JPH10158969A - Conjugate filament nonwoven fabric and its production - Google Patents
Conjugate filament nonwoven fabric and its productionInfo
- Publication number
- JPH10158969A JPH10158969A JP8310517A JP31051796A JPH10158969A JP H10158969 A JPH10158969 A JP H10158969A JP 8310517 A JP8310517 A JP 8310517A JP 31051796 A JP31051796 A JP 31051796A JP H10158969 A JPH10158969 A JP H10158969A
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- weight
- melt
- density polyethylene
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、医療・衛生資材、
一般工業資材等の広い分野で使用可能であり、特にその
柔軟性により、使い捨ておむつ、生理用ナプキン等の衛
生材料の表面材料に適しているポリオレフィン樹脂から
なる芯−鞘型複合長繊維不織布とその製造方法に関する
ものである。The present invention relates to medical and hygiene materials,
It can be used in a wide range of fields such as general industrial materials, and especially its flexibility makes it possible to use a core-sheath type composite long-fiber nonwoven fabric made of a polyolefin resin suitable for surface materials of sanitary materials such as disposable diapers and sanitary napkins. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】熱可塑性樹脂を溶融押出し機において溶
融紡糸し、紡出された連続フィラメント(糸条体)群を
高速エアーで延伸しながら引き取り、帯電させて開繊
し、次いで移動している捕集用の網からなる支持体上に
捕集・堆積させてウェブを形成させ、このウェブを加熱
ロールからなる熱エンボス装置で長繊維同士を溶融接着
し、形態安定性を付与して得られるスパンボンド不織布
は、他の乾式不織布や湿式不織布に比べて生産性が高
く、連続長繊維から構成されているので引張り強度等の
機械的性質に優れている。特に、このスパンボンド不織
布のなかでも、ナイロンのようなポリアミド樹脂或いは
ポリエチレンテレフタレートのような芳香族ポリエステ
ル樹脂を原料として製造した不織布に対し、ポリオレフ
ィン樹脂からなるスパンボンド不織布は、その比重が小
さいこと、及びフィラメント自体の柔軟性が優れている
ことから、使い捨てシーツ、おむつ、生理用ナプキン等
の衛生材料の表面材料等の分野への進出が計られるよう
になってきた。2. Description of the Related Art A thermoplastic resin is melt-spun in a melt extruder, and a spun continuous filament (filament) group is drawn while being stretched by high-speed air, charged, opened, and then moved. It is obtained by collecting and depositing on a support consisting of a collecting net to form a web, melting and bonding the long fibers to each other with a hot embossing device consisting of a heating roll, and imparting form stability. Spunbond nonwoven fabrics have higher productivity than other dry nonwoven fabrics and wet nonwoven fabrics, and are excellent in mechanical properties such as tensile strength because they are composed of continuous filaments. In particular, among the spunbonded nonwoven fabrics, spunbonded nonwoven fabrics made of a polyolefin resin have a small specific gravity, compared to nonwoven fabrics manufactured using a polyamide resin such as nylon or an aromatic polyester resin such as polyethylene terephthalate as a raw material. In addition, due to the excellent flexibility of the filament itself, it has been attempted to advance into fields such as surface materials of sanitary materials such as disposable sheets, diapers, and sanitary napkins.
【0003】しかしながら、熱可塑性樹脂が単成分から
なるスパンボンド不織布においては、加熱により熱溶融
接着させると、接着点は、繊維形状が維持されずにフィ
ルム化されてしまい、風合いが著しく損なわれて好まし
くないので、この点を改善するため、融点の異なる樹脂
から構成される複合繊維を構成繊維とする不織布が提案
されてきた。従来から繊維表面の一部、又は全部を、そ
の繊維を構成する熱可塑性樹脂より低軟化点を有する別
の熱可塑性樹脂で覆うことにより、即ち芯−鞘繊維を形
成させ、軟化点の相違を利用して熱溶融による接着性と
接着後の風合いを改善した不織布が知られている(特公
昭42−21318号公報及び特公昭43−1776号
公報)。[0003] However, in a spunbonded non-woven fabric made of a thermoplastic resin consisting of a single component, when hot-melt bonding is performed by heating, the bonding point is formed into a film without maintaining the fiber shape, and the texture is significantly impaired. In order to improve this point, a nonwoven fabric using conjugate fibers composed of resins having different melting points as constituent fibers has been proposed. Conventionally, part or all of the fiber surface is covered with another thermoplastic resin having a lower softening point than the thermoplastic resin constituting the fiber, that is, a core-sheath fiber is formed, and the difference in softening point is reduced. Nonwoven fabrics are known which have improved adhesiveness by hot melting and improved texture after bonding (JP-B-42-21318 and JP-B-43-1776).
【0004】又、特公昭54−38214号公報には、
ポリプロピレンのような繊維形成能を有する結晶性重合
体を芯成分とし、該重合体より少なくとも40℃低い軟
化点を有するポリスチレン、ポリエチレン、エチレン−
ポロピレン共重合体等を鞘成分とした場合、従来の紡糸
と延伸の2工程により複合繊維を製造する方法では芯と
鞘の界面での親和力が弱いので延伸性が悪く、延伸条件
によっては各成分が剥離するという欠点を有するが、こ
の欠点を解消するため、複合紡出をする際、紡出糸を毎
分3、200〜9、800mの速度で引き取り、一挙に
変形、冷却、固化を行うという製造方法が開示されてい
る。このように、ポリオレフィン樹脂からなる複合長繊
維不織布として、芯成分にポリプロピレン樹脂、鞘成分
にポリエチレン樹脂という構成は最も一般的である。[0004] Japanese Patent Publication No. 54-38214 discloses that
A crystalline polymer having a fiber-forming ability such as polypropylene as a core component, and having a softening point at least 40 ° C. lower than that of the polymer, polystyrene, polyethylene, ethylene-
In the case where a poropylene copolymer or the like is used as the sheath component, in the conventional method of producing a conjugate fiber by two steps of spinning and drawing, the drawability is poor because the affinity at the interface between the core and the sheath is weak. However, in order to solve this drawback, in the case of composite spinning, the spun yarn is taken at a speed of 3,200 to 9,800 m / min, and is deformed, cooled, and solidified at once. Is disclosed. As described above, as a composite long-fiber nonwoven fabric made of a polyolefin resin, the configuration in which the core component is a polypropylene resin and the sheath component is a polyethylene resin is the most common.
【0005】しかしながら、中でも、直鎖状低密度ポリ
エチレンは、ソフトな風合いが期待されるものの、紡糸
性が悪く、均質な不織布が得られない上、更に、ウェブ
を形成させる際に開繊性が劣るため低目付の不織布がで
きないという問題点がある。この問題点を改良するた
め、特開平2−61156号公報には、エチレンとオク
テン−1とのコポリマーで、オクテン−1を実質的に1
〜10重量%含有し、密度が0.900〜0.940g
/cm3の直鎖状低密度ポリエチレンを複合繊維の鞘成
分とし、複合繊維の芯成分がメルトフローレート値が5
〜45g/10分のポリプロピレンであり、前記低密度
ポリエチレンとポリプロピレンの重量比が20:80〜
80:20の複合長繊維からなる不織布が開示されてい
る。しかしながら、この方法においても紡糸性は、ある
程度改善されるものの、開繊性が依然として劣るという
欠点が存在している。[0005] Among these, linear low-density polyethylene is expected to have a soft hand, but has poor spinnability, does not provide a uniform nonwoven fabric, and has poor openability when forming a web. There is a problem that a nonwoven fabric having a low basis weight cannot be formed because of poor quality. In order to improve this problem, Japanese Patent Application Laid-Open No. 2-61156 discloses a copolymer of ethylene and octene-1 in which octene-1 is substantially one.
-10% by weight, density 0.900-0.940g
/ Cm 3 as a sheath component of the composite fiber, and the core component of the composite fiber has a melt flow rate of 5 / cm 3.
45 g / 10 min. Polypropylene, wherein the weight ratio of the low density polyethylene to the polypropylene is 20:80 to
A nonwoven fabric composed of 80:20 composite filaments is disclosed. However, even with this method, although the spinnability is improved to some extent, there is a drawback that the spreadability is still poor.
【0006】この開繊性の問題を解決するため、特開平
5ー186951号公報には、複合繊維の鞘成分として
高密度ポリエチレンに、高密度ポリエチレン当たりポリ
プロピレンを2〜25重量%をブレンドし、Q値(重量
平均分子量/数量平均分子量)を3.5以下とした構造
体を用い、芯成分としてメルトフローレートが5〜70
g/10分のポリプロピレンを用い、低目付においても
地合の良好な熱接着性を有する複合繊維からなる不織布
が開示されている。この場合、鞘成分にブレンドされた
ポリプロピレンが芯鞘成分の剥離現象を防止し、紡糸性
の向上の役割を果たしているが、鞘にポリプロピレンの
成分が存在することで、ポリエチレン特有なソフトな手
触り感が損なわれると同時に、熱特性が芯成分のポリプ
ロピレンのものに近づくことになるので、熱接着によっ
てスパンボンド不織布を得る場合その物性が劣るという
問題が新たに生じる。[0006] In order to solve the problem of the spreadability, Japanese Patent Application Laid-Open No. Hei 5-186951 discloses that high density polyethylene is blended with 2 to 25% by weight of polypropylene per high density polyethylene as a sheath component of a composite fiber. A structure having a Q value (weight average molecular weight / number average molecular weight) of 3.5 or less was used, and the melt flow rate was 5 to 70 as a core component.
A nonwoven fabric made of a conjugate fiber using g / 10 minutes of polypropylene and having good thermal adhesion with good formation even at a low basis weight is disclosed. In this case, the polypropylene blended with the sheath component prevents the core-sheath component from peeling off and plays a role in improving spinnability. However, the presence of the polypropylene component in the sheath provides a soft touch unique to polyethylene. At the same time, the thermal properties approach those of polypropylene as the core component, so that when a spunbond nonwoven fabric is obtained by thermal bonding, a new problem arises in that the physical properties are poor.
