 are provided on the surface of the work 8. A measurement unit 15 is configured as a conversion unit that measures a displacement that is a physical change amount at each light projection point.

【0014】また、17は増幅部13により増幅された
信号をアナログ/デジタル変換するA/D変換部、18
は走査制御部4のモータの制御信号を発生すると共にそ
のスパン調整やシフト量調整を行う制御信号発生部、1
9はロジックアレイ,マイクロコンピュータ等から成る
制御部であり、ドライバ2及び制御信号発生部18を制
御する機能を有すると共に、測定部15による測定結果
からワーク8上の各投光点の凹凸による変位パターンを
表わすアナログ入力信号波形(以下これを実測波形と称
する)を導出する入力信号波形導出部としての機能を有
し、導出した実測波形を記憶する入力波形記憶部である
実測波形記憶部と、この実測波形の比較基準となる基準
信号波形(以下これを基準波形と称する)を予め記憶し
た基準波形記憶部とを内蔵する。尚、これら実測記憶部
及び基準記憶部は必ずしも制御部19に内蔵されている
必要はなく、外付けのものであってもよい。
Reference numeral 17 is an A / D converter for analog / digital converting the signal amplified by the amplifier 13.
Is a control signal generator that generates a control signal for the motor of the scan controller 4 and adjusts its span and shift amount.
Reference numeral 9 denotes a control unit composed of a logic array, a microcomputer, etc., which has a function of controlling the driver 2 and the control signal generation unit 18, and is displaced by unevenness of each projection point on the work 8 from the measurement result by the measurement unit 15. A measured waveform storage section that is an input waveform storage section that has a function as an input signal waveform deriving section that derives an analog input signal waveform that represents a pattern (hereinafter referred to as an actually measured waveform), and stores the derived actually measured waveform; A built-in reference waveform storage unit that stores in advance a reference signal waveform (hereinafter referred to as a reference waveform) that serves as a comparison reference of the actually measured waveform. The actual measurement storage unit and the reference storage unit do not necessarily have to be built in the control unit 19, and may be external ones.

【0015】このとき、基準波形記憶部に記憶すべき基
準波形は、基準ワークに対して光ビーム走査手段1によ
る光ビームを走査方向がその溝に直交するように投光
し、基準ワーク表面の各投光点の変位パターンを測定し
て得られたもの、或いはキーボードなどの入力手段によ
って波形データを入力することによって作成されたもの
のいずれであってもよい。
At this time, the reference waveform to be stored in the reference waveform storage unit is such that the light beam from the light beam scanning means 1 is projected onto the reference work so that the scanning direction is orthogonal to the groove, and the reference work surface is covered. It may be either one obtained by measuring the displacement pattern of each light projecting point or one created by inputting waveform data by an input means such as a keyboard.

【0016】さらに図1において、21は基準波形及び
実測波形を表示画面上に表示するLCD等から成る表示
部、22は基準波形上にその性状である凹凸が特徴的に
変化する3個の特徴点を設定操作するための設定部、2
3は処理部であり、設定部22により設定された各特徴
点間のX−Y座標系における位置関係とほぼ同じ位置関
係になる実測波形上の3個の候補点の有無を調べ、これ
ら候補点があるときにいずれかの候補点がこれに対応す
る特徴点と同じ位置になるまで実測波形を移動させる機
能を有すると共に、移動したのちの実測波形を基準波形
と対比し、実測波形中に基準波形に対して許容範囲を越
えるようなずれ部分があるかどうかを判断してワーク8
の良否判定を行う良否判定部としての機能を有する。
Further, in FIG. 1, reference numeral 21 is a display unit composed of an LCD or the like for displaying a reference waveform and an actually measured waveform on a display screen, and 22 is three characteristics in which irregularities which are characteristics thereof are characteristically changed on the reference waveform. Setting section for setting and operating points, 2
Reference numeral 3 denotes a processing unit, which examines the presence or absence of three candidate points on the measured waveform that have a positional relationship that is substantially the same as the positional relationship in the XY coordinate system between the respective feature points set by the setting unit 22, and checks these candidates. When there is a point, it has a function to move the measured waveform until one of the candidate points is at the same position as the corresponding characteristic point, and after the movement, compares the measured waveform with the reference waveform and The work 8 is judged by judging whether there is a deviation portion that exceeds the allowable range with respect to the reference waveform.
It has a function as a pass / fail determination unit for performing pass / fail determination.

