JPH09271666A - Catalyst for purifying organochlorine compound in water - Google Patents

Catalyst for purifying organochlorine compound in water

Info

Publication number
JPH09271666A
JPH09271666A JP8108328A JP10832896A JPH09271666A JP H09271666 A JPH09271666 A JP H09271666A JP 8108328 A JP8108328 A JP 8108328A JP 10832896 A JP10832896 A JP 10832896A JP H09271666 A JPH09271666 A JP H09271666A
Authority
JP
Japan
Prior art keywords
catalyst
water
photocatalyst
alkali metal
hollandite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8108328A
Other languages
Japanese (ja)
Other versions
JP3721430B2 (en
Inventor
Jun Watanabe
遵 渡辺
Kenjiro Fujimoto
憲次郎 藤本
Toshiyuki Mori
利之 森
Shoichi Yamauchi
正一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Tosoh Corp
Original Assignee
National Institute for Research in Inorganic Material
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Tosoh Corp filed Critical National Institute for Research in Inorganic Material
Priority to JP10832896A priority Critical patent/JP3721430B2/en
Publication of JPH09271666A publication Critical patent/JPH09271666A/en
Application granted granted Critical
Publication of JP3721430B2 publication Critical patent/JP3721430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To purify an organochlorine compd., for example, contained in underground water or industrial waste water by slight light energy by using a photocatalyst composed of a crystal phase having a specific hollandite type crystal structure. SOLUTION: The compsn. of this photocatalyst is represented by general formula AxMySn8-y16 (wherein A is one or more kind of an element selected from an alkali metal element and an alkaline earth element, (x) and (y) are 0.7<x<=2.0 and 0.7<y<=2.0) and composed of a crystal phase having a hollandite type crystal structure. The crystal having the hollandite type crystal structure is a compd. having a unidimensional tunnel structure and characterized by that an A-element such as alkali metal is arranged within the tunnel structure by an ionic bond. This photocatalyst is used in order to purify an organohalogen compd., for example, contained in underground water or industrial waste water by suing ultraviolet rays having a long wavelength in the vicinity of 360nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば地下水、工
業用廃水等に含まれる有機ハロゲン化合物を浄化する光
触媒に関し、特に、触媒の存在下において、光を照射す
るだけで、効率よく有機ハロゲン化合物を浄化できる光
触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst for purifying organic halogen compounds contained in groundwater, industrial wastewater, etc., and particularly, in the presence of a catalyst, only by irradiating with light, organic halogen compounds can be efficiently produced. The present invention relates to a photocatalyst that can purify light.

【0002】[0002]

【従来の技術】従来、溶液中の有機ハロゲン化合物は、
水分をストリッピングにより気化させたのち、貴金属元
素を担持したアルミナ等の触媒を 300℃程度に加熱し
て、この触媒により酸化分解する方法(化学と工業、47
巻、2号、 152〜 155頁(1994年)等)又は波長が250n
m 以下の紫外線を照射して、光分解反応により処理する
方法(C.D.Bulla and E.Edegerly, J.Water Poll, Con
t.Fed., 40, 546 (1968) 等)が採られていた。
2. Description of the Related Art Conventionally, organic halogen compounds in a solution are
After vaporizing water by stripping, a catalyst such as alumina loaded with noble metal elements is heated to about 300 ° C and oxidatively decomposed by this catalyst (Chemical and Industrial, 47
Vol. 2, No. 152-155 (1994)) or wavelength is 250n
A method of irradiating ultraviolet rays of m or less and treating by photolytic reaction (CD Bulla and E. Edegerly, J. Water Poll, Con
t.Fed., 40, 546 (1968)) was adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ストリ
ッピングと加熱触媒反応を併用する方法では、一度水分
を気化させる必要があることから、おのずと処理量が小
さい。十分な処理量を確保するためには、水処理装置が
大掛かりになる点に問題がある。一方、波長が250nm以
下の紫外線を照射して、光分解反応により処理する方法
では、使用する紫外線の波長が極めて短いために、処理
に際し多量のエネルギーが必要であり、併せて処理装置
が大規模化する等の点が実用上大きな障害となってい
た。
However, in the method of using both stripping and heating catalytic reaction in combination, it is necessary to vaporize the water once, so that the treatment amount is naturally small. In order to secure a sufficient treatment amount, there is a problem in that the water treatment device becomes large in size. On the other hand, in the method of irradiating ultraviolet rays with a wavelength of 250 nm or less and processing by photodecomposition reaction, since the wavelength of the ultraviolet rays used is extremely short, a large amount of energy is required for processing, and the processing equipment is also large-scale. The fact that it has become a serious obstacle to practical use.