【0007】[0007]
【発明が解決しようとする課題】本発明者等は、かかる
現状に鑑み、芯−鞘型複合不織布の鞘成分として高密度
ポリエチレンと線状低密度ポリエチレン、及び芯成分と
してポリプロピレンを用いる組み合わせについて前記問
題点を解決すべく鋭意研究した結果、鞘成分として使用
する高密度ポリエチレンの分子量の分布と前記3種の熱
可塑性樹脂のメルトフローレートの差に着眼し、樹脂の
密度が特定の高い範囲にあっても、重量平均分子量を数
量平均分子量で除した値で定義され、分子量の分布幅を
示すQ値が特定範囲の高密度ポリエチレンと、高密度ポ
リエチレンよりも一層融点の低い線状低密度ポリエチレ
ンを鞘成分として用い、更に前記樹脂のメルトフローレ
ートの差が全て特定の範囲にあるポリプロピレンを芯成
分として組み合わせ、且つ溶融紡糸の際に同じ溶融温度
を用いると、帯電量が多くなり、それによって開繊性が
顕著に改善し、しかも曳糸性と紡糸性が極めて優れ、更
にその優れた熱接着性と相俟って、柔軟性と風合に優れ
る芯−鞘型複合長繊維不織布が得られることを見出し、
本発明を完成させるに至った。In view of this situation, the present inventors have considered the above-mentioned combination of high-density polyethylene and linear low-density polyethylene as the sheath component of the core-sheath type composite nonwoven fabric and polypropylene as the core component. As a result of intensive research to solve the problem, focusing on the difference between the molecular weight distribution of high-density polyethylene used as a sheath component and the melt flow rate of the three types of thermoplastic resins, the density of the resin is within a specific high range. Even if there is, defined by the value obtained by dividing the weight average molecular weight by the number average molecular weight, the Q value indicating the distribution width of the molecular weight is a high-density polyethylene having a specific range, and a linear low-density polyethylene having a lower melting point than the high-density polyethylene. Is used as a sheath component, and polypropylene having a difference in the melt flow rate of the resin within a specific range is further combined as a core component. In addition, when the same melting temperature is used during melt spinning, the charge amount increases, thereby significantly improving the spreadability, and furthermore, the spinnability and spinnability are extremely excellent, and furthermore, its excellent heat adhesion and Together, they found that a core-sheath type composite long-fiber nonwoven fabric excellent in flexibility and feeling could be obtained,
The present invention has been completed.
【0008】本発明の目的は、高密度ポリエチレン樹脂
と線状低密度ポリエチレンを特定な重量比率で組合せて
鞘成分とし、更にポリプロピレン樹脂を芯成分とし、柔
軟性と風合いに極めて優れる芯−鞘型複合長繊維不織布
及び紡糸性と開繊性が良好で前記の特性を有する前記不
織布の製造方法を提供することにある。[0008] It is an object of the present invention to provide a core-sheath type having a very high flexibility and hand by combining a high-density polyethylene resin and a linear low-density polyethylene in a specific weight ratio to form a sheath component, and further comprising a polypropylene resin as a core component. It is an object of the present invention to provide a composite long-fiber nonwoven fabric and a method for producing the nonwoven fabric having good spinnability and spreadability and having the above-described properties.
【0009】[0009]
【課題を解決するための手段】本発明の第一は、芯成分
と鞘成分からなる複合長繊維から形成された繊度が1〜
10デニールからなる不織布において、芯成分が、JI
S K 7210に記載された方法で測定した230
℃、荷重2.16kgの条件におけるメルトフローレー
トが、10〜100g/10分のポリプロピレンからな
り、鞘成分が重量平均分子量を数量平均分子量で除した
値で定義されるQ値が4.5以下で、密度が0.945
〜0.970g/cm3の高密度ポリエチレン20〜8
0重量%と、密度が0.850〜0.940g/cm3
の線状低高密度ポリエチレン80〜20重量%との混合
樹脂であることを特徴とする複合長繊維不織布である。
本発明の第二は、繊維軸に直交する繊維断面積に占める
鞘成分の重量比率が20〜80重量%であることを特徴
とする本発明第一に記載の複合長繊維不織布である。Means for Solving the Problems The first aspect of the present invention is that the fineness formed from a composite filament consisting of a core component and a sheath component is 1 to 1.
In a non-woven fabric made of 10 denier, the core component is JI
230 measured by the method described in S K 7210
The melt flow rate under the conditions of a temperature of 2.degree. C. and a load of 2.16 kg is made of polypropylene having a melt flow rate of 10 to 100 g / 10 min, and the sheath component has a Q value defined by a value obtained by dividing the weight average molecular weight by the number average molecular weight of 4.5 or less. With a density of 0.945
0.98 g / cm 3 high density polyethylene 20-8
0% by weight and a density of 0.850 to 0.940 g / cm 3
Characterized in that it is a mixed resin with 80 to 20% by weight of a linear low-density polyethylene of the formula (1).
A second aspect of the present invention is the composite long-fiber nonwoven fabric according to the first aspect of the present invention, wherein the weight ratio of the sheath component to the fiber cross-sectional area orthogonal to the fiber axis is 20 to 80% by weight.
【0010】本発明の第三は、芯成分と鞘成分で異なっ
た二種類以上の熱可塑性樹脂をそれぞれ二つの紡出口か
ら同時に溶融押出し紡糸し、紡出された連続フィラメン
ト群をエジェクターによる高速エアーで延伸しながら引
き取り、帯電させて開繊し、次いで移動している支持体
上に捕集・堆積させてウェブを形成させた後、該ウェブ
を熱と圧力の下に溶融接着させて長繊維同士を融着させ
る芯鞘型の複合長繊維不織布の製造方法において、芯成
分がJIS K 7210に記載された方法で測定した
230℃、荷重2.16kgの条件におけるメルトフロ
ーレートが10〜100g/10分の範囲のポリプロピ
レンからなり、鞘成分が、重量平均分子量を数量平均分
子量で除した値で定義されるQ値が4.5以下で、 J
IS K7210に記載された方法で測定した190
℃、荷重2.16kgの条件におけるメルトフローレー
トが10〜70g/10分の範囲で、密度が0.945
〜0.970g/cm3の高密度ポリエチレン20〜8
0重量%と、 JIS K7210に記載された方法で
測定した190℃、荷重2.16kgの条件におけるメ
ルトフローレートが10〜70g/10分で、密度が
0.850〜0.940g/cm3の線状低密度ポリエ
チレン80〜20重量%との混合樹脂からなり、芯成分
樹脂と鞘成分の混合樹脂のそれぞれのメルトフローレー
トの差が0〜35g/10分の範囲内で組み合わされ、
溶融紡糸温度が220〜270℃で溶融紡糸されること
を特徴とす芯鞘型の複合不織布の製造方法である。A third aspect of the present invention is that two or more kinds of thermoplastic resins having different core components and sheath components are simultaneously melt-extruded from two spinning outlets and spun, and the spun continuous filament group is subjected to high-speed air by an ejector. After drawing, the web is formed by charging and spreading, then collecting and depositing it on a moving support to form a web, and then fusing and bonding the web under heat and pressure to obtain a long fiber. In a method for producing a core-sheath type composite long-fiber nonwoven fabric in which cores are fused together, a melt flow rate at a core component of 230 ° C. and a load of 2.16 kg measured by a method described in JIS K 7210 is 10 to 100 g /. J composed of polypropylene having a range of 10 minutes, wherein the sheath component has a Q value of 4.5 or less defined by a value obtained by dividing the weight average molecular weight by the number average molecular weight,
190 measured by the method described in IS K7210.
At a melt flow rate of 10 to 70 g / 10 min.
0.98 g / cm 3 high density polyethylene 20-8
0 wt%, a melt flow rate of 10 to 70 g / 10 min and a density of 0.850 to 0.940 g / cm 3 under the conditions of 190 ° C. and a load of 2.16 kg measured by the method described in JIS K7210. It is composed of a mixed resin of 80 to 20% by weight of linear low-density polyethylene, and the difference in melt flow rate between the mixed resin of the core component resin and the mixed resin of the sheath component is combined within the range of 0 to 35 g / 10 minutes,
A method for producing a core-sheath type composite nonwoven fabric, characterized in that melt spinning is performed at a melt spinning temperature of 220 to 270 ° C.