【0017】ところで、処理部23は、各特徴点それぞ
れの信号値の差である基準差と各候補点それぞれの信号
値の差である実測差との差分値の基準差に対する比率を
算出し、算出した比率に対し所定の重み付けを行って点
数化し、この点数が所定値よりも小さいか否かによって
各候補点かどうかを判断するようになっている。この重
み付けによる点数化の例として、例えば上記の比率が2
%以下なら0点、4%以下なら1点、6%以下なら2
点、8%以下なら4点、10%以下なら8点、14%以
下なら20点、20%以下なら40点、20%を越えれ
ば100点というような非線形の重み付けが考えられ
る。これに限らず、測定部15の特性などに応じた重み
付けを適宜行えばよく、非線形の重み付け以外に線形の
重み付けを行ってもよいのは勿論である。
By the way, the processing unit 23 calculates the ratio of the difference value between the reference difference, which is the difference between the signal values of the feature points, and the measured difference, which is the difference between the signal values of the candidate points, to the reference difference, Predetermined weighting is applied to the calculated ratio to make points, and whether or not each candidate point is determined by whether or not this score is smaller than a predetermined value. As an example of scoring by this weighting, for example, the above ratio is 2
0% or less 0 point, 4% or less 1 point, 6% or less 2
Non-linear weighting such as 4 points if less than 8%, 8 points if less than 10%, 20 points if less than 14%, 40 points if less than 20%, 100 points if more than 20% is considered. Not limited to this, weighting may be appropriately performed according to the characteristics of the measuring unit 15, and linear weighting may be performed in addition to non-linear weighting.

【0018】つぎに、処理部23による実測波形上の候
補点検出動作について図2のフローチャート及び図3,
図4の動作説明図を参照しつつ説明する。
Next, the operation of detecting the candidate points on the actually measured waveform by the processing unit 23 will be described with reference to the flowchart of FIG.
This will be described with reference to the operation explanatory diagram of FIG.

【0019】いま、基準波形K(図3参照)及び実測波
形J(図4参照)のいずれか一方若しくは両方が選択的
に表示部21に表示され、この基準波形Kの表示画面に
基づき、作業者により設定部22が操作されて基準波形
K上にその波形が特徴的に変化する3個の特徴点P1,
P2,P3が設定されると、時間軸をX軸、信号値をY
軸として、これら各特徴点P1,P2,P3の座標をそ
れぞれ(X1,Y1),(X2,Y2),(X3,Y3)とし
て、図2に示すように特徴点P2,P1間の位置関係が
X,Y座標値の差ΔX(=X2−X1),ΔY(=Y2−Y
1)として算出される(ステップS1)。このΔYは、
例えば基準ワークの溝の段差による基準波形Kの信号値
の差である基準差に相当する。
Now, either one or both of the reference waveform K (see FIG. 3) and the actually measured waveform J (see FIG. 4) are selectively displayed on the display section 21, and work is performed based on the display screen of the reference waveform K. An operator operates the setting unit 22 to generate three characteristic points P1, whose characteristic waveform changes on the reference waveform K1.
When P2 and P3 are set, the time axis is the X axis and the signal value is Y.
As the axes, the coordinates of these characteristic points P1, P2, P3 are (X1, Y1), (X2, Y2), (X3, Y3), respectively, and the positional relationship between the characteristic points P2, P1 is shown in FIG. Is the difference between X and Y coordinate values ΔX (= X2-X1), ΔY (= Y2-Y
1) is calculated (step S1). This ΔY is
For example, it corresponds to a reference difference which is a difference in the signal value of the reference waveform K due to the step of the groove of the reference work.

【0020】続いて、実測波形J上で両特徴点P1,P
2間の位置関係と同じ位置関係になる候補点PA,PB
を検出するために、図2に示すように、実測波形J上の
ある点PA’のX座標値XAをnとして、この点PA’
に対してX座標値XBが(XA+ΔX)になる点PB’が
導出され(ステップS2)、導出された点PB’及び点
PA’それぞれのY座標値YB,YAが導出されると共
に(ステップS3)、基準差ΔYと両点PA,PBのY
座標値の実測差d1(=YB−YA)との差分値(=d1−
ΔY)の絶対値d2が算出される(ステップS4)。こ
こで、ステップS4において基準差ΔYがd3と置き換
えられる。
Then, on the measured waveform J, both feature points P1 and P
Candidate points PA and PB having the same positional relationship as the positional relationship between the two
2, the X coordinate value XA of a certain point PA ′ on the measured waveform J is set to n and the point PA ′ is detected.
, The point PB 'at which the X coordinate value XB becomes (XA + ΔX) is derived (step S2), and the Y coordinate values YB and YA of the derived points PB' and PA 'are derived (step S3). ), Reference difference ΔY and Y of both points PA and PB
Difference value (= d1−) from the measured difference d1 (= YB−YA) of the coordinate values.
An absolute value d2 of ΔY) is calculated (step S4). Here, the reference difference ΔY is replaced with d3 in step S4.