【0004】本発明は、上記の課題に鑑みてなされたも
のであり、その目的は、例えば地下水、工業用廃水等に
含まれる有機ハロゲン化合物をわずかな光エネルギーに
より浄化できる光触媒を提供するものである。
The present invention has been made in view of the above problems, and an object thereof is to provide a photocatalyst capable of purifying organic halogen compounds contained in, for example, groundwater, industrial wastewater, and the like with a slight amount of light energy. is there.

【0005】[0005]

【課題を解決するための手段】本発明者らは、例えば地
下水、工業用廃水等に含まれる有機塩素化合物をわずか
な光エネルギーにより浄化できる有機ハロゲン化合物浄
化特性を有し、かつ耐久性に優れた光触媒を開発するべ
く鋭意研究を続けた結果、一般式:Ax y Sn8-y
16(式中、Aはアルカリ金属元素又はアルカリ土類金属
元素から選ばれた1種又は2種以上の元素、Mは2価又
は3価金属元素、x,yは、 0.7<x≦2.0 及び0.7<
y≦2.0 を示す。)で表され、ホーランダイト型結晶構
造を有する結晶相からなる触媒が、有機ハロゲン化合物
をわずかな光エネルギーにより浄化する有機ハロゲン化
合物浄化能力が高く、耐久性にも優れるものであること
を見出し、本発明を完成させるに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have an organic halogen compound purifying property capable of purifying an organic chlorine compound contained in, for example, groundwater, industrial wastewater, etc. with a small amount of light energy, and have excellent durability. results to intensive continued research to develop a photocatalyst represented by the general formula: a x M y Sn 8- y O
16 (wherein A is one or more elements selected from alkali metal elements or alkaline earth metal elements, M is a divalent or trivalent metal element, and x and y are 0.7 <x ≦ 2.0 and 0.7 <
Indicates y ≦ 2.0. ), A catalyst consisting of a crystal phase having a hollandite type crystal structure is found to have a high ability to purify an organic halogen compound with a small amount of light energy, and to have excellent durability, The present invention has been completed.

【0006】すなわち、本発明は、上記一般式で表さ
れ、ホーランダイト型結晶構造を有する結晶相からなる
ことを特徴とする光触媒およびそれを用いた有機ハロゲ
ン化合物浄化方法である。
That is, the present invention is a photocatalyst represented by the above general formula and comprising a crystal phase having a hollandite type crystal structure, and an organic halogen compound purification method using the photocatalyst.

【0007】[0007]

【発明の実施の形態】次に本発明を詳細に説明する。本
発明の光触媒の組成は、一般式:Ax y Sn8-y 16
(式中、Aはアルカリ金属元素又はアルカリ土類金属元
素から選ばれた1種又は2種以上の元素、Mは2価又は
3価金属元素、x,yは、 0.7<x≦2.0 及び0.7<y
≦2.0 を示す。)で表され、ホーランダイト型結晶構造
を有する結晶相からなる触媒である。ホーランダイト型
結晶構造を有する結晶は一次元トンネル構造を有する化
合物であり、このトンネル内にアルカリ金属等のA元素
がイオン結合により配置されることが特徴の化合物であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The composition of the photocatalyst of the present invention have the general formula: A x M y Sn 8- y O 16
(In the formula, A is one or more elements selected from alkali metal elements or alkaline earth metal elements, M is a divalent or trivalent metal element, and x and y are 0.7 <x ≦ 2.0 and 0.7. <Y
Indicates ≦ 2.0. ), And a catalyst comprising a crystal phase having a hollandite type crystal structure. A crystal having a hollandite type crystal structure is a compound having a one-dimensional tunnel structure, and a compound characterized in that an A element such as an alkali metal is arranged in the tunnel by an ionic bond.

【0008】上記一般式においてAがアルカリ金属の場
合には、AとしてはK,Rb,Csが好ましい。AがN
aの場合には一次元トンネル構造が形成できず、ホーラ
ンダイト型相にはならないために好ましくないが、Na
とNa以外のアルカリ金属やBa等とを組み合わせる場
合にはホーランダイト型相となるので、これらの元素と
組み合わせる場合のみNaを用いることができる。
In the above general formula, when A is an alkali metal, A is preferably K, Rb or Cs. A is N
In the case of a, it is not preferable because a one-dimensional tunnel structure cannot be formed and a hollandite type phase is not formed.
When an alkali metal other than Na and Ba or the like is combined, a hollandite type phase is obtained, so Na can be used only when combined with these elements.

