JPH09273060A - Conjugate long fiber nonwoven fabric and its production - Google Patents

Conjugate long fiber nonwoven fabric and its production

Info

Publication number
JPH09273060A
JPH09273060A JP8081132A JP8113296A JPH09273060A JP H09273060 A JPH09273060 A JP H09273060A JP 8081132 A JP8081132 A JP 8081132A JP 8113296 A JP8113296 A JP 8113296A JP H09273060 A JPH09273060 A JP H09273060A
Authority
JP
Japan
Prior art keywords
range
fiber
composite
nonwoven fabric
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8081132A
Other languages
Japanese (ja)
Inventor
Kasumi Kin
霞 金
Akitaka Kawano
晃敬 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP8081132A priority Critical patent/JPH09273060A/en
Publication of JPH09273060A publication Critical patent/JPH09273060A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a core-sheath type conjugate long fiber nonwoven fabric composed of a sheath component of a high density polyethylene and a core component of a polypropylene and excellent in softness and feeling and to provide a method for producing the nonwoven fabric excellent in spinnability and opening abilities. SOLUTION: A sheath component is composed of a high density polyethylene having a Q-value (a weight average molecular weight/a number average molecular weight) of >3.5 and <=4.5, a melt flow rate of 10-70g/10min determined by a method with conformity to JIS K-7210 under conditions of 210 deg.C and a load of 2.16kg, and a density of 0.94-0.97g/cm<3> . A core component is composed of a polypropylene having a melt flow rate in the range of 10-100g/10min. The core component and the sheath component are combined so that the difference in the melt flow rates between the core component and the sheath component is in the range of 0-35g/10min. The core component and the sheath component are spun by melt extrusion spinning at an identical temperature selected from a range of melt spinning temperature of 220 deg.C to 270 deg.C, taking up a group of the spun continuous filaments at a high speed by an ejector, forming a web by collecting and laying fibers of 1-10 denier in fineness on a moving supporting body for collection followed by thermobonding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療・衛生資材、
一般工業資材等の広い分野で使用可能であり、特にその
柔軟性により、使い捨ておむつや生理用ナプキン等の衛
生材料の表面材料に適しているポリオレフィン樹脂から
なる芯―鞘型複合長繊維不織布とその製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to medical / hygiene materials,
It can be used in a wide range of fields such as general industrial materials, and due to its flexibility, it is particularly suitable for surface materials of sanitary materials such as disposable diapers and sanitary napkins. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】熱可塑性樹脂を溶融押出し機において溶
融紡糸し、紡出された連続フィラメント(糸条体)を高
速高圧エアーで引き取り、移動している捕集用の網から
なる支持体上に捕集、堆積させてウェブとし、次いで熱
エンボスして得られるスパンボンド不織布は、他の乾式
不織布や湿式不織布に比べて生産性が高く、連続長繊維
からなるので引っ張り強度等の機械的性質に優れてい
る。特に、このスパンボンド不織布のなかでも、ナイロ
ンのようなポリアミド樹脂或いはポリエチレンテレフタ
レートのようなポリエステル樹脂を原料として製造した
不織布に対し、ポリオレフィン樹脂からなるスパンボン
ド不織布は、その比重が小さいこと、及びフィラメント
自体の柔軟性が優れていることから、使い捨てシーツ、
おむつ、生理用ナプキン等の衛生材料の表面材料等の分
野への進出が計られるようになってきた。
2. Description of the Related Art A thermoplastic resin is melt-spun in a melt extruder, and the spun continuous filament (filament) is taken up by high-speed high-pressure air and placed on a moving net for support. Spunbond nonwoven fabric, which is obtained by collecting and depositing it into a web and then hot embossing, has higher productivity than other dry or wet nonwoven fabrics, and because it consists of continuous long fibers, it has mechanical properties such as tensile strength. Are better. In particular, among the spunbonded nonwoven fabrics, a spunbonded nonwoven fabric made of a polyolefin resin has a small specific gravity, as compared with a nonwoven fabric manufactured using a polyamide resin such as nylon or a polyester resin such as polyethylene terephthalate as a raw material, and a filament. Due to its excellent flexibility, disposable sheets,
Advances have been made in fields such as surface materials for sanitary materials such as diapers and sanitary napkins.

【0003】しかしながら、熱可塑性樹脂が単成分から
なるスパンボンド不織布においては、加熱エンボスによ
り熱接着させると、接着点は、繊維形状が維持されずに
フィルム化されてしまい、風合いが著しく損なわれて好
ましくないので、この点を改善するため、異なる樹脂か
ら構成される複合繊維とすることが提案されてきた。従
来から繊維表面の一部、又は全部を、その繊維を構成す
る熱可塑性樹脂より低軟化点を有する別の熱可塑性樹脂
で覆うことにより、即ち芯―鞘繊維を形成させ、軟化点
の相違を利用して接着性と接着後の風合いを改善する不
織布が知られている(特公昭42−21318号公報と
特公昭43−1776号公報)。又、特公昭54―38
214号公報には、ポリプロピレンのような繊維形成能
を有する結晶性重合体を芯成分とし、該重合体より少な
くとも40℃低い軟化点を有するポリスチレン、ポリエ
チレン、エチレン−プロピレン共重合体等を鞘成分とし
た場合、従来の紡糸・延伸の2工程により複合繊維を製
造する方法では芯鞘界面での親和力が弱いので延伸性が
悪く、延伸条件によっては各成分が剥離するという欠点
を解消するため、複合紡出をする際、紡出糸を毎分3、
200〜9、800mの速度で引取り、一挙に変形、冷
却、固化を行うという製造方法が開示されている。
However, in a spunbonded non-woven fabric composed of a thermoplastic resin as a single component, when heat-bonding is performed by heat embossing, the bonding point is formed into a film without maintaining the fiber shape, and the texture is significantly impaired. Since this is not preferable, in order to improve this point, it has been proposed to use a composite fiber composed of different resins. Conventionally, a part or all of the fiber surface is covered with another thermoplastic resin having a softening point lower than that of the thermoplastic resin forming the fiber, that is, a core-sheath fiber is formed, and a difference in softening point is formed. Nonwoven fabrics that improve the adhesiveness and the texture after bonding are known (Japanese Patent Publication No. 42-21318 and Japanese Patent Publication No. 43-1776). Also, Japanese Examined Japanese Patent Publication Sho 54-38
In JP-A-214, a crystalline polymer having a fiber-forming ability such as polypropylene is used as a core component, and polystyrene, polyethylene, ethylene-propylene copolymer having a softening point lower than that of the polymer by at least 40 ° C. is used as a sheath component. In such a case, in the conventional method of producing a composite fiber by two steps of spinning and drawing, since the affinity at the core-sheath interface is weak, drawability is poor, and in order to eliminate the disadvantage that each component peels depending on the drawing conditions, When performing composite spinning, the spinning yarn is 3 per minute,
A manufacturing method is disclosed in which it is taken at a speed of 200 to 9,800 m, and is deformed, cooled, and solidified all at once.

【0004】このように、ポリオレフィン樹脂からなる
複合長繊維不織布として、芯成分にポリプロピレン樹
脂、鞘成分にポリエチレン樹脂という構成は最も一般的
である。中でも、直鎖状低密度ポリエチレンはソフトな
風合いが期待されるが、紡糸性が悪く均質な不織布が得
られない上、更に、ウェブを形成させる際の開繊性が劣
るため低目付の不織布ができないという問題点がある。
この問題点を改良するため、特開平2−61156号
公報では、エチレンとオクテン―1とのコーポリマー
で、オクテン―1を実質的に1〜10重量%含有し、密
度が0.900〜0.940g/cm3の直鎖状低密度
ポリエチレンを複合繊維の鞘成分とし、複合繊維の芯成
分がメルトフローレート値が5〜45g/10分のポリ
プロピレンであり、前記ポリエチレンとポリプロピレン
の重量比が20:80〜80:20の複合長繊維からな
る不織布が開示されている。しかしながら、この方法に
おいても紡糸性はある程度改善されるものの、開繊性が
依然として劣るという欠点が存在している。
As described above, the composite long-fiber non-woven fabric made of polyolefin resin is most commonly composed of polypropylene resin as the core component and polyethylene resin as the sheath component. Among them, linear low-density polyethylene is expected to have a soft texture, but it has poor spinnability and cannot provide a uniform nonwoven fabric. There is a problem that you cannot do it.
In order to improve this problem, JP-A-2-61156 discloses a copolymer of ethylene and octene-1, which contains substantially 1 to 10% by weight of octene-1 and has a density of 0.900 to 0. A linear low density polyethylene of 940 g / cm 3 was used as the sheath component of the composite fiber, the core component of the composite fiber was polypropylene with a melt flow rate value of 5 to 45 g / 10 min, and the weight ratio of the polyethylene to the polypropylene was A non-woven fabric composed of a composite long fiber of 20:80 to 80:20 is disclosed. However, even with this method, the spinnability is improved to some extent, but there is a drawback in that the openability is still poor.