【0021】その後、基準差d3(=ΔY)の上限値及び
下限値それぞれが5mm,1mmに設定され、基準差d
3がこの上限値を越えるか否かの判定がまずなされ(ス
テップS5)、この判定結果がYESであれば基準差d
3は上限値の5mmに置き換えられ(ステップS6)、
判定結果がNOであれば、ステップS6の処理を経た後
と共に、ステップS7に移行し、基準差d3が下限値の
1mmよりも小さいか否かの判定が行われ(ステップS
7)、この判定結果がYESであれば基準差d3は下限
値の1mmに置き換えられ(ステップS8)、判定結果
がNOであれば、ステップS6,ステップS8の処理を
経た後と共に次のステップS9に移行する。
Thereafter, the upper limit value and the lower limit value of the reference difference d3 (= ΔY) are set to 5 mm and 1 mm, respectively, and the reference difference d
It is first judged whether or not 3 exceeds the upper limit value (step S5). If the judgment result is YES, the reference difference d
3 is replaced by the upper limit value of 5 mm (step S6),
If the determination result is NO, after the process of step S6, the process proceeds to step S7, and it is determined whether the reference difference d3 is smaller than the lower limit value of 1 mm (step S7).
7) If the determination result is YES, the reference difference d3 is replaced with the lower limit value of 1 mm (step S8), and if the determination result is NO, after the processes of steps S6 and S8, the next step S9 is performed. Move to.

【0022】そして、ステップS4で算出された差分値
(=d1−ΔY)の絶対値d2の基準差d3(=ΔY)に対す
る比率が算出され、算出された比率に対して所定の重み
付けが行われて点数化され(ステップS9)、以上のス
テップS1からS9までの点数化処理と同様の処理が特
徴点P1,P3間について行なわれると共に(ステップ
S10)、特徴点P2,P3間についても行われ(ステ
ップS11)、その後各比率を重み付けして得られた各
点数の合計が現在の最適点の点数よりも小さいか否かの
判定がなされ(ステップS12)、この判定結果がNO
であれば実測波形J上に設定された各点は基準波形K上
の各特徴点P1,P2,P3に対する候補点とは成り得
ないと判断されて動作が終了し、判定結果がYESであ
れば実測波形J上に設定された各点は基準波形K上の各
特徴点P1,P2,P3に対する候補点となり得ると判
断され、この例では波形データとして1000点のデー
タを離散的に取り込んでいることから、後述するように
点PA’のX座標値XA(=n)を0から999まで順次
に変化させたときに候補点となり得る各点のうち、合計
点数が最小となる最適点の位置とその点数が更新保持さ
れ(ステップS13)、その後候補点検出処理動作は終
了する。
The difference value calculated in step S4
The ratio of the absolute value d2 of (= d1−ΔY) to the reference difference d3 (= ΔY) is calculated, and the calculated ratio is given a predetermined weight to be scored (step S9). The same process as the scoring process from S1 to S9 is performed between the characteristic points P1 and P3 (step S10), and is also performed between the characteristic points P2 and P3 (step S11). It is determined whether or not the total of the respective scores obtained is smaller than the current optimal score (step S12), and the determination result is NO.
If so, it is determined that the points set on the measured waveform J cannot be candidate points for the characteristic points P1, P2, and P3 on the reference waveform K, the operation ends, and the determination result is YES. For example, it is determined that each point set on the actual measurement waveform J can be a candidate point for each of the characteristic points P1, P2, P3 on the reference waveform K. In this example, 1000 points of data are discretely captured as waveform data. Therefore, as will be described later, among the points that can be candidate points when the X coordinate value XA (= n) of the point PA ′ is sequentially changed from 0 to 999, the optimum point with the smallest total score is selected. The position and its score are updated and held (step S13), after which the candidate point detection processing operation ends.

【0023】つぎに、実測波形Jの基準波形Kに対する
マッチング処理動作について図5のフローチャート及び
図6,図7の動作説明図を参照しつつ説明する。
Next, the matching processing operation of the measured waveform J with the reference waveform K will be described with reference to the flowchart of FIG. 5 and the operation explanatory diagrams of FIGS.