【0009】また、AがBaの場合にはホーランダイト
型結晶相となるが、AがBa以外のアルカリ土類金属元
素から選ばれた1種又は2種以上の場合ではペロブスカ
イト型結晶構造になり、触媒活性が著しく低下してしま
う。しかしこの場合にもK,Rb,Csといったアルカ
リ金属元素と複合化することによりホーランダイト型相
となりうるので、Ba以外のアルカリ土類金属元素は
K,Rb,Csといったアルカリ金属元素と組み合わせ
る場合に限り用いることができる。
When A is Ba, a hollandite type crystal phase is obtained, but when A is one or more selected from alkaline earth metal elements other than Ba, a perovskite type crystal structure is obtained. However, the catalytic activity is significantly reduced. However, even in this case, a hollandite type phase can be formed by combining with an alkali metal element such as K, Rb, and Cs. Therefore, when an alkaline earth metal element other than Ba is combined with an alkali metal element such as K, Rb, and Cs. As long as it can be used.

【0010】上記一般式においてx及びyの値はそれぞ
れ 0.7<x≦2.0 及び 0.7<y≦2.0 でなければなら
ず、この値を上回るか又は下回る場合には、アルカリ金
属の酸化物又は炭酸塩、アルカリ土類金属の酸化物また
は炭酸塩、2価又は3価金属の酸化物及びSnの酸化物
が析出し、活性が著しく低下する。さらに触媒の水中安
定性や耐久性も低下するので好ましくない。また、Ba
を用いる場合にはイオン半径の制約からyの値はy=2
xとすることが好ましい。アルカリ金属とアルカリ土類
金属元素を組み合わせる場合にはイオン半径の制約から
0.7<x<1.2 が好ましい。
In the above general formula, the values of x and y must be 0.7 <x≤2.0 and 0.7 <y≤2.0, respectively. Above or below this value, an alkali metal oxide or carbonate is used. , An oxide or carbonate of an alkaline earth metal, an oxide of a divalent or trivalent metal and an oxide of Sn are deposited, and the activity is significantly reduced. Furthermore, the stability and durability of the catalyst in water are also reduced, which is not preferable. Also, Ba
When y is used, the value of y is y = 2 due to the constraint of the ion radius.
It is preferably x. When combining alkali metal and alkaline earth metal elements, due to the restriction of ionic radius
0.7 <x <1.2 is preferable.

【0011】また上記一般式においてMとしては、F
e,Co,Ni,Cu,Zn,Cd,Al,Ga,I
n,Tl等がイオン半径の制約上ホーランダイト型結晶
構造を作る上で好ましい。
In the above general formula, M is F
e, Co, Ni, Cu, Zn, Cd, Al, Ga, I
n, Tl and the like are preferable for forming a hollandite type crystal structure due to the restriction of ionic radius.

【0012】本発明の一般式:Ax y Sn8-y
16(式中、Aはアルカリ金属元素又はアルカリ土類金属
元素から選ばれた1種又は2種以上の元素、Mは2価又
は3価金属元素、x,yは、 0.7<x≦2.0 及び0.7<
y≦2.0 を示す。)で表されるホーランダイト型結晶相
は種々の方法により合成できることが知られている。
General formula of the present invention: A x M y Sn 8-y O
16 (wherein A is one or more elements selected from alkali metal elements or alkaline earth metal elements, M is a divalent or trivalent metal element, and x and y are 0.7 <x ≦ 2.0 and 0.7 <
Indicates y ≦ 2.0. It is known that the hollandite type crystal phase represented by () can be synthesized by various methods.