【0005】更に、この開繊性の問題を解決するため、
特開平5ー186951号公報では、複合繊維の鞘成分
として高密度ポリエチレンに、高密度ポリエチレン当り
ポリプロピレンを2〜25重量%ブレンドし、Q値(重
量平均分子量/数平均分子量)が3.5以下の構造体
を、更に芯成分としてメルトフローレートが5〜70g
/10分のポリプロピレンを用い、低目付においても地
合の良好な熱接着性を有する複合繊維からなる不織布が
開示されている。この場合、ブレンドされたポリプロピ
レンが芯鞘成分の剥離現象を防止し、紡糸性の向上の役
割を果たしているが、ブレンドするためのプロセスが余
分に増えて、製造コスト上不利であると同時に、鞘にポ
リプロピレンの成分が存在することで、熱特性が芯のポ
リプロピレンのものに近づくことになるので、熱接着に
よってスパンボンド不織布を得る場合その物性が劣ると
いう問題がある。
Further, in order to solve the problem of openability,
In JP-A-5-186951, high density polyethylene as a sheath component of composite fibers is blended with 2 to 25% by weight of polypropylene per high density polyethylene, and Q value (weight average molecular weight / number average molecular weight) is 3.5 or less. As a core component, the melt flow rate is 5 to 70 g.
Disclosed is a non-woven fabric made of a composite fiber which uses polypropylene for / 10 minutes and has a heat-bonding property with good texture even in a low basis weight. In this case, the blended polypropylene prevents the peeling phenomenon of the core-sheath component and plays a role of improving the spinnability, but the process for blending is additionally increased, which is disadvantageous in manufacturing cost and at the same time, The presence of the polypropylene component causes the thermal characteristics to approach those of the core polypropylene, so that the physical properties of the spunbonded nonwoven fabric are inferior when heat-bonded.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、かかる
現状に鑑み、芯ー鞘型複合不織布の鞘成分として高密度
ポリエチレン、芯成分としてポリプロピレンを用いる組
み合わせについて鋭意研究した結果、鞘成分として使用
する高密度ポリエチレンの分子量の分布と前記2種の熱
可塑性樹脂のメルトフローレートの差に着眼し、樹脂の
密度が特定の高い範囲にあっても、重量平均分子量を数
平均分子量で除した値で定義され、分子量の分布幅を示
すQ値が特定範囲の高密度ポリエチレンを鞘成分とし
て、更に前記樹脂のメルトフローレートとの差が特定の
範囲にあるポリプロピレンを芯成分として組み合わせ、
且つ溶融紡糸の際に同じ溶融温度を用いると、その帯電
量が多く、解繊性に優れ、紡出されたフィラメント群を
伸張する際に粘度が大きくならず、しかも曵糸性と紡糸
性が極めて優れ、更にその優れた熱接着性と挨まって、
柔軟性と風合に優れる芯―鞘型複合長繊維不織布が得ら
れることを見出し、本発明を完成させるに至った。本発
明の目的は、高密度ポリエチレン樹脂を鞘成分、ポリプ
ロピレン樹脂を芯成分とし、柔軟性と風合いに優れる芯
―鞘型複合長繊維不織布及び紡糸性と開繊性が良好で前
記の特性を有する前記不織布の製造方法を提供すること
にある。
In view of the above situation, the present inventors have earnestly studied a combination of a high density polyethylene as a sheath component of a core-sheath type composite nonwoven fabric and polypropylene as a core component, and as a result, as a sheath component, Focusing on the difference in the molecular weight distribution of the high-density polyethylene used and the melt flow rate of the two thermoplastic resins, the weight average molecular weight was divided by the number average molecular weight even if the density of the resin was in a specific high range. Is defined as a value, and a high-density polyethylene having a Q value indicating a molecular weight distribution width in a specific range is used as a sheath component, and polypropylene having a difference in melt flow rate from the resin in a specific range is combined as a core component,
Moreover, when the same melting temperature is used during melt spinning, the charge amount is large, the defibration property is excellent, the viscosity does not become large when the spun filament group is extended, and the spinnability and spinnability are improved. It is extremely excellent and dusty with its excellent heat adhesion.
They have found that a core-sheath type composite long-fiber nonwoven fabric excellent in flexibility and texture can be obtained, and have completed the present invention. An object of the present invention is to use a high-density polyethylene resin as a sheath component and a polypropylene resin as a core component, and a core-sheath type composite long-fiber nonwoven fabric excellent in flexibility and texture and having good spinnability and openability and having the above-mentioned characteristics. It is to provide a method for producing the non-woven fabric.

【0007】[0007]

【課題を解決するための手段】本発明の第一は、芯成分
と鞘成分からなる複合長繊維から形成された不織布にお
いて、鞘成分が、重量平均分子量を数平均分子量で除し
た値で定義されるQ値が3.5を超え4.5以下の範囲
で、密度が0.940〜0.970g/cm3の範囲の
高密度ポリエチレン及び芯成分が、JIS K 721
0に記載された方法で測定した210℃、荷重2.16
kgの条件におけるメルトフローレートが、10〜10
0g/10分の範囲のポリプロピレンからなり、且つ複
合長繊維の繊度が1〜10デニールの範囲であることを
特徴とする複合長繊維不織布である。 本発明の第二
は、繊維軸に直交する繊維断面積に占める鞘成分の重量
比率が20〜80%の範囲であることを特徴とする本発
明第一に記載の複合長繊維不織布である。本発明の第三
は、異なった熱可塑性樹脂を溶融押し出し紡糸すること
からなる芯成分と鞘成分からなる複合長繊維で形成され
る不織布の製造方法において、鞘成分が、重量平均分子
量を数平均分子量で除した値で定義されるQ値が3.5
を超え4.5以下の範囲で、JIS K 7210に記
載された方法で測定した210℃、荷重2.16kgの
条件におけるメルトフローレートが10〜70g/10
分の範囲で、且つ密度が0.940〜0.970g/c
3の範囲の高密度ポリエチレン及び複合長繊維の芯成
分が、前記の方法で測定したフローレートが10〜10
0g/10分の範囲のポリプロピレンを、前記メルトフ
ローレート同士の差が0〜35g/10分の範囲内で組
み合わせ、溶融紡糸温度220℃〜270℃の範囲から
選ばれた同一の温度にて溶融押出し紡糸し、紡出された
連続フィラメントを高速でエジェクターーにより引き取
って、複合長繊維の繊度が1〜10デニールの範囲と
し、次いで前記繊維を移動している捕集体上に堆積させ
てウェブを形成し、その後熱接着することを特徴とする
複合長繊維不織布の製造方法である。
The first aspect of the present invention is to define a non-woven fabric formed from a composite long fiber composed of a core component and a sheath component, wherein the sheath component is defined as a value obtained by dividing the weight average molecular weight by the number average molecular weight. According to JIS K 721, the high density polyethylene and the core component having a Q value of more than 3.5 and 4.5 or less and a density of 0.940 to 0.970 g / cm 3 are used.
210 ° C, load 2.16 measured by the method described in 0.
The melt flow rate under the condition of kg is 10 to 10
A composite long-fiber nonwoven fabric comprising polypropylene in the range of 0 g / 10 minutes and having a fineness of the composite long fibers in the range of 1 to 10 denier. A second aspect of the present invention is the composite continuous fiber nonwoven fabric according to the first aspect of the present invention, wherein the weight ratio of the sheath component in the fiber cross-sectional area orthogonal to the fiber axis is in the range of 20 to 80%. A third aspect of the present invention is a method for producing a nonwoven fabric formed of a composite long fiber consisting of a core component and a sheath component, which comprises melt extrusion of different thermoplastic resins, and the sheath component has a weight average molecular weight of a number average. Q value defined by the value divided by the molecular weight is 3.5
In the range of more than 4.5 and not more than 4.5, the melt flow rate under the conditions of 210 ° C. and a load of 2.16 kg measured by the method described in JIS K 7210 is 10 to 70 g / 10.
Within the range of minutes, and the density is 0.940 to 0.970 g / c
The high-density polyethylene and the core component of the composite long-fiber in the range of m 3 have a flow rate measured by the above method of 10 to 10
Polypropylene in the range of 0 g / 10 minutes is combined with the difference in the melt flow rates being in the range of 0 to 35 g / 10 minutes and melted at the same temperature selected from the range of melt spinning temperature 220 ° C to 270 ° C. Extrusion spun, spun continuous filaments at high speed with an ejector to bring the composite filaments to a fineness range of 1 to 10 denier, then depositing the fibers on a moving collector to form a web. And then heat-bonding the composite long-fiber nonwoven fabric.