【0024】いま、実測波形J(図6参照)上の点P
A’のX座標値XA(=n)を例えば0から999まで順
次に変化させることによって各特徴点に対する候補点検
出を行うものとし、そのために図5に示すように、まず
初期設定として点PA’のX座標値XA(=n)が0に設
定され(ステップT1)、図2に示す候補点検出処理が
行われ(ステップT2)、n=999かどうかの判定が
行われ(ステップT3)、この判定結果がNOであれば
nが(n+1)に置き換えられてインクリメントされ(ス
テップT4)、その後ステップT2に戻り、このステッ
プT2からT4の処理の繰り返しにより実測波形J上の
n=0から999までの各点について候補点検出処理が
行われ、候補点となり得る最適点が導出される。尚、n
の上限は999に限るものではない。
Now, a point P on the measured waveform J (see FIG. 6)
It is assumed that candidate point detection for each feature point is performed by sequentially changing the X coordinate value XA (= n) of A ′ from 0 to 999, for which purpose, as shown in FIG. The X coordinate value XA (= n) of'is set to 0 (step T1), the candidate point detection process shown in FIG. 2 is performed (step T2), and it is determined whether n = 999 (step T3). If the determination result is NO, n is replaced with (n + 1) and incremented (step T4), and then the process returns to step T2, and from the process of steps T2 to T4, n = 0 on the measured waveform J Candidate point detection processing is performed for each of the points up to 999, and the optimum points that can be candidate points are derived. Note that n
Is not limited to 999.

【0025】そして、ステップT3の判定結果がYES
であれば次のステップT5に移行し、このような候補点
検出処理により得られた最適点の評価が行われ、即ち上
記した重み付けによるこれら最適点の合計点数が100
点以下か否かの判定がなされ(ステップT5)、この判
定結果がNOであれば、最適点は候補点ではなく実測波
形Jは基準波形Kにマッチングしないと判断されて全計
測条件やデータが無効にされ、その後マッチング処理動
作が終了する。
Then, the determination result of step T3 is YES.
If so, the process proceeds to the next step T5, and the optimum points obtained by such candidate point detection processing are evaluated, that is, the total number of these optimum points by the above weighting is 100.
It is determined whether or not it is less than or equal to the point (step T5), and if the determination result is NO, it is determined that the optimum point is not a candidate point and the measured waveform J does not match the reference waveform K, and all measurement conditions and data are determined. It is invalidated, and then the matching processing operation ends.

【0026】一方、ステップT5の判定結果がYESで
あれば最適点は候補点であり実測波形Jは基準波形Kに
マッチングし得ると判断され、例えば図6に示すように
基準波形K上の特徴点P1とこれに対応する実測波形J
上の候補点PAとの間のX座標値の差δX(=XA−X
1)の分だけ実測波形がX軸方向に移動されると共に
(ステップT6)、基準波形K上の特徴点P1とこれに
対応する実測波形J上の候補点PAとの間のY座標値の
差δY(=YA−Y1)の分だけ実測波形JがY軸方向に
移動され、図7に示すように基準波形Kに対してマッチ
ングする位置まで実測波形Jが移動され(ステップT
7)、その後実測波形Jの基準波形Kに対するマッチン
グ処理動作は終了する。
On the other hand, if the decision result in the step T5 is YES, it is decided that the optimum point is a candidate point and the actually measured waveform J can match the reference waveform K. For example, as shown in FIG. Point P1 and corresponding measured waveform J
Difference in X coordinate value with the above candidate point PA δX (= XA−X
The measured waveform is moved in the X-axis direction by the amount of 1) (step T6), and the Y coordinate value between the characteristic point P1 on the reference waveform K and the corresponding candidate point PA on the measured waveform J is changed. The measured waveform J is moved in the Y-axis direction by the amount of the difference δY (= YA−Y1), and the measured waveform J is moved to a position matching the reference waveform K as shown in FIG. 7 (step T
7) After that, the matching processing operation of the measured waveform J with respect to the reference waveform K ends.