【0011】[0011]
【発明の実施の形態】本発明において複合長繊維の鞘成
分の第一成分として用いられる熱可塑性の高密度ポリエ
チレン樹脂は、重量平均分子量を数量平均分子量で除し
た値(重量平均分子量/数量平均分子量)として定義さ
れるQ値が4.5以下、好ましくは4.3以下のもので
なければならない。このQ値とは、ゲル・パーミエ−シ
ョン・クロマトグラフィ−(gel permeation chromatog
raphy:GPC)により求められる重合体の重量分子量
と数量平均分子量の比で示され、この値は、樹脂の分子
量の分布幅を示すものであり、熱可塑性樹脂を溶融押出
し機で溶融紡糸する際のフィラメントの製造適性と加工
性に大きく影響するものであることが知られている。即
ち、Q値が大きくなると分子量分布の幅が広くなること
を意味し、樹脂を溶融押出し機において溶融紡糸して、
紡出されたフィラメント群を伸長する際に樹脂の粘度が
大きくなりすぎて、曳糸性が低下する。高密度ポリエチ
レンのQ値が4.5を超える場合は、溶融紡糸の際に糸
切れが多発し、繊度10デニール以下の複合長繊維を製
造することは困難となり適さない。Q値の下限について
特に規定することはないが、2.5以下では、重合体を
製造するための合成条件のコントロールが困難であるた
め、樹脂の入手が容易でないので、本発明におけるQ値
の下限値は2.5である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The thermoplastic high-density polyethylene resin used as the first component of the sheath component of the composite filament in the present invention has a value obtained by dividing the weight average molecular weight by the number average molecular weight (weight average molecular weight / number average molecular weight). The Q value defined as (molecular weight) must be below 4.5, preferably below 4.3. The Q value is defined as gel permeation chromatog
raphy: GPC) is the ratio between the weight molecular weight and the number average molecular weight of the polymer, which indicates the distribution width of the molecular weight of the resin, and is used when melt-spinning a thermoplastic resin by a melt extruder. It is known that this greatly affects the suitability and processability of filaments. That is, when the Q value increases, the width of the molecular weight distribution increases, and the resin is melt-spun in a melt extruder,
When elongating the spun filament group, the viscosity of the resin becomes too large, and the spinnability decreases. When the Q value of the high-density polyethylene exceeds 4.5, yarn breakage frequently occurs during melt spinning, and it is difficult to produce a composite filament having a fineness of 10 denier or less, which is not suitable. Although there is no particular limitation on the lower limit of the Q value, if it is 2.5 or less, it is difficult to control the synthesis conditions for producing the polymer, and it is not easy to obtain a resin. The lower limit is 2.5.
【0012】又、前記高密度ポリエチレンの密度は、
0.945〜0.970g/cm3、好ましくは0.9
50〜0.965g/cm3の範囲である。密度が0.
945g/cm3未満のポリエチレン重合体を使用する
と、本発明の樹脂の組み合わせにおいて、この樹脂を鞘
成分の第一成分として用い、溶融紡糸して得られる芯−
鞘型複合長繊維に帯電させて開繊する際に、帯電量が少
なくなって、開繊性が低下し、更に得られる複合長繊維
不織布の風合いが悪くなるので適さない。一方、密度が
0.970g/cm3を超える高密度ポリエチレン樹脂
は柔軟性が劣り、市場で入手することが困難であるので
適さない。複合長繊維の鞘成分の第二成分として用いら
れる線状低密度ポリエチレンの密度は、0.850〜
0.940g/cm3、好ましくは0.855〜0.9
38g/cm3の範囲である。密度が0.850g/c
m3未満のポリエチレン重合体を使用すると、本発明の
樹脂の組み合わせにおいて、この樹脂を鞘成分の第二成
分として用いた芯−鞘型複合長繊維に帯電させて開繊す
る際に、帯電量が少なくなって、開繊性が低下し、得ら
れる複合長繊維不織布の風合いが悪くなり、一方密度が
0.940g/cm3を超える線状低密度ポリエチレン
樹脂の場合は、線状低密度ポリエチレンの特有なソフト
な手触り感が失われ、得られる不織布の柔軟性が劣るよ
うになるので適さない。The density of the high-density polyethylene is:
0.945 to 0.970 g / cm 3 , preferably 0.9
It is in the range of 50 to 0.965 g / cm 3 . Density is 0.
When a polyethylene polymer of less than 945 g / cm 3 is used, the core obtained by melt-spinning using the resin as the first component of the sheath component in the resin combination of the present invention.
When the sheath-type composite long fiber is charged and opened, the charge amount is reduced, the spreadability is reduced, and the texture of the obtained composite long-fiber nonwoven fabric is deteriorated, which is not suitable. On the other hand, a high-density polyethylene resin having a density exceeding 0.970 g / cm 3 is not suitable because it has poor flexibility and is difficult to obtain in the market. The density of the linear low-density polyethylene used as the second component of the sheath component of the composite long fiber is 0.850 to
0.940 g / cm 3 , preferably 0.855 to 0.9
It is in the range of 38 g / cm 3 . 0.850g / c density
When a polyethylene polymer having a molecular weight of less than m 3 is used, in the combination of the resin of the present invention, when the core-sheath type composite long fiber used as the second component of the sheath component is charged and opened, the charge amount is increased. , The openness of the fiber is reduced, and the texture of the obtained composite long-fiber nonwoven fabric deteriorates. On the other hand, in the case of a linear low-density polyethylene resin having a density exceeding 0.940 g / cm 3 , the linear low-density polyethylene This is not suitable because the characteristic soft touch feeling is lost and the resulting nonwoven fabric becomes less flexible.
【0013】本発明において複合長繊維の鞘成分として
用いられる熱可塑性の高密度ポリエチレン樹脂と線状低
密度ポリエチレンとしては、それぞれはJIS K 6
760に記載された方法で測定した190℃、荷重2.
16kgの条件でのメルトフローレート(以下MFRと
いう)が10〜70g/10分、好ましくは10〜50
g/10分の範囲である。MFRが10g/10分未満
の高密度ポリエチレンと線状低密度ポリエチレンは、紡
糸の際に溶融温度を極端に高くしなければ高速度での溶
融紡糸が容易にできず、又そのような極端な高温度での
紡糸では口金面の汚れが発生し易く、操業上好ましくな
い。逆に、MFRが70g/10分を超えると、糸切れ
が発生し易くなり、得られる複合長繊維不織布の風合い
が低下するだけではなく、強度も低くなるので適さな
い。In the present invention, the thermoplastic high-density polyethylene resin and the linear low-density polyethylene used as the sheath component of the composite long fiber are respectively JIS K6.
190 ° C., load 2. Measured by the method described in 760.
Melt flow rate (MFR) under the condition of 16 kg is 10 to 70 g / 10 min, preferably 10 to 50 g / 10 min.
g / 10 minutes. High-density polyethylene and linear low-density polyethylene having an MFR of less than 10 g / 10 minutes cannot be easily melt-spun at a high speed unless the melting temperature is extremely high during spinning. Spinning at a high temperature tends to cause stains on the spinneret surface, which is not preferable in operation. On the other hand, if the MFR exceeds 70 g / 10 minutes, thread breakage is likely to occur, and not only the texture of the obtained composite long-fiber nonwoven fabric decreases, but also the strength decreases, which is not suitable.
【0014】本発明における複合長繊維の鞘成分として
は、20〜80重量%の高密度ポリエチレン樹脂と80
〜20重量%線状低密度ポリエチレンとの混合樹脂が用
いられる。線状低密度ポリエチレンの重量割合が20重
量%未満では、繊維の開繊性は高くなるが、線状低密度
ポリエチレンの低融点とソフトな手触り感から得られる
極めて優れる熱接着性と柔軟性は具現できない。逆に、
線状低密度ポリエチレン重量比率が80重量%を超える
と、熱接着性と柔軟性は極めて高くなるが、繊維の開繊
性が悪くなる。尚、鞘成分の高密度ポリエチレンと線状
低密度ポリエチレンとの混合樹脂には、潤滑剤、顔料、
安定剤、難燃剤、抗菌剤等の添加剤を含有させて用いて
も良い。In the present invention, the sheath component of the composite long fiber is 20 to 80% by weight of a high-density polyethylene resin and 80% by weight.
A mixed resin with 〜20% by weight linear low density polyethylene is used. When the weight ratio of the linear low-density polyethylene is less than 20% by weight, the spreadability of the fiber becomes high, but the extremely low thermal melting property and the extremely excellent thermal adhesiveness and flexibility obtained from the soft touch of the linear low-density polyethylene are obtained. Can't embody. vice versa,
When the linear low-density polyethylene weight ratio exceeds 80% by weight, the heat adhesion and flexibility become extremely high, but the fiber opening property becomes poor. In addition, the mixed resin of the sheath component high-density polyethylene and linear low-density polyethylene includes a lubricant, a pigment,
An additive such as a stabilizer, a flame retardant, or an antibacterial agent may be contained and used.
【0015】本発明において芯成分に使用されるポリプ
ロピレンは、前記のQ値が2.0〜3.5の範囲で、J
IS K 7210に記載された方法で測定した230
℃、荷重2.16kgの条件でのMFRが、10〜10
0g/10分、好ましくは30〜80g/10分の範囲
にある。Q値が2.0未満のポリプロピレンは、製造が
困難なため入手が容易ではなく、Q値が3.5を超える
ものは糸切れの原因となる。MFRが10g/10分未
満のポリプロピレンは、溶融温度を高くしなければ高速
度での溶融紡糸が容易でなくなり、高温度での紡糸では
口金面の汚れが発生し易くなるので、操業上好ましくな
い。逆に、MFRが100g/10分を超えると、糸切
れが発生し易くなり、得られる複合長繊維不織布の風合
いが低下するだけではなく、強度も低くなるので適さな
い。又、ポリプロピレンには、鞘成分のポリエチレンの
場合と同様に、潤滑剤、顔料、安定剤、抗菌剤等の添加
剤を含有させて用いても良い。In the present invention, the polypropylene used as the core component has a Q value in the range of 2.0 to 3.5,
230 measured by the method described in IS K 7210
The MFR under the conditions of a temperature of 2.degree.
0 g / 10 min, preferably in the range of 30 to 80 g / 10 min. Polypropylene having a Q value of less than 2.0 is difficult to obtain because it is difficult to produce, and those having a Q value of more than 3.5 cause yarn breakage. Polypropylene having an MFR of less than 10 g / 10 minutes is not preferable in terms of operation because melt spinning at a high speed becomes difficult unless the melting temperature is increased, and the spinning at a high temperature easily causes stains on a die surface. . Conversely, if the MFR exceeds 100 g / 10 minutes, thread breakage is likely to occur, and not only the hand of the resulting composite long-fiber nonwoven fabric is reduced, but also the strength is reduced, which is not suitable. Further, the polypropylene may contain additives such as a lubricant, a pigment, a stabilizer, and an antibacterial agent, as in the case of the sheath polyethylene.