【0008】[0008]

【発明の実施の形態】本発明において複合長繊維の鞘成
分として用いられる熱可塑性の高密度ポリエチレン樹脂
は、重量平均分子量を数平均分子量で除したもの(重量
平均分子量/数平均分子量)として定義されるQ値が
3.5を超え4.5以下、好ましくは3.7〜4.3の
範囲のものでなければならない。このQ値とは、ゲル・
パーミエ−ション・クロマトグラフィ−(gel permeati
on chromatography)により求められる重合体の重量平
均分子量と数平均分子量の比で示され、この値は、樹脂
の分子量の分布幅を示すものであり、熱可塑性樹脂を溶
融押出し機で溶融紡糸する際のフィラメントの製造適性
と加工性に大きく影響するものであることが知られてい
る。即ち、Q値が大きくなると分子量分布の幅が広くな
ることを意味し、樹脂を溶融押出し機において溶融紡糸
して、紡出されたフィラメントを伸長する際に樹脂の粘
度が大きくなり、曳糸性が低下する。高密度ポリエチレ
ンのQ値が4.5を超える場合は、溶融紡糸の際に糸切
れが多発し、繊度が10デニール以下の複合長繊維を製
造することは困難となり適さない。Q値が3.5以下で
は、重合体を製造するための合成条件のコントロールが
困難であるため、樹脂の入手が容易でない。
BEST MODE FOR CARRYING OUT THE INVENTION The thermoplastic high-density polyethylene resin used as the sheath component of the composite long fiber in the present invention is defined as the weight average molecular weight divided by the number average molecular weight (weight average molecular weight / number average molecular weight). The Q value to be used should be more than 3.5 and 4.5 or less, preferably 3.7 to 4.3. This Q value means gel
Permeation chromatography (gel permeati
It is indicated by the ratio of the weight average molecular weight and the number average molecular weight of the polymer obtained by on chromatography), and this value indicates the distribution width of the molecular weight of the resin, and when the thermoplastic resin is melt-spun by a melt extruder. It is known that this has a great influence on the manufacturability and processability of the filament. That is, it means that the width of the molecular weight distribution becomes wider as the Q value becomes larger, and when the resin is melt-spun in a melt extruder and the spun filament is elongated, the viscosity of the resin becomes large and the spinnability is increased. Is reduced. If the Q value of the high-density polyethylene exceeds 4.5, yarn breakage frequently occurs during melt spinning, and it becomes difficult to produce a composite continuous fiber having a fineness of 10 denier or less, which is not suitable. When the Q value is 3.5 or less, it is difficult to control the synthesis conditions for producing the polymer, and thus it is not easy to obtain the resin.

【0009】又、前記高密度ポリエチレンの密度は0.
940〜0970g/cm3、好ましくは0.945〜
0.965g/cm3の範囲である。密度が0.940
g/cm3未満のポリエチレン重合体を使用すると、こ
の樹脂を用いた芯―鞘型複合長繊維に帯電させて開繊す
る際に、帯電量が少なくなって、開繊性が低下し、得ら
れる複合長繊維不織布の風合いが悪くなり、密度が0.
970g/cm3を超える高密度ポリエチレンは市場で
入手することが困難である。高密度ポリエチレンとして
は、JIS K 6760に記載された方法で測定した
メルトフローレート(以下MFRという)が10〜70
g/10分、好ましくは10〜50g/10分の範囲で
ある。MFRが10g/10分未満の高密度ポリエチレ
ンは、紡糸の際に溶融温度を極端に高くしなければ高速
溶融紡糸が容易にできないこと及び極端な高温度での紡
糸では口金面の汚れが発生しやすく、操業上好ましくな
い。逆に、MFRが70g/10分を超えると、糸切れ
が発生し易くなり、得られる複合長繊維不織布の風合い
が低下するだけではなく、強度も低くなるので好ましく
ない。尚、高密度ポリエチレンには、潤滑剤、顔料、安
定剤、難燃剤、抗菌剤等の添加剤を含有させてもよい。
The density of the high density polyethylene is 0.
940 to 0970 g / cm 3 , preferably 0.945 to
It is in the range of 0.965 g / cm 3 . Density is 0.940
When a polyethylene polymer of less than g / cm 3 is used, when the core-sheath type composite continuous fiber using this resin is charged and the fibers are opened, the charge amount is reduced and the openability is reduced. The texture of the composite long-fiber non-woven fabric is deteriorated and the density becomes 0.
High density polyethylene exceeding 970 g / cm 3 is difficult to obtain on the market. As the high-density polyethylene, the melt flow rate (hereinafter referred to as MFR) measured by the method described in JIS K 6760 is 10 to 70.
g / 10 minutes, preferably 10 to 50 g / 10 minutes. High-density polyethylene with an MFR of less than 10 g / 10 min cannot easily be subjected to high-speed melt spinning unless the melting temperature is extremely high during spinning, and the spinneret surface becomes soiled during spinning at extremely high temperatures. Easy and not preferable for operation. On the other hand, when the MFR exceeds 70 g / 10 minutes, yarn breakage is likely to occur, and not only the texture of the obtained composite long-fiber nonwoven fabric is deteriorated but also the strength is lowered, which is not preferable. The high-density polyethylene may contain additives such as a lubricant, a pigment, a stabilizer, a flame retardant and an antibacterial agent.

【0010】本発明において芯成分に使用されるポリプ
ロピレンは、前記のQ値が2.0〜3.5の範囲で、J
IS K 7210に記載された方法で測定した210
℃、荷重2.16kgの条件でのMFRが、10〜10
0/10分、好ましくは30〜80g/10分の範囲で
ある。Q値が2.0未満のポリプロピレンは、製造が困
難なため入手が容易ではなく、Q値が3.5超えるもの
は糸切れの原因となる。 MFRが10g/10分未満
のポリプロピレンは、溶融温度を高くしなければ高速溶
融紡糸が容易にできないこと及び高温度での紡糸では口
金面の汚れが発生しやすく、操業上好ましくない。逆
に、MFRが100g/10分を超えると、糸切れが発
生しやすくなり、得られる複合長繊維不織布の風合いが
低下するだけではなく、強度も低くなるので好ましくな
い。又、ポリプロピレンには、高密度ポリエチレンの場
合と同様に、潤滑剤、顔料、安定剤、抗菌剤等の添加剤
を含有させてもよい。
The polypropylene used as the core component in the present invention has a Q value in the range of 2.0 to 3.5 and J
210 measured by the method described in IS K 7210
MFR of 10 to 10 under conditions of ℃ and load of 2.16 kg
It is in the range of 0/10 minutes, preferably 30 to 80 g / 10 minutes. A polypropylene having a Q value of less than 2.0 is difficult to obtain because it is difficult to manufacture, and a polypropylene having a Q value of more than 3.5 causes yarn breakage. Polypropylene having an MFR of less than 10 g / 10 min is not preferable for operation because high-speed melt spinning cannot be easily performed unless the melting temperature is raised and the spinneret is liable to be contaminated at spinning at a high temperature. On the other hand, if the MFR exceeds 100 g / 10 minutes, yarn breakage is likely to occur, and not only the texture of the obtained composite long-fiber nonwoven fabric is deteriorated but also the strength is lowered, which is not preferable. Further, the polypropylene may contain additives such as a lubricant, a pigment, a stabilizer and an antibacterial agent as in the case of the high density polyethylene.