【0027】さらに、例えばワーク8の溝7内に異物が
付着している場合などには、実測波形J中に基準波形K
に対して許容範囲を越えるようなずれ部分が生じるた
め、このような移動後の実測波形J(図7参照)中に基
準波形Kに対して許容範囲を越えるようなずれ部分があ
るかどうかの判断が処理部23により行われ、ワーク8
の良否判定が行われる。尚、図7における波形の右端の
立下がりは、移動前の実測波形Jにおけるデータがない
領域であることを示しているが、演算上このようにデー
タがない領域であっても、その直前のデータを保持する
ような処理を行うようにしてもよい。
Further, for example, when foreign matter is attached in the groove 7 of the work 8, the reference waveform K is included in the measured waveform J.
However, since there is a deviation that exceeds the allowable range with respect to the reference waveform K, whether there is a deviation that exceeds the allowable range with respect to the reference waveform K in the actually measured waveform J after the movement (see FIG. 7). The determination is made by the processing unit 23, and the work 8
The pass / fail judgment is made. Although the falling edge at the right end of the waveform in FIG. 7 indicates that there is no data in the measured waveform J before the movement, even if there is no data in the calculation as described above, just before that. You may make it perform the process which hold | maintains data.

【0028】従って、例えば搬送用コンベアのうねり等
によりワーク8が上下左右に変動する場合であっても、
実測波形Jを基準波形Kに重なる位置まで移動補正でき
るため、常に基準波形Kと同じ位置で移動後の実測波形
Jを基準波形Kと対比することができ、ワーク8の変動
に関係なく、ワーク8表面の凹凸状態の良否は勿論のこ
とワーク8表面への付着といった異常等の有無を正確に
かつ安定して測定することができる。
Therefore, even when the work 8 fluctuates vertically and horizontally due to, for example, undulations of the transfer conveyor,
Since the actually measured waveform J can be moved and corrected to a position overlapping the reference waveform K, the actually measured waveform J after the movement can always be compared with the reference waveform K at the same position as the reference waveform K, regardless of the variation of the work 8. It is possible to accurately and stably measure the presence or absence of abnormalities such as adhesion to the surface of the work 8 as well as the quality of the unevenness of the surface of the work 8.

【0029】また、処理部23により、上記したように
例えば特徴点P1,P2それぞれのY座標値(信号値)
の差である基準差ΔY(=Y2−Y1)と候補点PA,P
BそれぞれのY座標値(信号値)の差である実測差d1
(=YA−YB)との差分値(d1−ΔY)の絶対値d2の
基準差ΔY(=d3)の差に対する比率を算出し、算出し
た比率に対し所定の重み付けを行って点数化しこの点数
が所定値よりも小さいか否かによって候補点PA,PB
かどうかの判断を行うため、測定部15等の特性や種々
の測定条件に応じた候補点の有無の判定が可能になる。
Further, as described above, the processing unit 23 causes, for example, the Y coordinate values (signal values) of the feature points P1 and P2, respectively.
Difference ΔY (= Y2-Y1) which is the difference between the candidate points PA and P
Actual measurement difference d1 that is the difference between the Y coordinate values (signal values) of B
The ratio of the absolute value d2 of the difference value (d1-ΔY) with (= YA-YB) to the difference of the reference difference ΔY (= d3) is calculated, and the calculated ratio is given a predetermined weight to make a score. Depending on whether or not is smaller than a predetermined value, the candidate points PA, PB
Since it is determined whether or not there is a candidate point according to the characteristics of the measurement unit 15 and various measurement conditions.

【0030】さらに、基準波形K上に特徴点を3点設定
する場合に、3点目のP3は図3に示す位置より右であ
れば波形上のどこでもよく、この3点目のP3の設定に
よって、探索する範囲が限定されて候補点検出処理のス
ピードアップを図れると同時に、マッチング処理の際に
実測波形Jが極端にずれた場合における保護が可能にな
る。
Further, when setting three characteristic points on the reference waveform K, the third point P3 may be anywhere on the waveform as long as it is on the right side of the position shown in FIG. 3, and the setting of the third point P3. By this, the range to be searched is limited, and the speed of the candidate point detection processing can be increased, and at the same time, it is possible to protect when the measured waveform J is extremely shifted during the matching processing.