【0016】本発明においては、不織布を構成する複合
長繊維の繊維軸に直交する繊維断面積に占める鞘成分の
高密度ポリエチレンと線状低密度ポリエチレンとの合計
の重量比率は20〜80重量%である。高密度ポリエチ
レンと線状低密度ポリエチレンとの合計の重量比率が2
0重量%未満の場合は、繊維強度は高くなるが、接着力
が弱くなり、得られる不織布としての強度が弱くなり過
ぎて実用上適さなくなる。逆に、高密度ポリエチレンと
線状低密度ポリエチレンの合計の重量比率が80重量%
を超えると、接着強度は高くなるが、繊維強度が弱過ぎ
るために、得られる不織布の強度も弱くなり過ぎて適さ
ない。本発明に用いられる複合長繊維の繊度は1〜10
デニールの範囲である。長繊維の繊度が10デニールを
超えると、繊維径が太くなりすぎ、得られる不織布が硬
くなり風合いが低下し、繊度が1デニール未満のものは
製造が困難である。複合長繊維の断面形状としては、円
形断面の他に異形或いは扁平とすることもできる。In the present invention, the total weight ratio of the sheath component high-density polyethylene and the linear low-density polyethylene to the fiber cross-sectional area orthogonal to the fiber axis of the composite long fiber constituting the nonwoven fabric is 20 to 80% by weight. It is. The total weight ratio of high-density polyethylene and linear low-density polyethylene is 2
If the amount is less than 0% by weight, the fiber strength is increased, but the adhesive strength is weakened, and the strength of the obtained nonwoven fabric is too weak to be practically suitable. Conversely, the total weight ratio of high-density polyethylene and linear low-density polyethylene is 80% by weight.
If it exceeds, the adhesive strength will be high, but the fiber strength will be too weak, and the strength of the resulting nonwoven fabric will be too weak to be suitable. The fineness of the composite filament used in the present invention is 1 to 10
Denier range. If the fineness of the long fiber exceeds 10 denier, the fiber diameter becomes too large, the resulting nonwoven fabric becomes hard and the texture decreases, and it is difficult to produce a fine fiber having a fineness of less than 1 denier. The cross-sectional shape of the composite long fiber may be irregular or flat in addition to the circular cross-section.
【0017】本発明に係わる複合長繊維不織布の目付
は、5〜150g/m2の範囲である。目付が150g
/m2を超えると不織布が硬くなり過ぎ、風合いが悪く
なり、目付が5g/m2未満では、不織布の強度が低く
なり過ぎ、不織布を安定して製造するのが難しくなる。
本発明は、公知の複合長繊維用の溶融押出し装置におい
て、異なった熱可塑性樹脂を溶融押出し紡糸し、芯成分
と鞘成分からなる複合長繊維で形成される不織布及びそ
の製造方法であって、鞘成分が、特定の高密度ポリエチ
レンと線状低密度ポリエチレンの混合樹脂であり、芯成
分が、特定のポリプロピレンから構成され、それぞれの
MFR同士の差が全て0〜35g/10分の範囲内で組
み合わせられており、且つ溶融紡糸温度が220〜27
0℃の範囲から選ばれた同一の温度にて溶融押出し紡糸
し、紡出された連続フィラメントを高速でエジェクター
により引き取って、複合長繊維の繊度が1〜10デニー
ルの範囲とし、次いで前記繊維を移動している捕集用支
持体上に捕集・堆積させてウェブを形成し、その後熱接
着するというものである。The basis weight of the composite nonwoven fabric of the present invention is in the range of 5 to 150 g / m 2 . Weight is 150g
If it exceeds / m 2 , the nonwoven fabric becomes too hard and the texture deteriorates, and if the basis weight is less than 5 g / m 2 , the strength of the nonwoven fabric becomes too low and it becomes difficult to stably produce the nonwoven fabric.
The present invention is a melt extruder for a known composite filament, in which a different thermoplastic resin is melt-extruded and spun, and a nonwoven fabric formed of a composite filament composed of a core component and a sheath component, and a method for producing the same, The sheath component is a mixed resin of a specific high-density polyethylene and a linear low-density polyethylene, and the core component is composed of a specific polypropylene, and the difference between the respective MFRs is within a range of 0 to 35 g / 10 minutes. Combined and the melt spinning temperature is 220-27
The melt-extruded and spun at the same temperature selected from the range of 0 ° C., the spun continuous filament is taken out by an ejector at a high speed, the fineness of the composite filament becomes 1 to 10 denier, The web is formed by collecting and depositing on a moving collecting support, and then heat-bonded.
【0018】本発明における溶融紡糸温度は、220〜
270℃の範囲から選ばれた同じ温度でそれぞれの樹脂
が溶融紡糸される必要があるが、紡糸温度を前記範囲外
で行うと紡糸の調子が不良になり、満足のできる不織布
が得られ難くなる。つまり、紡糸温度が220℃未満の
場合は、紡糸速度を高くするには高いエアー圧力が必要
となり、糸切れを発生せずに繊度1〜10デニールの繊
維を得ることは困難である。逆に、紡糸温度が270℃
を超えると、紡出されたフィラメントの強度が弱くな
り、糸切れが多く発生し易くなるだけではなく、ノズル
表面が汚れ易くなり、長時間操業した時にノズル表面汚
れによる糸切れも増えるので、適さない。溶融紡糸する
際の前記範囲から選ばれた同じ温度とは、本発明では、
芯成分と鞘成分のそれぞれの樹脂が実質的に同じ溶融紡
糸温度で紡糸されることを意味し、前記溶融紡糸温度の
範囲内で温度は±1.5℃、好ましくは±1.0℃まで
許容される。芯成分樹脂と鞘成分樹脂の溶融紡糸温度の
差の絶対値が3℃を超えて大きくなると、溶融押出し後
の複合糸条体の冷却がスムーズにいかなくなり、糸条体
への冷却不均一による歪みが残るので、良好な紡糸性が
実現できなくなり、ひいては糸切れが発生し、不織布が
不均一になる。The melt spinning temperature in the present invention is from 220 to
Each resin needs to be melt-spun at the same temperature selected from the range of 270 ° C. However, if the spinning temperature is out of the above range, the spinning condition becomes poor, and it becomes difficult to obtain a satisfactory nonwoven fabric. . That is, when the spinning temperature is lower than 220 ° C., a high air pressure is required to increase the spinning speed, and it is difficult to obtain a fiber having a fineness of 1 to 10 denier without causing yarn breakage. Conversely, the spinning temperature is 270 ° C
If it exceeds, the strength of the spun filament is weakened and not only is it easy for yarn breakage to occur easily, but also the nozzle surface becomes easy to become dirty, and the yarn breakage due to the nozzle surface dirt increases after a long operation, making it suitable. Absent. The same temperature selected from the above range during melt spinning, in the present invention,
It means that the respective resins of the core component and the sheath component are spun at substantially the same melt spinning temperature, and the temperature is ± 1.5 ° C., preferably ± 1.0 ° C. within the range of the melt spinning temperature. Permissible. When the absolute value of the difference between the melt spinning temperatures of the core component resin and the sheath component resin exceeds 3 ° C., the cooling of the composite yarn after melt extrusion is not smooth, and the cooling to the yarn is uneven. Since distortion remains, good spinnability cannot be realized, and eventually yarn breakage occurs, and the nonwoven fabric becomes non-uniform.
【0019】本発明においては、前記鞘成分の高密度ポ
リエチレンと線状低密度ポリエチレンとのMFRの差並
びに前記MFRと芯成分のポリプロピレンのMFRとの
間の全ての差を0〜35g/10分の範囲としておい
て、前記の溶融紡糸温度範囲から選ばれた同じ温度で溶
融紡糸することによって初めて溶融押出し後の複合長繊
維フィラメントの冷却がスムーズとなり、冷却の不均一
による芯鞘の接合部におけるずれが発生せず、溶融伸長
特性の違いによる歪みも残らないので、良好な紡糸性が
具現化できるのである。前記鞘成分の高密度ポリエチレ
ンと線状低密度ポリエチレン及び芯成分のポリプロピレ
ンは、溶融押出し紡糸機のそれぞれの口金から同じ温度
で押し出されて紡糸された後は、エジェクターにより高
速エアーで引き取って、延伸され、次いで形成された多
数の長繊維を、衝突板に当てて摩擦帯電させ、電荷によ
る反発力で開繊させる。この場合、帯電方法として、コ
ロナ放電処理を行うことも可能である。In the present invention, the difference in MFR between the high-density polyethylene of the sheath component and the linear low-density polyethylene and all the differences between the MFR and the MFR of the polypropylene of the core component are 0 to 35 g / 10 min. For the first time, the melt spinning at the same temperature selected from the above melt spinning temperature range makes the cooling of the composite filament filament after melt extrusion smooth for the first time, and at the joint of the core and sheath due to uneven cooling. Since no displacement occurs and no distortion due to the difference in melt elongation characteristics remains, good spinnability can be realized. After the high-density polyethylene of the sheath component, the linear low-density polyethylene and the polypropylene of the core component are extruded and spun at the same temperature from the respective spinnerets of the melt-extruding spinning machine, they are drawn by high-speed air by an ejector and stretched. Then, the formed long fibers are frictionally charged by being applied to a collision plate, and the fibers are opened by repulsion by the electric charge. In this case, corona discharge treatment can be performed as a charging method.