【0011】本発明においては、不織布を構成する複合
長繊維の繊維軸に直交する繊維断面積に占める鞘成分の
高密度ポリエチレンの重量比率は20〜80重量%であ
る。高密度ポリエチレンの重量比率が20重量%未満の
場合は、繊維強度は高くなるが、接着力が弱くなり、得
られる不織布としての強度が弱くなり過ぎて実用上好ま
しくない。逆に、高密度ポリエチレンの重量比率が80
重量%を超える場合、接着強度は高くなるが、繊維強度
が弱過ぎるために、得られる不織布の強度が弱くなり過
ぎて好ましくない。本発明に用いられる複合長繊維の繊
度は1〜10デニールの範囲である。長繊維の繊度が1
0デニールを超えると、繊維径が太くなりすぎ、得られ
る不織布が硬くなり風合いが低下し、繊度が1デニール
未満のものは製造が困難である。複合長繊維の断面形状
としては、円形断面の他に異形或いは扁平とすることも
できる。
In the present invention, the weight ratio of the high-density polyethylene as the sheath component in the fiber cross-sectional area of the composite long fibers constituting the nonwoven fabric is 20 to 80% by weight. If the weight ratio of the high-density polyethylene is less than 20% by weight, the fiber strength will be high, but the adhesive strength will be weak, and the strength of the resulting nonwoven fabric will be too weak, which is not preferable in practice. On the contrary, the weight ratio of high density polyethylene is 80
If the content is more than 10% by weight, the adhesive strength will be high, but the fiber strength will be too weak, and the strength of the resulting nonwoven fabric will be too weak, which is not preferable. The fineness of the composite long fibers used in the present invention is in the range of 1 to 10 denier. Fineness of long fiber is 1
If it exceeds 0 denier, the fiber diameter becomes too thick, the resulting nonwoven fabric becomes hard and the texture is deteriorated, and if the fineness is less than 1 denier, it is difficult to manufacture. The cross-sectional shape of the composite long fiber may be a modified shape or a flat shape in addition to the circular cross section.

【0012】本発明に係わる複合長繊維不織布の目付
は、5〜150g/cm2である。目付が150g/c
2を超えると不織布が硬くなりすぎ、風合いが悪くな
り、目付が5g/cm2未満では、不織布の強度が低く
なり過ぎ、不織布を安定して製造するのが難しくなる。
本発明は、異なった熱可塑性樹脂を溶融押し出し紡糸
し、芯成分と鞘成分からなる複合長繊維で形成される不
織布及びその製造方法であって、鞘成分が、Q値が3.
5を超え4.5以下の範囲で、MFRが10〜70g/
10分で、更に密度が0.940〜0.970g/cm
3範囲の高密度ポリエチレン及び芯成分が、Q値が2.
0〜3.5の範囲で、MFRが10〜100g/10分
の範囲のポリプロピレンを、それぞれのMFR同士の差
が0〜35g/10分の範囲内で組み合わせ、溶融紡糸
温度220℃〜270℃の範囲から選ばれた同一の温度
にて溶融押出し紡糸し、紡出された連続フィラメント群
を高速でエアサッカーにより引き取って、複合長繊維の
繊度を1〜10デニールの範囲とし、次いで前記繊維を
移動している捕集用支持体上に捕集・堆積させてウェブ
を形成し、その後熱接着するというものである。
The basis weight of the composite long-fiber nonwoven fabric according to the present invention is 5 to 150 g / cm 2 . Unit weight is 150g / c
When it exceeds m 2 , the nonwoven fabric becomes too hard and the texture becomes poor, and when the basis weight is less than 5 g / cm 2 , the strength of the nonwoven fabric becomes too low and it becomes difficult to stably manufacture the nonwoven fabric.
The present invention relates to a nonwoven fabric formed from composite long fibers composed of a core component and a sheath component by melt extrusion of different thermoplastic resins and a method for producing the same, wherein the sheath component has a Q value of 3.
MFR of 10 to 70 g / in the range of more than 5 and 4.5 or less
In 10 minutes, the density is 0.940-0.970 g / cm
High density polyethylene and core components in 3 ranges have Q value of 2.
In the range of 0 to 3.5, polypropylene having an MFR of 10 to 100 g / 10 min is combined, and the difference between the MFRs is combined in the range of 0 to 35 g / 10 min, and the melt spinning temperature is 220 ° C. to 270 ° C. Melt-extrusion spinning at the same temperature selected from the range of 1., the spun continuous filament group is taken up by air sucker at high speed to make the fineness of the composite long fiber in the range of 1 to 10 denier, and then the fiber A web is formed by collecting and depositing on a moving support for collection, and then heat-bonding.

【0013】本発明の複合長繊維は、公知の複合長繊維
用の溶融押出し紡糸装置を用いて得ることができる。芯
成分のポリプロピレンと鞘成分の高密度ポリエチレン
は、溶融紡糸温度220〜270℃の範囲から選ばれた
同じ温度でそれぞれの樹脂が溶融紡糸される必要があ
る。紡糸温度を前記範囲外で行うと紡糸の調子が不良に
なり、満足のできる不織布が得られ難くなる。つまり、
紡糸温度が220℃未満の場合は、紡糸速度を高くせざ
るを得ず、そのためには高いエアー圧力が必要となり、
糸切れを発生させずに繊度1〜10デニールの繊維を得
ることは困難である。逆に、紡糸温度が270℃を超え
ると、紡出されたフィラメントの強度が弱くなり、糸切
れが多く発生しやすくなるだけではなく、ノズル表面が
汚れやすくなり、長時間操業した時にノズル表面汚れに
よる糸切れも増えるので、好ましくない。 溶融紡糸す
る際の前記範囲から選ばれた同じ温度とは、本発明で
は、芯成分と鞘成分のそれぞれの樹脂が実質的に同じ溶
融紡糸温度で紡糸されることを意味し、前記溶融紡糸温
度の範囲内で温度は±1.5℃、好ましくは±1.0℃
まで許容される。2種類の樹脂の溶融紡糸温度の差の絶
対値が3℃を超えて大きくなると、芯成分と鞘成分の接
触面において接着性が損なわれ、ひいては糸切れの発生
が生じ、不織布が不均一になる。
The composite continuous fiber of the present invention can be obtained by using a known melt extrusion spinning apparatus for composite continuous fiber. The polypropylene of the core component and the high-density polyethylene of the sheath component are required to be melt-spun with respective resins at the same temperature selected from the range of 220 to 270 ° C. for melt spinning. If the spinning temperature is outside the above range, the spinning condition will be poor and it will be difficult to obtain a satisfactory nonwoven fabric. That is,
If the spinning temperature is lower than 220 ° C., the spinning speed must be increased, which requires high air pressure.
It is difficult to obtain fibers having a fineness of 1 to 10 denier without causing yarn breakage. On the other hand, when the spinning temperature exceeds 270 ° C, the strength of the spun filament is weakened, and not only the yarn breakage is likely to occur, but also the nozzle surface is easily soiled, and the nozzle surface is soiled when operating for a long time. This is not preferable because the yarn breakage due to the yarn increases. The same temperature selected from the above range during melt spinning means, in the present invention, that the respective resins of the core component and the sheath component are spun at substantially the same melt spinning temperature. Within ± 1.5 ° C, preferably ± 1.0 ° C
Is allowed up to. If the absolute value of the difference between the melt spinning temperatures of the two types of resin exceeds 3 ° C and becomes large, the adhesiveness is impaired at the contact surface between the core component and the sheath component, which eventually causes yarn breakage, resulting in non-uniform nonwoven fabric. Become.

【0014】本発明においては、更に鞘成分の高密度ポ
リエチレンのMFRと芯成分のポリプロピレンのMFR
との間の差を0〜35g/10分の範囲にしておいて、
前記の溶融紡糸温度範囲から選ばれた同じ温度で溶融紡
糸することによって、溶融押出し後の複合長繊維フィラ
メントの冷却がスムーズとなり、冷却の不均一による芯
鞘の接合部におけるずれが発生せず、溶融伸長特性の違
いによる歪みも残らないので、良好な紡糸性が具現化で
きるのである。前記鞘成分の高密度ポリエチレンと芯成
分のポリプロピレンは、溶融押出し紡糸機のそれぞれの
口金から同じ温度で押し出されて紡糸された後は、エジ
ェクターにより高速エアーで引き取って、延伸され、次
いで形成された多数の長繊維を、衝突板に当てて摩擦帯
電させ、電荷による反発力で開繊させる。この場合、帯
電方法として、コロナ放電処理を行うことも可能であ
る。次に、均一に開繊された前記の多数の長繊維フィラ
メント群は、捕集用の支持体上に捕集・堆積され、ウェ
ブとされる。このようにして、細デニールの複合長繊維
であっても極めて容易にウェブが構成され、風合いの極
めて優れるポリプロピレンと高密度ポリエチレンとから
なる複合長繊維が糸切れ率を少なくして高速紡糸から得
られるようになる。
In the present invention, MFR of high density polyethylene as the sheath component and MFR of polypropylene as the core component are further used.
And the difference between and is in the range of 0-35g / 10 minutes,
By melt-spinning at the same temperature selected from the melt-spinning temperature range, the composite long-fiber filament after melt-extrusion becomes smooth, and no deviation occurs at the joint portion of the core-sheath due to uneven cooling, Since there is no distortion due to the difference in melt elongation characteristics, good spinnability can be realized. The high-density polyethylene as the sheath component and the polypropylene as the core component were extruded from the respective spinnerets of the melt-extrusion spinning machine at the same temperature and spun, and then drawn by high-speed air by an ejector, stretched, and then formed. A large number of long fibers are applied to a collision plate to be triboelectrically charged, and the fibers are opened by the repulsive force of the electric charges. In this case, corona discharge treatment can be performed as the charging method. Next, the large number of filament filament groups that have been uniformly spread are collected and accumulated on a collecting support to form a web. In this way, even with fine denier composite filaments, a web can be formed very easily, and composite filaments composed of polypropylene and high-density polyethylene, which have an extremely excellent texture, can be obtained from high-speed spinning with a reduced yarn breakage rate. Will be available.