【0031】ところで、上記した実施形態において、処
理部23が、設定部22の操作により設定された各特徴
点に対し図2のフローチャートの手順に従って得られる
候補点が複数あるようなときに、候補点を一義的に定め
ることができない旨を知らせるために、ブザーやランプ
等の警告発生手段を駆動して何らかの警告を発する機能
を有していてもよく、このような警告を行うことによ
り、不慣れな作業者が特徴点の設定作業を行う場合に、
例えば3点目の特徴点を設定しようとするときに警告が
出て先の特徴点の設定が適当でないことが容易にわか
り、常に最適な特徴点を簡単に設定することが可能にな
る。
By the way, in the above-described embodiment, when the processing unit 23 has a plurality of candidate points obtained according to the procedure of the flow chart of FIG. 2 for each feature point set by the operation of the setting unit 22, In order to inform that the point cannot be set uniquely, it may have a function to drive warning warning means such as a buzzer or a lamp to give some warning. When an unskilled worker performs feature point setting work,
For example, when an attempt is made to set the third feature point, a warning is given and it is easily understood that the setting of the previous feature point is not appropriate, and it is possible to always easily set the optimum feature point.

【0032】なお、上記実施形態は実測波形Jの基準波
形Kに対するマッチング処理を行う機能を備えた変位計
について説明しているが、この発明はこのような変位計
のみに限定されるものではなく、単に基準信号波形に対
する入力信号波形のずれを求めて入力信号波形を移動さ
せて基準信号波形にマッチングさせる機能のみを有する
データ処理装置であってもよく、更にこのようなデータ
処理装置を用いた変位計以外の機器であってもよいのは
言うまでもない。
Although the above embodiment has described the displacement meter having the function of performing the matching process of the actually measured waveform J with respect to the reference waveform K, the present invention is not limited to such a displacement meter. The data processing apparatus may have only the function of finding the deviation of the input signal waveform with respect to the reference signal waveform and moving the input signal waveform to match with the reference signal waveform. Further, such a data processing apparatus is used. It goes without saying that equipment other than the displacement gauge may be used.

【0033】さらに、処理部23は、候補点がないとき
にその旨を表示或いは出力する手段を備えていてもよい
のは勿論である。
Further, it goes without saying that the processing section 23 may be provided with means for displaying or outputting the fact when there is no candidate point.

【0034】また、上記実施形態では基準波形Kに設定
する特徴点を3点とした場合について説明したが、実測
波形Jを基準波形Kにマッチングさせる原理から言えば
特徴点は2点あればよく、一方特徴点を4点以上設定し
てもよいのは勿論であり、この場合、候補点を検出する
際に重み付けによる点数の積算値が最小になるものが候
補点とされ、このように4点以上の特徴点の設定によっ
て実測波形のマッチング精度をより一層向上させること
ができる。
In the above embodiment, the case where the number of characteristic points set in the reference waveform K is three has been described, but from the principle of matching the actually measured waveform J with the reference waveform K, only two characteristic points are required. On the other hand, it is a matter of course that four or more feature points may be set, and in this case, the candidate point is the one having the smallest integrated value of the points by weighting when the candidate point is detected. It is possible to further improve the matching accuracy of the actually measured waveform by setting the characteristic points equal to or more than the points.

【0035】さらに、上記実施形態ではワーク8が溝7
を有する場合について説明したが、溝に代わり突条を有
するものであってもこの発明を同様に実施することがで
きる。
Further, in the above-described embodiment, the work 8 has the groove 7.
Although the present invention has been described above, the present invention can be implemented in the same manner even if the groove is provided with a protrusion.

【0036】[0036]

【発明の効果】以上のように、請求項1記載の発明によ
れば、入力信号波形を基準信号波形と同じ位置まで移動
することができるため、請求項2記載のように、移動し
たのちの入力信号波形を基準信号波形と比較判定するす
る際などに、入力信号波形を常に基準信号波形と同じ位
置で対比することが可能になる。
As described above, according to the invention described in claim 1, since the input signal waveform can be moved to the same position as the reference signal waveform, after the movement as described in claim 2, It becomes possible to always compare the input signal waveform at the same position as the reference signal waveform when the input signal waveform is compared and judged with the reference signal waveform.

【0037】このとき、請求項3記載のように、候補点
がないときにその旨を表示或いは出力する手段を処理部
に設けると、入力信号波形が基準信号波形にマッチング
しないものであることが容易にわかる。
At this time, when the processing section is provided with a means for displaying or outputting the fact that there is no candidate point, the input signal waveform may not match the reference signal waveform. Easy to understand.

【0038】また、請求項4記載のように、重み付けに
よる点数化を行うことにより、測定部等の特性や種々の
測定条件等に応じて候補点の有無を判定することが可能
になる。
Further, as described in claim 4, by scoring by weighting, it becomes possible to judge the presence or absence of the candidate points according to the characteristics of the measuring unit and various measuring conditions.