【0020】次に、均一に開繊された前記の多数の長繊
維フィラメント群は、捕集用のエンドレスに回転してい
る網製の支持体上に捕集・堆積され、ウェブとされる。
このようにして、細デニールの複合長繊維であっても極
めて容易にウェブが構成され、風合いの極めて優れるポ
リプロピレンと高密度ポリエチレンが鞘成分として表面
を構成している複合長繊維が少ない糸切れ率で、高速度
の紡糸によって得られるようになる。本発明において
は、支持体上に集積された多数の長繊維は、ウェブとさ
れ、次いでこのウェブには更に規則的な間隔で繊維同士
の自己融着区域を設け、熱接着するためいわゆる熱エン
ボスが施される。この熱エンボスによる長繊維同士の熱
接着は、前記ウェブを加熱した凹凸ロールと平滑ロール
の間に導入し、加熱と加圧処理を施すことにより、凹凸
ロールの凸部に対応した不織布の繊維同士が融着するこ
とによって形成される。この場合、ロールの温度は鞘樹
脂の低密度ポリエチレンの融点より3〜20℃、好まし
くは5〜15℃低い温度に維持される。ロール温度と樹
脂の融点の差が3℃未満では、ロールによる熱圧着処理
の時に繊維がロールに付着し、製造トラブルの原因とな
るため適さない。逆に、ロール温度と樹脂の融点との差
が20℃を超えると、融着部分の形成が不十分となり、
不織布の強度が著しく低下するばかりでなく、毛羽立ち
が激しく好ましくない。Next, the group of long filaments uniformly spread is collected and deposited on an endlessly rotating mesh support for collection to form a web.
In this way, the web can be formed very easily even with fine denier conjugate filaments, and the composite filaments whose surface is composed of polypropylene and high-density polyethylene having extremely excellent texture as a sheath component have a low yarn breakage rate. And can be obtained by high-speed spinning. In the present invention, a large number of long fibers collected on a support are formed into a web, and the web is further provided with self-fused areas of the fibers at regular intervals, so-called hot embossing for heat bonding. Is applied. The thermal bonding of the long fibers by the hot embossing is performed by introducing the web between the uneven roll and the smooth roll which have heated the web, and performing heating and pressurizing treatments, whereby the fibers of the nonwoven fabric corresponding to the convex portions of the uneven roll are heated. Are formed by fusing. In this case, the temperature of the roll is maintained at 3 to 20C, preferably 5 to 15C lower than the melting point of the low-density polyethylene as the sheath resin. When the difference between the roll temperature and the melting point of the resin is less than 3 ° C., the fibers adhere to the roll during thermocompression treatment by the roll, which is not suitable because it causes a manufacturing trouble. Conversely, if the difference between the roll temperature and the melting point of the resin exceeds 20 ° C., the formation of the fused portion becomes insufficient,
Not only is the strength of the nonwoven fabric significantly reduced, but also the fluff is undesirably severe.
【0021】凹凸ロールと平滑ロールで熱圧着処理を施
す場合の圧力は、10〜80kg/cm、好ましくは2
0〜60kg/cmである。圧力が10kg/cm未満
では、熱圧着処理による融着区域の形成が不十分となる
ことがあり、80kg/cmを超えると、自己融着区域
がフィルム状になり、不織布の風合いが損なわれること
がある。融着区域を形成する方法としては、集積された
連続長繊維フィラメント群からなるウェブを、凹凸ロー
ルと超音波ホーンの間に導入し、超音波処理を施すこと
により、凸部に対応した点融着部分を形成することも可
能である。本発明においては、個々の融着区域の面積
は、0.03〜4mm2の範囲である。融着区域の面積
が0.03mm2未満では、不織布の強度が不足するた
め好ましくない。逆に、融着面積が4mm2を超える
と、得られる不織布が硬くなり過ぎる。融着区域の面積
の総和は、複合長繊維不織布の全表面積の2〜30面積
%である。融着区域の面積の総和が2面積%未満では、
不織布の強度が不足し、融着区域の面積が30面積%を
超えると、不織布が硬くなる。The pressure when the thermocompression treatment is performed with the uneven roll and the smooth roll is 10 to 80 kg / cm, preferably 2 kg / cm.
0 to 60 kg / cm. If the pressure is less than 10 kg / cm, the formation of the fusion zone by the thermocompression treatment may be insufficient, and if it exceeds 80 kg / cm, the self-fusion zone becomes a film and the texture of the nonwoven fabric is impaired. There is. As a method for forming the fusion zone, a web composed of a group of continuous continuous filament fibers is introduced between a concavo-convex roll and an ultrasonic horn, and subjected to ultrasonic treatment, so that a point fusion corresponding to the convex portion is performed. It is also possible to form the attachment part. In the present invention, the area of the individual fusion zones is in the range of 0.03 to 4 mm2. If the area of the fusion zone is less than 0.03 mm 2 , the strength of the nonwoven fabric is insufficient, which is not preferable. Conversely, if the fused area exceeds 4 mm 2 , the resulting nonwoven fabric becomes too hard. The total area of the fusion zone is 2 to 30 area% of the total surface area of the composite long-fiber nonwoven fabric. If the total area of the fusion zone is less than 2% by area,
When the strength of the nonwoven fabric is insufficient and the area of the fusion zone exceeds 30 area%, the nonwoven fabric becomes hard.
【0022】以上説明したように、本発明の鞘成分とし
て高密度ポリエチレンと線状低密度ポリエチレン及び芯
成分としてポリプロピレンからなる複合長繊維不織布
は、製造に際し紡糸性と開繊性に優れ、優れた柔軟性と
風合を有し、必要に応じて種々加工されて、衛生材料、
医療用基材、衣料用基材、家庭用基材、産業用基材等に
使用される。As described above, the composite long-fiber nonwoven fabric comprising the high-density polyethylene and the linear low-density polyethylene as the sheath component and the polypropylene as the core component of the present invention has excellent spinnability and spreadability upon production, and has excellent properties. It has flexibility and feel, and is processed variously as needed, sanitary materials,
Used as medical substrates, clothing substrates, household substrates, industrial substrates, and the like.
【0023】[0023]
【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明は勿論これらに限定されるものでは
ない。尚、以下の実施例及び比較例において、%は特に
断らない限り重量%である。EXAMPLES The present invention will be described more specifically with reference to examples below, but the present invention is of course not limited to these. In the following Examples and Comparative Examples,% is% by weight unless otherwise specified.
【0024】実施例1 MFR25g/10分、密度0.955g/cm3、Q
値3.5、融点127.8℃の高密度ポリエチレン樹脂
(三菱化学社製)50%とMFR20g/10分、密度
0.895g/cm3、Q値2.8、融点102.5℃
の線状低密度ポリエチレン樹脂(三菱化学社製)50%
からなる混合樹脂を鞘成分とし、MFR40g/10
分、 Q値3.0のポリプロピレン樹脂(三菱化学社
製)を芯成分として準備した。次に、溶融押出機におい
て芯鞘複合紡糸用口金を用いて、不織布を構成する複合
長繊維の繊維軸に直交する繊維断面に占める鞘成分の重
量比率を30%とし、前記の樹脂をそれぞれ250±1
℃に加熱して溶融し、多数の微細孔から押し出し、紡糸
した後、紡出されたフィラメント群をエジェクターによ
り高速エアーで引き取りながら延伸して開繊し、移動す
るワイヤー製捕集支持体上に捕集・堆積させウェブを形
成させた。次いで、このウェブを97℃に加熱した凹凸
ロールと平滑ロールの間に導入し、線圧40kg/cm
で熱エンボスを施し、凹凸ロールの凸部に対応する部分
を融着することにより、目付40g/m2の複合長繊維
不織布を得た。個々の融着区域の面積は0.12mm2
であり、融着区域の面積の総和は、不織布の全表面積当
り4面積%で、複合長繊維の繊度は3デニールであっ
た。Example 1 MFR 25 g / 10 min, density 0.955 g / cm 3 , Q
50% of high-density polyethylene resin (manufactured by Mitsubishi Chemical Corporation) having a value of 3.5 and a melting point of 127.8 ° C., an MFR of 20 g / 10 minutes, a density of 0.895 g / cm 3 , a Q value of 2.8 and a melting point of 102.5 ° C.
50% linear low density polyethylene resin (Mitsubishi Chemical Corporation)
A mixed resin consisting of
A polypropylene resin (manufactured by Mitsubishi Chemical Corporation) having a Q value of 3.0 was prepared as a core component. Next, using a core-sheath composite spinneret in a melt extruder, the weight ratio of the sheath component to the fiber cross section orthogonal to the fiber axis of the composite long fiber constituting the nonwoven fabric was set to 30%, and the above-mentioned resin was used in each case for 250%. ± 1
After heating to ℃ and melting, extruding through a number of micropores and spinning, the spun filaments are stretched and drawn by high-speed air with an ejector, and spread on a moving wire collecting support. It was collected and deposited to form a web. Next, the web was introduced between a concavo-convex roll and a smooth roll heated to 97 ° C., and a linear pressure of 40 kg / cm.
Then, a portion corresponding to the convex portion of the concave-convex roll was fused to obtain a composite long-fiber nonwoven fabric having a basis weight of 40 g / m 2 . The area of each fusion zone is 0.12 mm 2
The total area of the fused areas was 4 area% based on the total surface area of the nonwoven fabric, and the fineness of the composite filament was 3 denier.