【0015】本発明においては、支持体上に集積された
多数の長繊維は、ウェブとされ、このウェブには更に規
則的な間隔で繊維同士の自己融着区域を設けることによ
って熱接着される。この自己融着区域は、前記ウェブを
加熱した凹凸ロールと平滑ロールの間に導入し、加熱及
び加圧処理を施すことにより、凹凸ロールの凸部に対応
したシート部分が融着することによって形成される。こ
の場合、ロールの温度は鞘成分のHDPEの融点より5
〜30℃、好ましくは10〜25℃低い温度である。ロ
ール温度と樹脂の融点との差が5℃未満では、ロールに
よる熱圧着処理時に繊維がロールに付着し、製造トラブ
ルの原因となるため好ましくない。逆に、ロール温度と
樹脂の融点との差が30℃を超えると、自己融着部分の
形成が不十分となり、シートの強度が著しく低下するば
かりでなく、毛羽立ちが激しくなるので適さない。凹凸
ロールと平滑ロールで熱圧着処理を施す場合の圧力は、
10〜80kg/cm、好ましくは20〜60kg/c
mである。圧力が10kg/cm未満では、熱圧着処理
による自己融着区域の形成が不十分となることがあり、
80kg/cmを越えると、自己融着区域がフィルム状
になり、不織布の風合いが損なわれることがある。自己
融着区域を形成する方法としては、集積された連続長繊
維フィラメント群からなるウェブを、凹凸ロールと超音
波ホーンの間に導入し、超音波処理を施すことにより、
凸部に対応した点融着部分を形成することも可能であ
る。
In the present invention, a large number of long fibers accumulated on a support is formed into a web, and the web is heat-bonded by providing self-bonding areas of the fibers at regular intervals. . This self-fusing area is formed by introducing the web between a heated uneven roll and a smooth roll, and applying heat and pressure treatment, whereby the sheet portion corresponding to the convex portion of the uneven roll is fused. To be done. In this case, the temperature of the roll is 5 than the melting point of HDPE of the sheath component.
-30 ° C, preferably 10-25 ° C lower temperature. If the difference between the roll temperature and the melting point of the resin is less than 5 ° C., the fibers adhere to the roll during thermocompression bonding with the roll, which causes manufacturing troubles, which is not preferable. On the other hand, if the difference between the roll temperature and the melting point of the resin exceeds 30 ° C., the self-fusing part is not sufficiently formed, the strength of the sheet is remarkably lowered, and fuzz becomes severe, which is not suitable. The pressure when performing thermocompression bonding with an uneven roll and a smooth roll is
10-80 kg / cm, preferably 20-60 kg / c
m. If the pressure is less than 10 kg / cm, the formation of the self-bonding area by the thermocompression bonding process may be insufficient,
If it exceeds 80 kg / cm, the self-fusing area becomes a film and the texture of the nonwoven fabric may be impaired. As a method of forming the self-fusing region, a web composed of a continuous continuous fiber filament group is introduced between an uneven roll and an ultrasonic horn, and subjected to ultrasonic treatment,
It is also possible to form a spot fusion-bonded portion corresponding to the convex portion.

【0016】本発明においては、個々の自己融着区域の
面積は、0.03〜4mm2の範囲である。自己融着区
域の面積が0.03mm2未満では、不織布の強度が不
足するため好ましくない。逆に、自己融着面積が4mm
2を超えると、不織布が硬くなり過ぎる。自己融着区域
の面積の総和は、複合長繊維不織布の全表面積の2〜3
0面積%である。自己融着区域の面積の総和が2面積%
未満では、不織布の強度が不足し、自己融着面積が30
面積%を超えると、不織布が硬くなる。以上のようにし
て得られた鞘成分として高密度ポリエチレン及び芯成分
としてポリプロピレンからなる複合長繊維不織布は、優
れた柔軟性と風合を有し、必要に応じて種々加工され
て、衛生材料、医療用基材、衣料用基材、家庭用基材、
産業用基材等に使用される。
In the present invention, the area of each self-bonding zone is in the range of 0.03-4 mm 2 . If the area of the self-bonding area is less than 0.03 mm 2 , the strength of the nonwoven fabric is insufficient, which is not preferable. Conversely, the self-fusing area is 4 mm
When it exceeds 2 , the nonwoven fabric becomes too hard. The total area of the self-bonding area is 2 to 3 of the total surface area of the composite long-fiber nonwoven fabric.
It is 0 area%. Total area of self-bonding area is 2% by area
If it is less than 1, the strength of the nonwoven fabric is insufficient and the self-bonding area is 30.
If the area% is exceeded, the nonwoven fabric becomes hard. The composite long-fiber non-woven fabric composed of high-density polyethylene as a sheath component and polypropylene as a core component obtained as described above has excellent flexibility and texture, and is variously processed as necessary, a sanitary material, Medical substrate, clothing substrate, household substrate,
Used as an industrial base material.

【0017】[0017]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明は勿論これらに限定されるものでは
ない。尚、以下の実施例及び比較例において、%は特に
断らない限り重量%である。
EXAMPLES The present invention will be described more specifically with reference to examples below, but the present invention is of course not limited to these. In the following Examples and Comparative Examples,% means% by weight unless otherwise specified.

【0018】実施例1 MFR20g/10分、密度0.960g/cm3、Q
値4.0、融点131.5℃の高密度ポリエチレン樹脂
(三菱化学社製)を鞘成分とし、MFR40g/10
分、Q値3.0のポリプロピレン樹脂(三菱化学社製)
を芯成分として準備した。次に、溶融押出し機において
芯鞘複合紡糸用口金を用いて、不織布を構成する複合長
繊維の繊維軸に直交する繊維断面積に占める鞘成分の重
量比率を30%とし、前記の樹脂をそれぞれ250±1
℃に加熱して溶融し、多数の微細孔から押し出した後、
エジェクターにより高速エアーで延伸して長繊維フィラ
メント群を形成し、移動するワイヤー製捕集支持体上に
捕集・堆積させウェブとした。次いで、このウェブを1
20℃に加熱した凹凸ロールと平滑ロールの間に導入
し、線圧40kg/cmで凹凸ロールの凸部に対応する
部分を融着することにより、目付40g/m2の複合長
繊維不織布を得た。個々の自己融着区域の面積は0.1
2mm2であり、自己融着区域の面積の総和は4面積%
で、複合長繊維の繊度は3デニールであった。得られた
長繊維不織布を下記の試験方法で試験し、その品質を評
価した。
Example 1 MFR 20 g / 10 minutes, density 0.960 g / cm 3 , Q
High-density polyethylene resin (manufactured by Mitsubishi Chemical Corporation) having a value of 4.0 and a melting point of 131.5 ° C is used as a sheath component, and MFR 40g / 10
Min, polypropylene resin with Q value of 3.0 (manufactured by Mitsubishi Chemical Corporation)
Was prepared as a core component. Next, using a core-sheath composite spinning spinneret in a melt extruder, the weight ratio of the sheath component to the fiber cross-sectional area orthogonal to the fiber axis of the composite long fibers constituting the non-woven fabric was set to 30%, and each of the above resins was used. 250 ± 1
After heating to ℃ to melt and extruding from a large number of fine holes,
A long fiber filament group was formed by drawing with a high-speed air by an ejector, and collected and deposited on a moving wire-made collection support to obtain a web. Then this web 1
It is introduced between an uneven roll and a smooth roll heated to 20 ° C., and a portion corresponding to the convex portion of the uneven roll is fused at a linear pressure of 40 kg / cm to obtain a composite continuous fiber nonwoven fabric having a basis weight of 40 g / m 2. It was The area of each self-fusion area is 0.1
2mm 2 , total area of self-bonding area is 4% by area
The fineness of the composite filament was 3 denier. The obtained long-fiber nonwoven fabric was tested by the following test method to evaluate its quality.