【0013】しかし本発明の触媒を構成するホーランダ
イトの製造方法は特に限定されるものではなく、例え
ば、 :アルカリ金属又はアルカリ土類金属元素の炭酸塩、
酸化スズ及び2価又は3価金属元素酸化物をエタノール
中においてボールミル混合後乾燥及び焼成を行う固相合
成法。 :アルカリ金属又はアルカリ土類金属元素の硝酸塩、
硝酸スズ及び2価又は3価金属元素の硝酸塩等の無機塩
水溶液を用いて、液相混合したのち、アンモニア水又は
アンモニア水とシュウ酸アンモニウム水溶液の(1:
1)混合溶液により沈殿物を得たのち水洗、濾過、乾燥
及び焼成工程を減ることにより触媒を合成する共沈法、 :出発原料にアルカリ金属又はアルカリ土類金属元
素、スズ及び2価又は3価金属元素のメトキシド、エト
キシド、ブトキシド等のアルコキシドを非水溶液中にお
いて混合し、加水分解、乾燥、焼成工程を経て触媒を合
成するアルコキシド法、等により合成される。
However, the method for producing the hollandite constituting the catalyst of the present invention is not particularly limited, and examples include: a carbonate of an alkali metal or alkaline earth metal element,
A solid-phase synthesis method in which tin oxide and a divalent or trivalent metal element oxide are mixed in ethanol by a ball mill, followed by drying and firing. : Alkali metal or alkaline earth metal nitrate,
After liquid phase mixing using an aqueous solution of an inorganic salt such as tin nitrate and a nitrate salt of a divalent or trivalent metal element, aqueous ammonia or aqueous ammonia and an aqueous solution of ammonium oxalate (1:
1) A coprecipitation method in which a catalyst is synthesized by obtaining a precipitate from a mixed solution and then washing with water, filtering, drying, and calcining steps: Alkali metal or alkaline earth metal element, tin, and divalent or trivalent starting materials It is synthesized by an alkoxide method in which alkoxides of valent metal elements such as methoxide, ethoxide and butoxide are mixed in a non-aqueous solution, and a catalyst is synthesized through hydrolysis, drying and firing steps.

【0014】各合成法における焼成温度は固相法では、
1200 〜1400℃、液相法又はアルコキシド法においては
800〜1200℃の温度において1時間〜4時間焼成すれば
よい。焼成温度は1400℃以上においてもホーランダイト
型結晶相は安定に生成するが、あまり高温において焼成
すると触媒の比表面積が低下し、触媒性能が低下するの
で好ましくない。また焼成時間はあまり長時間としても
比表面積の低下を生じさせるだけであることから、4時
間以上が好ましい。
In the solid phase method, the firing temperature in each synthesis method is
1200 to 1400 ℃, in liquid phase method or alkoxide method
It may be fired at a temperature of 800 to 1200 ° C. for 1 to 4 hours. The hollandite-type crystal phase is stably formed even at a calcination temperature of 1400 ° C. or higher, but calcination at an excessively high temperature is not preferable because the specific surface area of the catalyst decreases and the catalyst performance decreases. Further, if the firing time is too long, it only causes a decrease in the specific surface area, so that it is preferably 4 hours or longer.

【0015】ホーランダイト型化合物系触媒のBET値
(比表面積)は大きいほど触媒活性は高まるが、バッチ
式の反応においては1m2 /g以上であれば溶液中の有
機ハロゲン化合物浄化触媒能力、すなわち有機ハロゲン
化合物の浄化効率は良いが処理装置が連続流通方式で、
かつ処理水量が多量になる場合においては、この値が大
きい方が好ましい。
The larger the BET value (specific surface area) of the hollandite type compound catalyst, the higher the catalytic activity, but in the batch type reaction, if it is 1 m 2 / g or more, the catalyst capacity for purifying the organic halogen compound in the solution, that is, The purification efficiency of organic halogen compounds is good, but the processing equipment is a continuous flow system,
In addition, when the amount of treated water is large, it is preferable that this value is large.

【0016】また多孔質状の触媒担体や光の吸収の少な
い石英ガラス管又は石英ガラス基板上等にホーランダイ
ト型化合物をコーティングしてホーランダイト型化合物
膜として用いる場合には、ホーランダイト型化合物を分
散させた水溶液又は非水溶液に多孔質な触媒担体や石英
ガラス管又は石英ガラス基板を漬けたのち焼成するか又
は、CVD又はスパッタリング法を用いて、表面にホー
ランダイト型化合物膜を形成させてもよい。
When a porous catalyst carrier or a quartz glass tube or a quartz glass substrate that absorbs less light is coated with a hollandite type compound and used as a hollandite type compound film, the hollandite type compound is used. Even if a porous catalyst carrier, a quartz glass tube, or a quartz glass substrate is dipped in the dispersed aqueous solution or non-aqueous solution and then baked, or a hollandite type compound film is formed on the surface by CVD or sputtering. Good.