【0025】紡糸性と得られた長繊維不織布の地合、柔
軟性及び引張強度を下記の試験方法で試験し、評価し
た。 試験方法 (1)紡糸性:樹脂の紡糸性を、溶融紡糸時の糸切れの
多寡で評価した。評価は以下の5段階で行った。 5・・・ 糸切れがなく、紡糸性は極めて良好である。 4・・・ 糸切れは殆どなく、紡糸性は良好である。 3・・・ 糸切れは少しあるが、問題なく、紡糸性は普
通である。 2・・・ 糸切れがかなりあり、紡糸性は悪く。 1・・・ 糸切れが非常に多く、紡糸性は極めて悪い。 (2)地合:得られた長繊維不織布の地合を、官能で評
価した。評価は以下の5段階で行った。 5・・・ 地合が極めて良好でる。 4・・・ 地合が良好である。 3・・・ 地合が普通である。 2・・・ 地合が悪い。 1・・・ 地合が極めて悪い。 (3)柔軟性:得られた長繊維不織布の柔軟性を、官能
で評価した。評価は以下の5段階で行った。 5・・・ 柔軟性は極めて良好である。 4・・・ 柔軟性が良好である。 3・・・ 柔軟性は普通である。 2・・・ 柔軟性が劣る。 1・・・ 柔軟性が極めて劣る。 (4)引張強さ:JIS L 1906に示された方法
で行った。The spinnability and the formation, flexibility and tensile strength of the obtained long-fiber nonwoven fabric were tested and evaluated by the following test methods. Test Method (1) Spinnability: The spinnability of the resin was evaluated based on the amount of yarn breakage during melt spinning. The evaluation was performed in the following five stages. 5 ... No yarn breakage, and spinning properties are extremely good. 4: There is almost no yarn breakage, and the spinnability is good. 3: There is a little yarn breakage, but there is no problem and the spinnability is normal. 2 ... Yarn breakage is considerable and spinnability is poor. 1: Very many yarn breaks and spinning properties are extremely poor. (2) Formation: The formation of the obtained long-fiber nonwoven fabric was evaluated organoleptically. The evaluation was performed in the following five stages. 5 ... The formation is extremely good. 4: The formation is good. 3: The formation is normal. 2 ... The formation is bad. 1 ... The formation is extremely bad. (3) Flexibility: Flexibility of the obtained long-fiber nonwoven fabric was evaluated organoleptically. The evaluation was performed in the following five stages. 5 ... The flexibility is extremely good. 4: Good flexibility. 3 ... Flexibility is normal. 2 ... Poor flexibility. 1 ... very poor flexibility. (4) Tensile strength: Performed according to the method shown in JIS L 1906.
【0026】実施例2 MFR20g/10分、密度0.960g/cm3、Q
値4.0、融点133.0℃の高密度ポリエチレン樹脂
(三菱化学社製)50重量%とMFR30g/10分、
密度0.930g/cm3、Q値3.7、融点125.
3℃の線状低密度ポリエチレン樹脂(三菱化学社製)5
0重量%からなる混合樹脂を鞘成分とし、MFR50g
/10分、 Q値2.7のポリプロピレン樹脂(三菱化
学社製)を芯成分として準備した。次に、溶融押出機に
おいて芯鞘複合紡糸用口金を用いて、不織布を構成する
複合長繊維の繊維軸に直交する繊維断面に占める鞘成分
の重量比率を30%とし、前記の樹脂をそれぞれ240
±0.5℃に加熱して溶融し、多数の微細孔から押し出
し、紡糸した後、紡出されたフィラメント群をエジェク
ターにより高速エアーで引き取りながら延伸して開繊
し、移動するワイヤー製捕集支持体上に捕集・堆積させ
ウェブを形成させた。次いで、このウェブを115℃に
加熱した凹凸ロールと平滑ロールの間に導入し、線圧2
0kg/cmで熱エンボスを施し、凹凸ロールの凸部に
対応する部分を融着することにより、目付14g/m2
の複合長繊維不織布を得た。個々の融着区域の面積は
1.0mm2であり、融着区域の面積の総和は、不織布
の全表面積当り15面積%で、複合長繊維の繊度は2.
8デニールであった。紡糸性と得られた長繊維不織布を
前記の試験方法で試験し、評価した。Example 2 MFR 20 g / 10 min, density 0.960 g / cm 3 , Q
50% by weight of a high-density polyethylene resin (manufactured by Mitsubishi Chemical Corporation) having a value of 4.0 and a melting point of 133.0 ° C., and an MFR of 30 g / 10 min.
Density 0.930 g / cm 3 , Q value 3.7, melting point 125.
3 ° C linear low-density polyethylene resin (Mitsubishi Chemical Corporation) 5
A mixed resin consisting of 0% by weight was used as a sheath component, and MFR 50 g
A polypropylene resin (manufactured by Mitsubishi Chemical Corporation) having a Q value of 2.7 was prepared as a core component. Next, using a core-sheath composite spinneret in a melt extruder, the weight ratio of the sheath component in the fiber cross section orthogonal to the fiber axis of the composite long fiber constituting the nonwoven fabric was set to 30%, and each of the resins was 240
After heating and melting to ± 0.5 ° C, extruding and spinning from a number of micropores, the spun filaments are stretched while being pulled by an ejector with high-speed air, and the fiber is stretched and opened. It was collected and deposited on a support to form a web. Next, the web was introduced between the uneven roll and the smooth roll heated to 115 ° C.
By applying heat embossing at 0 kg / cm and fusing a portion corresponding to the convex portion of the concave-convex roll, the basis weight is 14 g / m 2.
Was obtained. The area of the individual fused areas is 1.0 mm 2 , the total area of the fused areas is 15 area% based on the total surface area of the nonwoven fabric, and the fineness of the composite filament is 2.
It was 8 denier. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0027】実施例3 樹脂をそれぞれ260±1℃に加熱して溶融し、多数の
微細孔から押し出したこと以外は、実施例1と同様にし
て多数の微細孔から押し出し、紡糸した後、紡出された
フィラメント群をエジェクターにより高速エアーで引き
取りながら延伸して開繊し、移動するワイヤー製捕集支
持体上に捕集・堆積させウェブを形成させた。次いで、
このウェブを96℃に加熱した凹凸ロールと平滑ロール
の間に導入し、線圧60kg/cmで熱エンボスを施
し、凹凸ロールの凸部に対応する部分を融着することに
より、目付50g/m2の複合長繊維不織布を得た。個
々の融着区域の面積は2.0mm2であり、融着区域の
面積の総和は、不織布の全表面積当り10面積%で、複
合長繊維の繊度は7.5デニールであった。紡糸性と得
られた長繊維不織布を前記の試験方法で試験し、評価し
た。Example 3 Except that each of the resins was heated to 260 ± 1 ° C. and melted and extruded from a large number of fine holes, the resin was extruded from a large number of fine holes and spun. The ejected filament group was stretched and drawn while being taken up by an ejector with high-speed air, and collected and deposited on a moving wire-made collecting support to form a web. Then
This web was introduced between a concavo-convex roll and a smooth roll heated to 96 ° C., subjected to hot embossing at a linear pressure of 60 kg / cm, and fused to a portion corresponding to the convex portion of the concavo-convex roll to obtain a basis weight of 50 g / m 2. A composite long fiber nonwoven fabric of No. 2 was obtained. The area of each of the fused areas was 2.0 mm 2 , the total area of the fused areas was 10 area% based on the total surface area of the nonwoven fabric, and the fineness of the composite filament was 7.5 denier. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0028】実施例4 樹脂をそれぞれ230±0.5℃に加熱して溶融し、多
数の微細孔から押し出したこと以外は、実施例2と同様
にして多数の微細孔から押し出し、紡糸した後、紡出さ
れたフィラメント群をエジェクターにより高速エアーで
引き取りながら延伸して開繊し、移動するワイヤー製捕
集支持体上に捕集・堆積させウェブを形成させた。次い
で、このウェブを117℃に加熱した凹凸ロールと平滑
ロールの間に導入し、線圧30kg/cmで熱エンボス
を施し、凹凸ロールの凸部に対応する部分を融着するこ
とにより、目付24g/m2の複合長繊維不織布を得
た。個々の融着区域の面積は0.28mm2であり、融
着区域の面積の総和は、不織布の全表面積当り8面積%
で、複合長繊維の繊度は2.5デニールであった。紡糸
性と得られた長繊維不織布を前記の試験方法で試験し、
評価した。Example 4 Except that the resin was heated to 230. +-. 0.5.degree. C. and melted, respectively, and extruded from a large number of fine holes, the resin was extruded from a large number of fine holes and spun. The spun filament group was stretched and drawn while being taken up by an ejector with high-speed air, and collected and deposited on a moving wire-made collecting support to form a web. Next, the web was introduced between a concavo-convex roll heated at 117 ° C. and a smooth roll, subjected to hot embossing at a linear pressure of 30 kg / cm, and a portion corresponding to a convex portion of the concavo-convex roll was fused to obtain a basis weight of 24 g. / M 2 was obtained. The area of each fusion zone is 0.28 mm 2 , and the total area of the fusion zone is 8 area% based on the total surface area of the nonwoven fabric.
The fineness of the composite filament was 2.5 denier. The spinnability and the obtained long-fiber nonwoven fabric were tested by the test method described above,
evaluated.
【0029】実施例5 溶融押出機において芯鞘複合紡糸用口金を用いて、不織
布を構成する複合長繊維の繊維軸に直交する繊維断面積
に占める鞘成分の重量比率を70%としたこと以外は、
実施例1と同様にして複合長繊維不織布を得た。紡糸性
と得られた長繊維不織布を前記の試験方法で試験し、そ
の品質を評価した。Example 5 Except that the weight ratio of the sheath component to the fiber cross-sectional area perpendicular to the fiber axis of the composite long fiber constituting the nonwoven fabric was set to 70% using a core-sheath composite spinning die in a melt extruder. Is
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1. The spinnability and the obtained long-fiber nonwoven fabric were tested by the test method described above, and the quality was evaluated.
【0030】実施例6 鞘用樹脂として、MFR25g/10分、密度0.95
5g/cm3、Q値3.5、融点127.8℃の高密度
ポリエチレン樹脂(三菱化学社製)30重量%とMFR
20g/10分、密度0.895g/cm3、Q値2.
8、融点102.5℃の線状低密度ポリエチレン樹脂
(三菱化学社製)70重量%からなる混合樹脂を用いた
こと以外は、実施例1と同様にして複合長繊維不織布を
得た。紡糸性と得られた長繊維不織布を前記の試験方法
で試験し、評価した。Example 6 As a sheath resin, MFR 25 g / 10 min, density 0.95
30% by weight of a high-density polyethylene resin (manufactured by Mitsubishi Chemical Corporation) having 5 g / cm 3 , a Q value of 3.5, and a melting point of 127.8 ° C., and an MFR
20 g / 10 min, density 0.895 g / cm 3 , Q value 2.