【0019】試験方法 (1)紡糸性:樹脂の紡糸性を、溶融紡糸時の糸切れの
多寡で評価した。評価は以下の5段階で行った。 5・・・ 糸切れがなく、紡糸性は極めて良好である。 4・・・ 糸切れは殆どなく、紡糸性は良好である。 3・・・ 糸切れは少しあるが、問題なく、紡糸性は普通
である。 2・・・ 糸切れがかなりあり、紡糸性は悪い。 1・・・ 糸切れが非常に多く、紡糸性は極めて悪い。 (2)シート地合:得られた長繊維不織布の地合を、官
能で評価した。評価は以下の5段階で行った。 5・・・ 地合が極めて良好でる。 4・・・ 地合が良好である。 3・・・ 地合が普通である。 2・・・ 地合が悪い。 1・・・ 地合が極めて悪い。
Test method (1) Spinnability: The spinnability of the resin was evaluated by the number of yarn breakages during melt spinning. The evaluation was carried out in the following five stages. 5 ... No yarn breakage and extremely good spinnability. 4 ... Almost no yarn breakage and good spinnability. 3 ... There is some yarn breakage, but there is no problem and spinnability is normal. 2 ... There are many yarn breaks, and the spinnability is poor. 1 ... Many yarn breakages and extremely poor spinnability. (2) Sheet formation: The formation of the obtained long-fiber nonwoven fabric was evaluated by sensory evaluation. The evaluation was carried out in the following five stages. 5 ... The formation is extremely good. 4 ... The formation is good. 3 ... The formation is normal. 2 ... The formation is bad. 1 ... The formation is extremely bad.

【0020】(3)柔軟性:得られた長繊維不織布の柔
軟性を、官能で評価した。評価は以下の5段階で行っ
た。 5・・・ 柔軟性が極めて良好である。 4・・・ 柔軟性が良好である。 3・・・ 柔軟性は普通である。 2・・・ 柔軟性が劣る。 1・・・ 柔軟性が極めて劣る。 (4)引張強度:JIS P 8113に示された方法
で行った。
(3) Flexibility: The flexibility of the obtained long-fiber nonwoven fabric was evaluated by sensory evaluation. The evaluation was carried out in the following five stages. 5: The flexibility is extremely good. 4 ... Good flexibility. 3 ... Flexibility is normal. 2 ... Inferior in flexibility. 1 ... The flexibility is extremely poor. (4) Tensile strength: The tensile strength was measured by the method specified in JIS P8113.

【0021】実施例2 MFR25g/10分、密度0.955g/cm3、Q
値3.5、融点134℃の高密度ポリエチレン(三菱化
学社製)を鞘成分とし、MFR50g/10分、Q値
2.7のポリプロピレン樹脂(三菱化学社製)を芯成分
として準備した。次に、溶融押出し機において芯鞘複合
紡糸用口金を用いて、不織布を構成する複合長繊維の繊
維軸に直交する繊維断面積に占める鞘成分の重量比率を
30%とし、前記の樹脂をそれぞれ240±0.5℃に
加熱して溶融し、多数の微細孔から押し出した後、エジ
ェクターにより高速エアーで延伸して長繊維フィラメン
ト群を形成し、移動するワイヤー製捕集支持体上に捕集
・堆積させウェブとした。次いで、このウェブを115
℃に加熱した凹凸ロールと平滑ロールの間に導入し、線
圧20kg/cmで凹凸ロールの凸部に対応する部分を
融着することにより、目付14g/m2の複合長繊維不
織布を得た。個々の自己融着区域の面積は1.0mm2
であり、自己融着区域の面積の総和は15面積%で、複
合長繊維の繊度は2.8デニールであった。
Example 2 MFR 25 g / 10 minutes, density 0.955 g / cm 3 , Q
A high density polyethylene having a value of 3.5 and a melting point of 134 ° C. (manufactured by Mitsubishi Chemical Co., Ltd.) was used as a sheath component, and a polypropylene resin having an MFR of 50 g / 10 minutes and a Q value of 2.7 (manufactured by Mitsubishi Chemical Co., Ltd.) was prepared as a core component. Next, using a core-sheath composite spinning spinneret in a melt extruder, the weight ratio of the sheath component to the fiber cross-sectional area orthogonal to the fiber axis of the composite long fibers constituting the non-woven fabric was set to 30%, and each of the above resins was used. It is heated to 240 ± 0.5 ℃, melted, extruded from a large number of fine holes, and then stretched by high-speed air with an ejector to form filament filament groups, which are collected on a moving wire-made collection support.・ The web was deposited. This web is then 115
It was introduced between a concavo-convex roll heated to ℃ and a smooth roll, and a portion corresponding to the convex part of the concavo-convex roll was fused at a linear pressure of 20 kg / cm to obtain a composite long-fiber nonwoven fabric having a basis weight of 14 g / m 2 . . The area of each self-bonding area is 1.0 mm 2
The total area of the self-fusing area was 15% by area, and the fineness of the composite continuous fiber was 2.8 denier.

【0022】実施例3 樹脂をそれぞれ260±1℃に加熱して溶融し、多数の
微細孔から押し出したこと以外は、実施例1と同様にし
て溶融紡糸した後、エジェクターにより高速エアーで延
伸して長繊維フィラメント群を形成し、移動するワイヤ
ー製捕集支持体上に捕集・堆積させウェブとした。次い
で、このウェブを110℃に加熱した凹凸ロールと平滑
ロールの間に導入し、線圧60kg/cmで凹凸ロール
の凸部に対応する部分を融着することにより、目付50
g/m2の複合長繊維不織布を得た。個々の自己融着区
域の面積は2.0mm2であり、自己融着区域の面積の
総和は10面積%で、複合長繊維の繊度は7.5デニー
ルであった。得られた複合長繊維不織布を前記の試験方
法で試験し、その品質を評価した。
Example 3 The resin was melt-spun in the same manner as in Example 1 except that the resin was heated to 260 ± 1 ° C., melted, and extruded through a large number of fine holes, and then stretched with a high-speed air by an ejector. To form a long fiber filament group, which was collected and deposited on a moving wire collecting support to form a web. Then, this web is introduced between a concavo-convex roll heated to 110 ° C. and a smooth roll, and a portion corresponding to the convex part of the concavo-convex roll is fused at a linear pressure of 60 kg / cm to give a basis weight of 50.
A composite long-fiber non-woven fabric of g / m 2 was obtained. The area of each self-bonding area was 2.0 mm 2 , the total area of the self-bonding area was 10% by area, and the fineness of the composite continuous fiber was 7.5 denier. The obtained composite long-fiber nonwoven fabric was tested by the above-mentioned test method to evaluate its quality.

【0023】実施例4 樹脂をそれぞれ230±0.5℃に加熱して溶融し、多
数の微細孔から押し出したこと以外は、実施例2と同様
にして溶融紡糸した後、エジェクターにより高速エアー
で延伸して長繊維フィラメント群を形成し、移動するワ
イヤー製捕集支持体上に捕集・堆積させウェブとした。
次いで、このウェブを117℃に加熱した凹凸ロールと
平滑ロールの間に導入し、線圧30kg/cmで凹凸ロ
ールの凸部に対応する部分を融着することにより、目付
24g/m2の複合長繊維不織布を得た。個々の自己融
着区域の面積は0.28mm2であり、自己融着区域の
面積の総和は8面積%で、複合長繊維の繊度は2.5デ
ニールであった。得られた複合長繊維不織布を前記の試
験方法で試験し、その品質を評価した。
Example 4 The resin was melt-spun in the same manner as in Example 2 except that the resin was heated to 230 ± 0.5 ° C. to be melted and extruded through a large number of fine holes, and then the resin was ejected with a high-speed air by an ejector. A long fiber filament group was formed by stretching and collected and deposited on a moving wire-made collection support to obtain a web.
Next, this web was introduced between a concavo-convex roll heated to 117 ° C. and a smooth roll, and a portion corresponding to the convex part of the concavo-convex roll was fused at a linear pressure of 30 kg / cm to obtain a composite having a basis weight of 24 g / m 2 . A long-fiber nonwoven fabric was obtained. The area of the individual self-bonding areas was 0.28 mm 2 , the total area of the self-bonding areas was 8 area%, and the fineness of the composite filament was 2.5 denier. The obtained composite long-fiber nonwoven fabric was tested by the above-mentioned test method to evaluate its quality.