【0039】さらに、請求項5記載のように、処理部
が、設定部の操作により設定された前記各特徴点に対し
導出される前記候補点が複数あるときに警告を発する表
示手段または出力手段を備えていると、不慣れな作業者
であっても常に最適な特徴点を簡単に設定することが可
能になる。
Further, according to a fifth aspect, the processing unit issues a warning when there are a plurality of the candidate points derived for each of the feature points set by the operation of the setting unit, or a display unit or an output unit. With this feature, even an inexperienced worker can always easily set optimum feature points.

【0040】ところで、請求項6記載の変位計によれ
ば、測定毎に対象物の位置が変動する場合であっても、
常に基準波形と同じ位置で移動後の入力信号波形を基準
信号波形と対比することができ、対象物表面の凹凸状態
等の良否や対象物表面への異物の付着といった異常の有
無等を、正確にかつ安定して測定することができる。
By the way, according to the displacement gauge of the sixth aspect, even when the position of the object changes every measurement,
You can always compare the input signal waveform after moving at the same position as the reference waveform with the reference signal waveform, and accurately check whether the unevenness of the surface of the object is good or not, and whether there is any abnormality such as adhesion of foreign matter to the surface of the object. It is possible to measure in a stable and stable manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】同上の動作説明用のフローチャートである。FIG. 2 is a flowchart for explaining the operation of the above.

【図3】同上の動作説明図である。FIG. 3 is an operation explanatory diagram of the above.

【図4】同上の動作説明図である。FIG. 4 is an operation explanatory view of the above.

【図5】同上の動作説明用のフローチャートである。FIG. 5 is a flowchart for explaining the same operation as above.

【図6】同上の動作説明図である。FIG. 6 is an operation explanatory view of the above.

【図7】同上の動作説明図である。FIG. 7 is an operation explanatory diagram of the above.

【符号の説明】[Explanation of symbols]

1 光ビーム走査手段 7 溝 8 ワーク(対象物) 14 受光手段 15 測定部 19 制御部 22 設定部 23 処理部 K 基準波形(基準信号波形) J 実測波形(入力信号波形) P1,P2,P3 特徴点 PA,PB 候補点 1 Light Beam Scanning Means 7 Grooves 8 Workpiece (Target) 14 Light Receiving Means 15 Measuring Section 19 Control Section 22 Setting Section 23 Processing Section K Reference Waveform (Reference Signal Waveform) J Measured Waveform (Input Signal Waveform) P1, P2, P3 Features Points PA, PB Candidate points