【0017】本発明の光触媒は、 360nm付近の波長の長
い紫外線を用いて液中の有機ハロゲン化合物を浄化する
ために用いられる。例えば水中の有機ハロゲン化合物の
浄化方法としては、本発明の光触媒を、 360nm付近、通
常 360〜270nm の波長の長い紫外線照射下において有機
塩素化合物を含む水と接触させることにより行うことが
できる。本発明が対象とする有機塩素化合物としては、
トリクロロエチレン、テトラクロロエチレン、PCB
(ポリクロロビフェニル)等であり、特にそれらの溶液
中での含有量が、100ppm以下の領域が具体的に例示され
る。
The photocatalyst of the present invention is used to purify organic halogen compounds in a liquid by using ultraviolet rays having a long wavelength around 360 nm. For example, a method for purifying an organic halogen compound in water can be carried out by bringing the photocatalyst of the present invention into contact with water containing an organic chlorine compound under irradiation with ultraviolet rays having a long wavelength of around 360 nm, usually 360 to 270 nm. The organic chlorine compound targeted by the present invention,
Trichlorethylene, tetrachloroethylene, PCB
(Polychlorobiphenyl) and the like, and in particular, a region where the content thereof is 100 ppm or less is specifically exemplified.

【0018】[0018]

【発明の効果】本発明によれば、例えば地下水、工業用
廃水等に含まれる有機ハロゲン化合物をわずかな光エネ
ルギーにより浄化できる。
According to the present invention, organic halogen compounds contained in, for example, groundwater, industrial wastewater, etc. can be purified with a small amount of light energy.

【0019】[0019]

【実施例】以下、実施例及び比較例により、本発明を更
に詳細に説明するが、本発明はこれらに限定されるもの
ではない。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0020】実施例1実施例4 組成がK2 Ga2 Sn6 16(実施例1)、K2 Zn1
Sn7 16(実施例2)、K2 Co2 Sn6 16(実施
例3)、Ba1 Ga2 Sn6 16(実施例4)になるよ
うに、それぞれ酸化スズ(和光純薬工業製)、酸化ガリ
ウム(キシダ化学株式会社製)、酸化亜鉛(キシダ化学
株式会社製)、酸化コバルト(キシダ化学株式会社
製)、炭酸カリウム(キシダ化学株式会社製)及び炭酸
バリウム(キシダ化学株式会社製)をエタノール中にお
いてボールミルにより12時間湿式混合したのちロータリ
ーエバポレーターを用いて80℃においてエタノールを浄
化した後 100℃において乾燥した。得られた乾燥粉末は
1200℃、2時間空気中において焼成することにより一次
元トンネル構造を有するホーランダイト単相粉末を合成
した。
Examples 1 to 4 The compositions were K 2 Ga 2 Sn 6 O 16 (Example 1) and K 2 Zn 1
Sn 7 O 16 (Example 2), K 2 Co 2 Sn 6 O 16 (Example 3), and Ba 1 Ga 2 Sn 6 O 16 (Example 4) were each used as tin oxide (Wako Pure Chemical Industries, Ltd.). Manufactured), gallium oxide (manufactured by Kishida Chemical Co., Ltd.), zinc oxide (manufactured by Kishida Chemical Co., Ltd.), cobalt oxide (manufactured by Kishida Chemical Co., Ltd.), potassium carbonate (manufactured by Kishida Chemical Co., Ltd.), and barium carbonate (Kishida Chemical Co., Ltd.). Was produced by wet mixing in ethanol with a ball mill for 12 hours, the ethanol was purified at 80 ° C using a rotary evaporator, and then dried at 100 ° C. The resulting dry powder is
A hollandite single-phase powder having a one-dimensional tunnel structure was synthesized by firing in air at 1200 ° C. for 2 hours.

【0021】こうして得られたホーランダイト単相粉末
の代表例として、実施例1のK2 Ga2 Sn6 16のX
線回折図を図1に示す。また触媒活性評価は、バッチ式
にて行い、 10ppmのトリクロロエチレンを混合した蒸留
水1リットル中に触媒1gを入れ、攪拌しながら15W、
360nmの紫外線を照射して、一定時間ごとに試料を分析
することで、水中の有機塩素化合物浄化能力を調査し
た。そしてこの結果を表1に示した。
As a typical example of the hollandite single-phase powder thus obtained, X of K 2 Ga 2 Sn 6 O 16 of Example 1 was used.
The line diffraction diagram is shown in FIG. In addition, the catalytic activity was evaluated by a batch method, in which 1 g of the catalyst was placed in 1 liter of distilled water mixed with 10 ppm of trichlorethylene, and stirred for 15 W,
The ability to purify organic chlorine compounds in water was investigated by irradiating it with ultraviolet light of 360 nm and analyzing the sample at regular intervals. The results are shown in Table 1.