【0024】実施例5 溶融押出し機において芯鞘複合紡糸用口金を用いて、不
織布を構成する複合長繊維の繊維軸に直交する繊維断面
積に占める鞘成分の重量比率を70%としたこと以外
は、実施例1と同様にして複合長繊維不織布を得た。得
られた複合長繊維を前記の試験方法で試験し、その品質
を評価した。
Example 5 Other than using a spinneret for core-sheath composite spinning in a melt extruder and setting the weight ratio of the sheath component to the fiber cross-sectional area orthogonal to the fiber axis of the composite long fibers constituting the nonwoven fabric to 70%. A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1. The obtained composite continuous fiber was tested by the above-mentioned test method to evaluate its quality.

【0025】比較例1 Q値が5.0の鞘成分用高密度ポリエチレン樹脂(三菱
化学社製)を用いたこと以外は、実施例1と同様にして
複合長繊維不織布を得た。得られた長繊維不織布を前記
試験方法で試験し、その品質を評価した。
Comparative Example 1 A composite continuous fiber non-woven fabric was obtained in the same manner as in Example 1 except that a high density polyethylene resin for sheath component having a Q value of 5.0 (manufactured by Mitsubishi Chemical Corporation) was used. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0026】比較例2 MFRが5g/10分の芯成分用ポリプロピレン樹脂
(三菱化学社製)を用いたこと以外は、実施例1と同様
にして複合長繊維不織布を得た。得られた長繊維不織布
を前記試験方法で試験し、その品質を評価した。
Comparative Example 2 A composite continuous fiber non-woven fabric was obtained in the same manner as in Example 1 except that a polypropylene resin for core component (manufactured by Mitsubishi Chemical Corporation) having an MFR of 5 g / 10 min was used. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0027】比較例3 鞘用樹脂として、MFR35g/10分、密度0.93
7g/cm3、Q値3.0、融点127.2℃の直鎖状
低密度ポリエチレンを用いたこと以外は、実施例1と同
様にして長繊維不織シートを得た。得られた長繊維不織
布を前記試験方法で試験し、その品質を評価した。
Comparative Example 3 As a sheath resin, MFR 35 g / 10 min, density 0.93
A long-fiber non-woven sheet was obtained in the same manner as in Example 1 except that linear low-density polyethylene having 7 g / cm 3 , a Q value of 3.0 and a melting point of 127.2 ° C. was used. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0028】比較例4 樹脂をそれぞれ280±1.5℃に加熱して溶融し、多
数の微細孔から押し出し、紡糸したこと以外は、実施例
1と同様にして複合長繊維不織布を得た。得られた長繊
維不織布を前記試験方法で試験し、その品質を評価し
た。
Comparative Example 4 A composite continuous fiber non-woven fabric was obtained in the same manner as in Example 1 except that the resin was heated to 280 ± 1.5 ° C., melted, extruded from a large number of fine holes and spun. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0029】比較例5 樹脂をそれぞれ210±0.5℃に加熱して溶融し、多
数の微細孔から押し出し、紡糸したこと以外は、実施例
1と同様にして複合長繊維不織布を得た。得られた長繊
維不織布を前記試験方法で試験し、その品質を評価し
た。
Comparative Example 5 A composite continuous fiber non-woven fabric was obtained in the same manner as in Example 1 except that each resin was heated to 210 ± 0.5 ° C. to be melted, extruded from a large number of fine holes and spun. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0030】比較例6 樹脂を加熱溶融し、多数の微細孔から押し出し、紡糸す
る際に、溶融温度を鞘成分240℃及び芯成分250℃
としたこと以外は、実施例1と同様にして複合長繊維不
織布を得た。得られた長繊維不織布を前記試験方法で試
験し、その品質を評価した。
Comparative Example 6 When a resin was melted by heating, extruded through a large number of fine holes and spun, the melting temperature was 240 ° C. for the sheath component and 250 ° C. for the core component.
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the above was adopted. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0031】比較例7 不織布を構成する複合長繊維の繊維軸に直交繊維断面積
に占める鞘成分の重量比率を90%としたこと以外は、
実施例2と同様にして複合長繊維不織布を得た。得られ
た長繊維不織布を前記試験方法で試験し、その品質を評
価した。
Comparative Example 7 Except that the weight ratio of the sheath component in the cross-sectional area of the fibers orthogonal to the fiber axis of the composite long fibers constituting the nonwoven fabric was 90%.
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 2. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0032】比較例8 不織布を構成する複合長繊維の繊維軸に直交繊維断面積
に占める鞘成分の重量比率を10%としたこと以外は、
実施例2と同様にして複合長繊維不織布を得た。得られ
た長繊維不織布を前記試験方法で試験し、その品質を評
価した。
Comparative Example 8 Except that the weight ratio of the sheath component in the cross-sectional area of the fibers orthogonal to the fiber axis of the composite long fibers constituting the nonwoven fabric was set to 10%.
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 2. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0033】比較例9 複合長繊維の繊度を12デニールとしたこと以外は、実
施例1と同様にして複合長繊維不織布を得た。得られた
長繊維不織布を前記試験方法で試験し、その品質を評価
した。
Comparative Example 9 A composite continuous fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the fineness of the composite continuous fiber was 12 denier. The obtained long-fiber nonwoven fabric was tested by the above test method to evaluate its quality.

【0034】実施例1〜5及び比較例1〜9で得られた
結果を表1に示した。
The results obtained in Examples 1-5 and Comparative Examples 1-9 are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、本発明法は、樹
脂を溶融紡糸する際に糸切れがなく紡糸性が非常に優
れ、風合いが良好であり、得られる複合長繊維不織布
は、強度を損なうことなく、地合と柔軟性に極めて優れ
ている(実施例1〜5)。これに対し、鞘成分として用
いられる高密度ポリエチレンのQ値が4.5を超える場
合は、糸切れが多発して紡糸性が悪く(比較例1)、高
密度ポリエチレンの密度が低いと、開繊性が悪く、地合
いの良好な複合長繊維不織布が得られない(比較例
3)。芯成分に用いられるポリプロピレンのMFRが低
過ぎると、溶融紡糸の際に糸切れが多発して紡糸性が悪
く、風合いが損なわれた(比較例2)。
As is clear from Table 1, according to the method of the present invention, when the resin is melt-spun, there is no yarn breakage, the spinnability is very excellent, and the texture is good. It is extremely excellent in texture and flexibility without damaging (Examples 1 to 5). On the other hand, when the Q value of the high-density polyethylene used as the sheath component exceeds 4.5, the yarn breaks frequently and the spinnability is poor (Comparative Example 1). A composite long-fiber nonwoven fabric having poor fineness and good texture cannot be obtained (Comparative Example 3). If the MFR of the polypropylene used as the core component is too low, yarn breakage frequently occurs during melt spinning, the spinnability is poor, and the texture is impaired (Comparative Example 2).

【0037】一方、溶融紡糸の際に溶融温度が高過ぎる
と(280℃)、糸切れが多くて紡糸性が悪くなり、柔
軟性は普通であるが、解繊性が劣り、地合が悪くなり
(比較例4)、溶融紡糸温度が低過ぎると(210
℃)、糸切れが多くて紡糸性が悪く、地合は普通である
が、柔軟性が悪い(比較例5)。芯成分と鞘成分の樹脂
の溶融温度に10℃の差を設けると(芯:250℃、
鞘:240℃)、糸切れが多くて紡糸性が悪くなり、地
合は普通であるが、柔軟性が悪くなる(比較例6)。不
織布を構成する複合長繊維の繊維軸に直交する繊維断面
積に占める鞘成分の重量比率が高い場合(90%、比較
例7)及び重量比率が低い場合(10%、比較例8)と
も、得られる複合長繊維不織布の強度が弱くなる。更
に、複合長繊維の繊度が大きくなると(繊度:12、比
較例9)、紡糸性は良好で、得られる複合長繊維不織布
の強度と地合いは普通であるが、柔軟性が極めて悪くな
る。
On the other hand, if the melting temperature is too high (280 ° C.) during melt spinning, the yarn is broken and the spinnability deteriorates, and the flexibility is normal, but the defibration property is poor and the formation is poor. (Comparative Example 4), if the melt spinning temperature is too low (210
C.), many yarn breakages, poor spinnability, and normal texture, but poor flexibility (Comparative Example 5). If a difference of 10 ° C is provided between the melting temperatures of the core component resin and the sheath component resin (core: 250 ° C,
(Sheath: 240 ° C.), many yarn breakages deteriorate spinability, and the texture is normal, but the flexibility deteriorates (Comparative Example 6). When the weight ratio of the sheath component occupying the fiber cross-sectional area orthogonal to the fiber axis of the composite long fiber constituting the nonwoven fabric is high (90%, Comparative Example 7) and when the weight ratio is low (10%, Comparative Example 8), The strength of the obtained composite long-fiber nonwoven fabric becomes weak. Furthermore, when the fineness of the composite long fibers becomes large (fineness: 12, Comparative Example 9), the spinnability is good, and the strength and texture of the obtained composite long fiber nonwoven fabric are normal, but the flexibility becomes extremely poor.