8, a composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that a mixed resin consisting of 70% by weight of a linear low-density polyethylene resin (manufactured by Mitsubishi Chemical Corporation) having a melting point of 102.5 ° C. was used. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0031】比較例1 Q値が5.0の鞘成分用高密度ポリエチレン樹脂(三菱
化学社製)を用いたこと以外は、実施例1と同様にして
複合長繊維不織布を得た。紡糸性と得られた長繊維不織
布を前記の試験方法で試験し、評価した。Comparative Example 1 A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that a high-density polyethylene resin for a sheath component having a Q value of 5.0 (manufactured by Mitsubishi Chemical Corporation) was used. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0032】比較例2 MFRが5g/10分の芯成分用ポリプロピレン樹脂
(三菱化学社製)を用いたこと以外は、実施例1と同様
にして複合長繊維不織布を得た。紡糸性と得られた長繊
維不織布を前記の試験方法で試験し、評価した。Comparative Example 2 A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that a polypropylene resin for a core component (manufactured by Mitsubishi Chemical Corporation) having an MFR of 5 g / 10 min was used. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0033】比較例3 鞘用樹脂として、高密度ポリエチレン樹脂10重量%と
線状低密度ポリエチレン樹脂を90重量%からなる混合
樹脂を用いたこと以外は、実施例1と同様にして複合長
繊維不織布を得た。紡糸性と得られた長繊維不織布を前
記の試験方法で試験し、評価した。Comparative Example 3 A composite long fiber was prepared in the same manner as in Example 1 except that a mixed resin consisting of 10% by weight of a high-density polyethylene resin and 90% by weight of a linear low-density polyethylene resin was used as the resin for the sheath. A non-woven fabric was obtained. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0034】比較例4 溶融押出し紡糸機において、樹脂をそれぞれ280±
1.5℃に加熱して溶融し、多数の微細孔から押し出し
たこと以外は、実施例1と同様にして複合長繊維不織布
を得た。紡糸性と得られた長繊維不織布を前記の試験方
法で試験し、評価した。Comparative Example 4 In a melt extrusion spinning machine, the resin was
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the mixture was melted by heating to 1.5 ° C. and extruded from a large number of micropores. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0035】比較例5 溶融押出し紡糸機において、樹脂をそれぞれ210±
0.5℃に加熱して溶融し、多数の微細孔から押し出し
たこと以外は、実施例1と同様にして複合長繊維不織布
を得た。紡糸性と得られた長繊維不織布を前記の試験方
法で試験し、評価した。Comparative Example 5 In a melt extrusion spinning machine, the resin was
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the mixture was melted by heating to 0.5 ° C. and extruded from a large number of micropores. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0036】比較例6 溶融押出し紡糸機において、樹脂を加熱溶融し、多数の
微細孔から押し出し、紡糸する際に、鞘成分の溶融温度
を240℃及び芯成分の溶融温度を250℃としたこと
以外は、実施例1と同様にして複合長繊維不織布を得
た。紡糸性と得られた長繊維不織布を前記の試験方法で
試験し、評価した。Comparative Example 6 In a melt-extrusion spinning machine, the resin was heated and melted, extruded from a number of micropores, and spun, the melting temperature of the sheath component was set to 240 ° C. and the melting temperature of the core component was set to 250 ° C. Except for the above, a composite long-fiber nonwoven fabric was obtained in the same manner as in Example 1. The spinnability and the obtained long-fiber nonwoven fabric were tested and evaluated according to the test method described above.
【0037】比較例7 溶融押出機において芯鞘複合紡糸用口金を用いて、不織
布を構成する複合長繊維の繊維軸に直交する繊維断面積
に占める鞘成分の重量比率を90%としたこと以外は、
実施例2と同様にして複合長繊維不織布を得た。紡糸性
と得られた長繊維不織布を前記の試験方法で試験し、そ
の品質を評価した。Comparative Example 7 Except that the weight ratio of the sheath component to the fiber cross-sectional area perpendicular to the fiber axis of the composite long fiber constituting the nonwoven fabric was set to 90% using a core-sheath composite spinneret in a melt extruder. Is
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 2. The spinnability and the obtained long-fiber nonwoven fabric were tested by the test method described above, and the quality was evaluated.
【0038】比較例8 溶融押出機において芯鞘複合紡糸用口金を用いて、不織
布を構成する複合長繊維の繊維軸に直交する繊維断面積
に占める鞘成分の重量比率を10%としたこと以外は、
実施例2と同様にして複合長繊維不織布を得た。紡糸性
と得られた長繊維不織布を前記の試験方法で試験し、そ
の品質を評価した。COMPARATIVE EXAMPLE 8 Except that the weight ratio of the sheath component to the fiber cross-sectional area perpendicular to the fiber axis of the composite long fiber constituting the nonwoven fabric was set to 10% using a core-sheath composite spinning die in a melt extruder. Is
A composite long-fiber nonwoven fabric was obtained in the same manner as in Example 2. The spinnability and the obtained long-fiber nonwoven fabric were tested by the test method described above, and the quality was evaluated.
【0039】比較例9 複合長繊維の繊度を12デニールとしたこと以外は、実
施例1と同様にして複合長繊維不織布を得た。紡糸性と
得られた長繊維不織布を前記の試験方法で試験し、その
品質を評価した。Comparative Example 9 A composite filament nonwoven fabric was obtained in the same manner as in Example 1 except that the fineness of the composite filament was changed to 12 denier. The spinnability and the obtained long-fiber nonwoven fabric were tested by the test method described above, and the quality was evaluated.
【0040】実施例1〜5及び比較例1〜9で得られた
結果を表1に示した。The results obtained in Examples 1 to 5 and Comparative Examples 1 to 9 are shown in Table 1.
【0041】[0041]
【表1】 [Table 1]
【0042】表1から明らかなように、本発明によれ
ば、溶融押出し紡糸機において樹脂を溶融紡糸する際に
糸切れがなく紡糸性が非常に優れ、得られた複合長繊維
不織布は風合いが良好であり、強度を損なうことなく、
地合と柔軟性に極めて優れている(実施例1〜5)。こ
れに対し、鞘成分として用いられる高密度ポリエチレン
のQ値が4.5を超える場合は、糸切れが多発して紡糸
性が悪く(比較例1)、鞘成分の線状低密度ポリエチレ
ンの重量比率が高すぎると、開繊性が悪く、地合いの良
好な複合長繊維不織布が得られない(比較例3)。芯成
分に用いられるポリプロピレンのMFRが低すぎると、
溶融紡糸の際に糸切れが多発して紡糸性が悪く、風合い
が損なわれた(比較例2)。一方、溶融紡糸の際に溶融
温度が高過ぎる(280℃)と、糸切れが多くて紡糸性
が悪くなり、柔軟性は普通であるが、開繊性が劣り、地
合が悪くなり(比較例4)、逆に溶融紡糸温度が低過ぎ
る(210℃)と、糸切れが多くて紡糸性が悪く、地合
は普通であるが、柔軟性が悪い(比較例5)。As is clear from Table 1, according to the present invention, when the resin is melt-spun in a melt-extruding spinning machine, there is no thread breakage and the spinning properties are extremely excellent. Good, without losing strength,
Extremely excellent formation and flexibility (Examples 1 to 5). On the other hand, when the Q value of the high-density polyethylene used as the sheath component exceeds 4.5, yarn breakage occurs frequently and spinnability is poor (Comparative Example 1), and the weight of the linear low-density polyethylene of the sheath component is low. If the ratio is too high, the spreadability is poor and a composite long-fiber nonwoven fabric having a good texture cannot be obtained (Comparative Example 3). If the MFR of the polypropylene used for the core component is too low,
During the melt spinning, yarn breakage frequently occurred, the spinnability was poor, and the texture was impaired (Comparative Example 2). On the other hand, when the melting temperature is too high (280 ° C.) during melt spinning, yarn breakage is large, spinnability is poor, and flexibility is normal, but openability is poor and formation is poor (comparative). Example 4) On the contrary, when the melt spinning temperature is too low (210 ° C.), the yarn breakage is large and the spinnability is poor, and the formation is normal, but the flexibility is poor (Comparative Example 5).
【0043】芯成分と鞘成分の樹脂の溶融温度に10℃
の差を設けると(芯:250℃、鞘:240℃)、糸切
れが多くて紡糸性が悪くなり、地合は普通であるが、柔
軟性が悪くなる(比較例6)。不織布を構成する複合長
繊維の繊維軸に直交する繊維断面積に占める鞘成分の重
量比率が高い(90%)場合(比較例7)及び重量比率
が低い(10%)場合(比較例8)とも、得られる複合
長繊維不織布の強度が弱くなる。更に、複合長繊維の繊
度が大きくなると(繊度:12デニール)、紡糸性は良
好で、得られる複合長繊維不織布の強度と地合いは普通
であるが、柔軟性が極めて悪くなる(比較例9)。The melting temperature of the resin of the core component and the sheath component is 10 ° C.
(Core: 250 ° C., sheath: 240 ° C.), yarn breakage is large and spinnability is poor, and formation is normal, but flexibility is poor (Comparative Example 6). When the weight ratio of the sheath component in the fiber cross-sectional area perpendicular to the fiber axis of the composite long fiber constituting the nonwoven fabric is high (90%) (Comparative Example 7) and when the weight ratio is low (10%) (Comparative Example 8) In both cases, the strength of the obtained composite long-fiber nonwoven fabric decreases. Further, when the fineness of the composite long fiber is increased (fineness: 12 denier), the spinnability is good, and the strength and texture of the obtained composite long fiber nonwoven fabric are normal, but the flexibility is extremely poor (Comparative Example 9). .