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 入力信号の波形を記憶する入力波形記憶
部と、 前記入力信号波形の比較基準となる基準信号波形を予め
記憶した基準波形記憶部と、 前記基準信号波形上にその波形が特徴的に変化する複数
個の特徴点を設定操作するための設定部と、 前記設定部により設定された前記各特徴点それぞれの間
の位置関係とほぼ同じ位置関係になる前記入力信号波形
上の候補点の有無を調べ、これら候補点があるときにそ
の候補点がこれに対応する前記特徴点と同じ位置に前記
入力信号波形を移動させる処理部とを備えたことを特徴
とするデータ処理装置。
1. An input waveform storage unit that stores a waveform of an input signal, a reference waveform storage unit that stores in advance a reference signal waveform that serves as a comparison reference of the input signal waveform, and the waveform is characterized on the reference signal waveform. A setting unit for setting and operating a plurality of characteristic points that change dynamically, and candidates on the input signal waveform that have substantially the same positional relationship as the positional relationship between each of the characteristic points set by the setting unit. A data processing apparatus, comprising: a processing unit that examines the presence or absence of a point and moves the input signal waveform to the same position as the characteristic point corresponding to the candidate point when the candidate point exists.
【請求項2】 前記処理部が、移動したのちの前記入力
信号波形を前記基準信号波形と比較判定する機能を有す
ることを特徴とする請求項1記載のデータ処理装置。
2. The data processing apparatus according to claim 1, wherein the processing section has a function of comparing and determining the input signal waveform after the movement with the reference signal waveform.
【請求項3】 前記処理部が、前記候補点がないときに
その旨を表示或いは出力する手段を備えていることを特
徴とする請求項1または2記載のデータ処理装置。
3. The data processing apparatus according to claim 1, wherein the processing section includes means for displaying or outputting when the candidate point does not exist.
【請求項4】 前記処理部が、前記各特徴点それぞれの
信号値の差である基準差と前記各候補点それぞれの信号
値の差との差分値の前記基準差に対する比率を算出し、
算出した前記比率に対し所定の重み付けを行って点数化
し、点数の積算値が最小となるものを候補点とする機能
を有することを特徴とする請求項1ないし3のいずれか
記載のデータ処理装置。
4. The processing unit calculates a ratio of a difference value between a reference difference, which is a difference between signal values of the feature points, and a difference between signal values of the candidate points, to the reference difference,
4. The data processing apparatus according to claim 1, further comprising a function of assigning a predetermined weight to the calculated ratio to make a score, and making a candidate having a minimum integrated value of scores as a candidate point. .
【請求項5】 前記処理部が、前記設定部の操作により
設定された前記各特徴点に対し導出される前記候補点が
複数あるときに警告を発する表示手段または出力手段を
備えていることを特徴とする請求項1ないし4のいずれ
か記載のデータ処理装置。
5. The processing unit includes a display unit or an output unit that issues a warning when there are a plurality of candidate points derived for each feature point set by the operation of the setting unit. The data processing device according to claim 1, wherein the data processing device is a data processing device.
【請求項6】 対象物の物理的変化量を電気信号に変換
する変換部と、 前記電気信号に基づき入力信号波形を導出する入力信号
波形導出部と、 前記処理部により移動したのちの前記入力信号波形中に
前記基準信号波形に対して許容範囲を越えるようなずれ
部分があるかどうかを判断して前記対象物の良否判定を
行う良否判定部とを備えていることを特徴とする請求項
1、3、4または5記載のデータ処理装置を用いた変位
計。
6. A conversion unit for converting a physical change amount of an object into an electric signal, an input signal waveform deriving unit for deriving an input signal waveform based on the electric signal, and the input after being moved by the processing unit. 7. A quality determination unit for determining whether the target object is good or bad by determining whether or not the signal waveform has a shift portion that exceeds an allowable range with respect to the reference signal waveform. A displacement meter using the data processing device according to 1, 3, 4 or 5.
JP11014096A 1996-04-05 1996-04-05 Data-processing apparatus and displacement sensor using the apparatus Pending JPH09273923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11014096A JPH09273923A (en) 1996-04-05 1996-04-05 Data-processing apparatus and displacement sensor using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11014096A JPH09273923A (en) 1996-04-05 1996-04-05 Data-processing apparatus and displacement sensor using the apparatus

Publications (1)

Publication Number Publication Date
JPH09273923A true JPH09273923A (en) 1997-10-21

Family

ID=14528053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11014096A Pending JPH09273923A (en) 1996-04-05 1996-04-05 Data-processing apparatus and displacement sensor using the apparatus

Country Status (1)

Country Link
JP (1) JPH09273923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663759B2 (en) 2006-07-12 2010-02-16 Omron Corporation Displacement sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663759B2 (en) 2006-07-12 2010-02-16 Omron Corporation Displacement sensor

Similar Documents

Publication Publication Date Title
US8305344B2 (en) Projector and projector accessory
US8107685B2 (en) Displacement sensor having a display data output
US7502504B2 (en) Three-dimensional visual sensor
JP2004317507A (en) Axis-adjusting method of supervisory device
JPH032513A (en) Automatic surveying equipment
JP2020024143A (en) Vehicle dimension measurement device and vehicle dimension measurement method
US4760269A (en) Method and apparatus for measuring distance to an object
JP4749092B2 (en) Laser processing method and laser processing apparatus
US20040227918A1 (en) Exposure apparatus, reticle shape measurement apparatus and method
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JPH0914921A (en) Non-contact three-dimensional measuring instrument
JPH09273923A (en) Data-processing apparatus and displacement sensor using the apparatus
US8054521B2 (en) Method for adjusting galvano scanner system
JP3513902B2 (en) Optical displacement measuring device
JP2021056087A (en) Shape measuring device
EP3890316A1 (en) Collimator based camera calibration
JP2004045231A (en) Three-dimensional measuring machine, calibration method therefor, and computer-readable storage medium stored with program for executing the method
JP3619851B2 (en) A method of improving the accuracy of a straight line meter using a laser beam.
JP2753342B2 (en) Work position detector
JP2001194120A (en) Method for measuring cross-sectional dimension of h- shaped steel
JP2008180646A (en) Shape measuring device and shape measuring technique
JP2002250604A (en) Measuring device for three-dimensional size
JP3513945B2 (en) Optical displacement measuring device
JPH10239026A (en) Measuring method for cross sectional shape profile
JP2002048522A (en) Scanning type shape analyzer for analyzing space of wide inspection face