【0038】[0038]

【発明の効果】以上説明したように、本発明は、柔軟性
と地合に極めて優れ、医療・衛生資材、一般工業資材等
の広い分野で使用可能なポリオレフィンからなる芯―鞘
型複合長繊維不織布及びその製造方法を提供するという
効果を奏する。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a core-sheath type composite filament made of polyolefin which is extremely excellent in flexibility and formation and can be used in a wide range of fields such as medical / sanitary materials and general industrial materials. An effect of providing a non-woven fabric and a manufacturing method thereof is obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 芯成分と鞘成分からなる複合長繊維から
形成された不織布において、鞘成分が、重量平均分子量
を数平均分子量で除した値で定義されるQ値が3.5を
超え4.5以下の範囲で、密度が0.940〜0.97
0g/cm3の範囲の高密度ポリエチレン及び芯成分
が、JIS K 7210に記載された方法で測定した
210℃、荷重2.16kgの条件におけるメルトフロ
ーレートが、10〜100g/10分の範囲のポリプロ
ピレンからなり、且つ複合長繊維の繊度が1〜10デニ
ールの範囲であることを特徴とする複合長繊維不織布。
1. A non-woven fabric formed from a composite long fiber comprising a core component and a sheath component, wherein the sheath component has a Q value defined as a value obtained by dividing a weight average molecular weight by a number average molecular weight of more than 3.5. In the range of 0.5 or less, the density is 0.940 to 0.97
The high-density polyethylene and the core component in the range of 0 g / cm 3 have a melt flow rate of 210 to 100 g / 10 min in the condition of 210 ° C. and a load of 2.16 kg measured by the method described in JIS K 7210. A composite continuous fiber non-woven fabric made of polypropylene and having a fineness of the composite continuous fiber in the range of 1 to 10 denier.
【請求項2】 繊維軸に直交する繊維断面積に占める鞘
成分の重量比率が20〜80%の範囲であることを特徴
とする請求項1記載の複合長繊維不織布。
2. The composite continuous fiber non-woven fabric according to claim 1, wherein the weight ratio of the sheath component in the fiber cross-sectional area orthogonal to the fiber axis is in the range of 20 to 80%.
【請求項3】 異なった熱可塑性樹脂を溶融押出し紡糸
することからなる芯成分と鞘成分からなる複合長繊維で
形成される不織布の製造方法において、鞘成分が、重量
平均分子量を数平均分子量で除した値で定義されるQ値
が3.5を超え4.5以下の範囲で、JIS K 72
10に記載された方法で測定した210℃、荷重2.1
6kgの条件におけるメルトフローレートが10〜70
g/10分の範囲で、且つ密度が0.940〜0.97
0g/cm3の範囲の高密度ポリエチレン及び複合長繊
維の芯成分が、前記の方法で測定したフローレートが1
0〜100g/10分の範囲のポリプロピレンを、前記
メルトフローレート同士の差が0〜35g/10分の範
囲内で組み合わせ、溶融紡糸温度220℃〜270℃の
範囲から選ばれた同一の温度にて溶融押出し紡糸し、紡
出された連続フィラメントを高速でエジェクターにより
引き取って、複合長繊維の繊度が1〜10デニールの範
囲とし、次いで前記繊維を移動している捕集体上に堆積
させてウェブを形成し、その後熱接着することを特徴と
する複合長繊維不織布の製造方法。
3. A method for producing a non-woven fabric formed of composite long fibers composed of a core component and a sheath component, which comprises melt-extruding and spinning different thermoplastic resins, wherein the sheath component has a weight average molecular weight in a number average molecular weight. When the Q value defined by the divided value exceeds 3.5 and is 4.5 or less, JIS K 72
210 ° C., load 2.1 measured by the method described in 10.
Melt flow rate of 10 to 70 under the condition of 6 kg
In the range of g / 10 minutes, and the density is 0.940 to 0.97.
The high-density polyethylene in the range of 0 g / cm 3 and the core component of the composite filament have a flow rate of 1 measured by the above method.
Polypropylene in the range of 0 to 100 g / 10 minutes is combined within the range of 0 to 35 g / 10 minutes in the difference between the melt flow rates, and the same temperature is selected from the range of melt spinning temperature of 220 ° C. to 270 ° C. Melt-extruded and spun, and the spun continuous filaments are collected by an ejector at high speed to make the fine filaments have a fineness in the range of 1 to 10 denier, and then the fibers are deposited on a moving collector to form a web. A method for producing a composite long-fiber non-woven fabric, which comprises:
JP8081132A 1996-04-03 1996-04-03 Conjugate long fiber nonwoven fabric and its production Pending JPH09273060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8081132A JPH09273060A (en) 1996-04-03 1996-04-03 Conjugate long fiber nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8081132A JPH09273060A (en) 1996-04-03 1996-04-03 Conjugate long fiber nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH09273060A true JPH09273060A (en) 1997-10-21

Family

ID=13737879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8081132A Pending JPH09273060A (en) 1996-04-03 1996-04-03 Conjugate long fiber nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH09273060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049120A1 (en) * 1998-03-24 1999-09-30 Mitsui Chemicals, Inc. Flexible nonwoven fabric laminate
JP2003096687A (en) * 2001-09-27 2003-04-03 Japan Vilene Co Ltd Nonwoven fabric for printing base material
EP1577426A1 (en) * 2002-12-24 2005-09-21 Kao Corporation Hot-melt conjugate fiber
JP2012233291A (en) * 2011-04-27 2012-11-29 Toray Advanced Mat Korea Inc Environment-friendly conjugate filament nonwoven fabric containing plant-derived composition, and method for producing the same
KR20200051498A (en) * 2018-11-05 2020-05-13 주식회사 엘지화학 Resin composition for bi-component fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049120A1 (en) * 1998-03-24 1999-09-30 Mitsui Chemicals, Inc. Flexible nonwoven fabric laminate
CN1143910C (en) * 1998-03-24 2004-03-31 三井化学株式会社 Flexible nonwoven fabric laminate
JP2003096687A (en) * 2001-09-27 2003-04-03 Japan Vilene Co Ltd Nonwoven fabric for printing base material
EP1577426A1 (en) * 2002-12-24 2005-09-21 Kao Corporation Hot-melt conjugate fiber
EP1577426A4 (en) * 2002-12-24 2006-07-05 Kao Corp Hot-melt conjugate fiber
JP2012233291A (en) * 2011-04-27 2012-11-29 Toray Advanced Mat Korea Inc Environment-friendly conjugate filament nonwoven fabric containing plant-derived composition, and method for producing the same
KR20200051498A (en) * 2018-11-05 2020-05-13 주식회사 엘지화학 Resin composition for bi-component fiber
US11414537B2 (en) 2018-11-05 2022-08-16 Lg Chem, Ltd. Resin composition for bi-component fiber

Similar Documents

Publication Publication Date Title
JP3872815B2 (en) Polyolefin / polyamide conjugate fiber web
US5622772A (en) Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom
CA2236324C (en) Low density microfiber nonwoven fabric
JP5450055B2 (en) Mixed long fiber nonwoven fabric and method for producing the same
JPH1088460A (en) Nonwoven fabric of conjugated filament and its production
CN1311112C (en) Multi-component fibers and non-woven webs made therefrom
AU693536B2 (en) Highly crimpable conjugate fibers and nonwoven webs made therefrom
JP2002242069A (en) Nonwoven fabric composed of mixed fiber, method for producing the same, and laminate composed of the nonwoven fabric
JPH10266056A (en) Conjugate polyolefin filament nonwoven fabric and its production
JPH09273060A (en) Conjugate long fiber nonwoven fabric and its production
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JP2741123B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JP4507389B2 (en) Polyolefin fiber and nonwoven fabric and absorbent article using the same
JPH11140766A (en) Polyolefin conjugated continuous filament nonwoven fabric
JPH10158969A (en) Conjugate filament nonwoven fabric and its production
JPH11286862A (en) Spun-bonded nonwoven fabric for clothes and its production
JP3055288B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JP3712511B2 (en) Flexible nonwoven fabric
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JPH1143856A (en) Non-woven fabric of conjugate, continuous fiber
JPH09291457A (en) Laminated nonwoven fabric of conjugate long fiber
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JP2866131B2 (en) Method for producing ultrafine long-fiber nonwoven fabric
JP3107626B2 (en) Heat-bonded long-fiber nonwoven fabric
JPH05239754A (en) Production of the surface material for sanitary articles