【0044】[0044]
【発明の効果】本発明は、糸切れがなく、紡糸性に優
れ、不織布の柔軟性と地合に極めて優れる芯鞘型の複合
長繊維不織布及びその製造方法を提供するという効果を
奏する。According to the present invention, there is provided an effect of providing a core-sheath type composite long-fiber nonwoven fabric which is free from thread breakage, has excellent spinnability, and is extremely excellent in flexibility and formation of the nonwoven fabric, and a method for producing the same.
Claims (3)
形成された繊度が1〜10デニールからなる不織布にお
いて、芯成分が、JIS K 7210に記載された方
法で測定した230℃、荷重2.16kgの条件におけ
るメルトフローレートが、10〜100g/10分のポ
リプロピレンからなり、鞘成分が重量平均分子量を数量
平均分子量で除した値で定義されるQ値が4.5以下
で、密度が0.945〜0.970g/cm3の高密度
ポリエチレン20〜80重量%と、密度が0.850〜
0.940g/cm3の線状低高密度ポリエチレン80
〜20重量%との混合樹脂であることを特徴とする複合
長繊維不織布。1. A nonwoven fabric having a fineness of 1 to 10 deniers formed from a composite filament composed of a core component and a sheath component, wherein the core component is measured at 230 ° C. under a load of 2 measured by a method described in JIS K7210. The melt flow rate under the condition of 0.16 kg is made of polypropylene of 10 to 100 g / 10 min, the sheath component has a Q value defined by a value obtained by dividing the weight average molecular weight by the number average molecular weight of 4.5 or less, and has a density of not more than 4.5. 20 to 80% by weight of high density polyethylene of 0.945 to 0.970 g / cm 3 and a density of 0.850 to
0.940 g / cm 3 linear low-density polyethylene 80
A composite long-fiber nonwoven fabric characterized by being a mixed resin of up to 20% by weight.
成分の重量比率が20〜80重量%であることを特徴と
する請求項1記載の複合長繊維不織布。2. The composite long-fiber nonwoven fabric according to claim 1, wherein the weight ratio of the sheath component to the fiber cross-sectional area orthogonal to the fiber axis is 20 to 80% by weight.
熱可塑性樹脂をそれぞれ二つの紡出口から同時に溶融押
出し紡糸し、紡出された連続フィラメント群をエジェク
ターによる高速エアーで延伸しながら引き取り、帯電さ
せて開繊し、次いで移動している支持体上に捕集・堆積
させてウェブを形成させた後、該ウェブを熱と圧力の下
に溶融接着させて長繊維同士を融着させる芯鞘型の複合
長繊維不織布の製造方法において、芯成分がJIS K
7210に記載された方法で測定した230℃、荷重
2.16kgの条件におけるメルトフローレートが10
〜100g/10分の範囲のポリプロピレンからなり、
鞘成分が、重量平均分子量を数量平均分子量で除した値
で定義されるQ値が4.5以下で、 JIS K721
0に記載された方法で測定した190℃、荷重2.16
kgの条件におけるメルトフローレートが10〜70g
/10分の範囲で、密度が0.945〜0.970g/
cm3の高密度ポリエチレン20〜80重量%と、 JI
S K 7210に記載された方法で測定した190
℃、荷重2.16kgの条件におけるメルトフローレー
トが10〜70g/10分で、密度が0.850〜0.
940g/cm3の線状低密度ポリエチレン80〜20
重量%との混合樹脂からなり、芯成分樹脂と鞘成分の混
合樹脂のそれぞれのメルトフローレートの差が0〜35
g/10分の範囲内で組み合わされ、溶融紡糸温度が2
20〜270℃で溶融紡糸されることを特徴とす芯鞘型
の複合不織布の製造方法。3. Two or more types of thermoplastic resins having different core components and sheath components are simultaneously melt-extruded from two spinning outlets and spun, and the spun continuous filaments are drawn while being stretched by high-speed air by an ejector. After being charged and opened, and then collected and deposited on a moving support to form a web, the web is melt-bonded under heat and pressure to fuse the long fibers together. In the method for producing a core-sheath type composite long-fiber nonwoven fabric, the core component is JIS K
The melt flow rate at 230 ° C. and a load of 2.16 kg measured by the method described in
Consisting of polypropylene in the range of ~ 100 g / 10 minutes,
The sheath component has a Q value defined by a value obtained by dividing the weight average molecular weight by the number average molecular weight of 4.5 or less, and JIS K721
190 ° C, load 2.16 measured by the method described in No. 0
Melt flow rate under 10 kg condition is 10-70 g
/ 10 minutes, the density is 0.945 to 0.970 g /
20-80% by weight of high density polyethylene of cm 3 , JI
190 measured by the method described in S K 7210
At a melt flow rate of 10 to 70 g / 10 min and a density of 0.850 to 0.1 g under a condition of a temperature of 2.degree.
940 g / cm 3 linear low density polyethylene 80-20
% By weight, and the difference in melt flow rate between the core component resin and the mixed resin of the sheath component is 0 to 35.
g / 10 minutes and the melt spinning temperature is 2
A method for producing a core-sheath type composite nonwoven fabric, which is melt-spun at 20 to 270 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8310517A JPH10158969A (en) | 1996-11-21 | 1996-11-21 | Conjugate filament nonwoven fabric and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8310517A JPH10158969A (en) | 1996-11-21 | 1996-11-21 | Conjugate filament nonwoven fabric and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10158969A true JPH10158969A (en) | 1998-06-16 |
Family
ID=18006191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8310517A Pending JPH10158969A (en) | 1996-11-21 | 1996-11-21 | Conjugate filament nonwoven fabric and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10158969A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036200A1 (en) * | 1998-12-16 | 2000-06-22 | Mitsui Chemicals, Inc. | Composite-fiber nonwoven fabric |
WO2003093558A1 (en) * | 2002-04-30 | 2003-11-13 | Kimberly-Clark Worldwide, Inc. | Nonwoven materials having surface features |
JP2005530938A (en) * | 2002-06-26 | 2005-10-13 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Multi-component spunbond web and laminates thereof |
WO2014163918A1 (en) * | 2013-03-11 | 2014-10-09 | Dow Global Technologies Llc | Fiber comprising polyethylene blend |
US20210054537A1 (en) * | 2018-03-19 | 2021-02-25 | Unitika Ltd. | Method for thermoforming product of filaments |
-
1996
- 1996-11-21 JP JP8310517A patent/JPH10158969A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036200A1 (en) * | 1998-12-16 | 2000-06-22 | Mitsui Chemicals, Inc. | Composite-fiber nonwoven fabric |
US6355348B1 (en) | 1998-12-16 | 2002-03-12 | Mitsui Chemicals, Inc. | Composite-fiber nonwoven fabric |
CN1090259C (en) * | 1998-12-16 | 2002-09-04 | 三井化学株式会社 | Composite-fiber nonwoven fabric |
WO2003093558A1 (en) * | 2002-04-30 | 2003-11-13 | Kimberly-Clark Worldwide, Inc. | Nonwoven materials having surface features |
JP2005530938A (en) * | 2002-06-26 | 2005-10-13 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Multi-component spunbond web and laminates thereof |
WO2014163918A1 (en) * | 2013-03-11 | 2014-10-09 | Dow Global Technologies Llc | Fiber comprising polyethylene blend |
US10145027B2 (en) | 2013-03-11 | 2018-12-04 | Dow Global Technologies Llc | Fiber comprising polyethylene blend |
US20210054537A1 (en) * | 2018-03-19 | 2021-02-25 | Unitika Ltd. | Method for thermoforming product of filaments |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2236324C (en) | Low density microfiber nonwoven fabric | |
US5622772A (en) | Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom | |
JP3872815B2 (en) | Polyolefin / polyamide conjugate fiber web | |
KR100648560B1 (en) | Crimped multicomponent fibers and methods of making same | |
CN1270013C (en) | Fine denier multicomponent fibers | |
JP2000502411A (en) | Meltblown polyethylene cloth and method for producing the same | |
AU693536B2 (en) | Highly crimpable conjugate fibers and nonwoven webs made therefrom | |
JP2002242069A (en) | Nonwoven fabric composed of mixed fiber, method for producing the same, and laminate composed of the nonwoven fabric | |
JPH10266056A (en) | Conjugate polyolefin filament nonwoven fabric and its production | |
JPH1088459A (en) | Nonwoven fabric of filament | |
JPH10158969A (en) | Conjugate filament nonwoven fabric and its production | |
JP4507389B2 (en) | Polyolefin fiber and nonwoven fabric and absorbent article using the same | |
JPH11140766A (en) | Polyolefin conjugated continuous filament nonwoven fabric | |
JP2741123B2 (en) | Stretchable long-fiber nonwoven fabric and method for producing the same | |
JPH09273060A (en) | Conjugate long fiber nonwoven fabric and its production | |
JPH11286862A (en) | Spun-bonded nonwoven fabric for clothes and its production | |
JPH09291457A (en) | Laminated nonwoven fabric of conjugate long fiber | |
JPH07197367A (en) | Filament-laminated spun-bonded nonwoven fabric | |
JP3055288B2 (en) | Stretchable long-fiber nonwoven fabric and method for producing the same | |
JP3790460B2 (en) | Thermal adhesive composite fiber, method for producing the same, and nonwoven fabric using the same | |
JP3712511B2 (en) | Flexible nonwoven fabric | |
JPH1161620A (en) | Continuous fiber nonwoven fabric for molding and its production, container-shaped product using the same and its production | |
JPH1143856A (en) | Non-woven fabric of conjugate, continuous fiber | |
JPH1088456A (en) | Elastic nonwoven fabric of filament and its production | |
JP2002088630A (en) | Weather-resistant filament nonwoven fabric |