【0022】ただし、水中の有機塩素化合物浄化触媒活
性は次式で示される式により有機ハロゲン化合物浄化率
として算出した。 有機塩素化合物浄化率(%)=[(10−T.C.ob
s.)/10]×100 ここで、 T.C.obs.:一定時間光照射後の水中トリクロロ
エチレン測定濃度 10:トリクロロエチレンの初期濃度(ppm) なお、トリクロロエチレンの濃度はPIDガスクロマト
グラフを用いて測定した。
However, the catalytic activity for purifying the organic chlorine compound in water was calculated as the purification rate of the organic halogen compound by the following formula. Organochlorine compound purification rate (%) = [(10-TC ob
s. ) / 10] × 100 where T. C. obs. : Trichloroethylene measurement concentration in water after light irradiation for a certain period of time 10: initial concentration of trichlorethylene (ppm) The concentration of trichlorethylene was measured using a PID gas chromatograph.

【0023】[0023]

【表1】 [Table 1]

【0024】なお表1のブランクテストとは、触媒を用
いずに実施例1〜実施例4と同様の方法で光照射試験を
行った結果であり、このブランクテスト結果と実施例1
〜実施例4の結果とを比較すれば、明らかに本発明の触
媒の有効性が確認できる。
The blank test in Table 1 is the result of a light irradiation test conducted in the same manner as in Examples 1 to 4 without using a catalyst. The blank test result and Example 1
-Comparing with the results of Example 4, the effectiveness of the catalyst of the present invention can be clearly confirmed.

【0025】比較例1比較例3 Na1.6 Ga1.6 Sn6.4 16(比較例1)、K2.5
2.5 Sn5.5 16(比較例2)、K0.4 Ga0.4 Sn
7.6 16(比較例3)になるように酸化スズ、酸化ガリ
ウム、炭酸ナトリウム(キシダ化学株式会社製)及び炭
酸カリウムをエタノール中においてボールミルにより12
時間湿式混合したのちロータリーエバポレーターを用い
て80℃においてエタノールを浄化した後 100℃において
乾燥した。得られた乾燥粉末は1250℃、2時間空気中に
おいて焼成することにより粉末を合成した。
Comparative Examples 1 to 3 Na 1.6 Ga 1.6 Sn 6.4 O 16 (Comparative Example 1), K 2.5 G
a 2.5 Sn 5.5 O 16 (Comparative Example 2), K 0.4 Ga 0.4 Sn
7.6 O 16 (Comparative Example 3) tin oxide, gallium oxide, sodium carbonate (manufactured by Kishida Chemical Co., Ltd.) and potassium carbonate in ethanol by a ball mill.
After wet mixing for an hour, ethanol was purified at 80 ° C. using a rotary evaporator and then dried at 100 ° C. The obtained dry powder was calcined in the air at 1250 ° C. for 2 hours to synthesize the powder.

【0026】こうして得られた粉末はホーランダイト相
ではなく、β−ガリア、酸化スズ及び炭酸ナトリウム又
は炭酸カリウムからなる混合物であった。触媒活性評価
は、前記実施例に準拠して行ったところ、いずれの場合
も90分以内の光照射時間では、有機塩素化合物浄化率5
%未満の値となり、実施例に示したブランクテストにお
ける値とほぼ同じレベルであり、有意な有機塩素化合物
浄化能は確認できなかった。
The powder thus obtained was not a hollandite phase but a mixture of β-gallia, tin oxide and sodium carbonate or potassium carbonate. The catalytic activity was evaluated according to the above-mentioned examples. In any case, the organic chlorine compound purification rate was 5 when the light irradiation time was within 90 minutes.
The value was less than%, which was almost the same level as the value in the blank test shown in the examples, and no significant ability to purify organic chlorine compounds could be confirmed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で調製されたK2 Ga2 Sn6 16
X線回折図である。
1 is an X-ray diffraction pattern of K 2 Ga 2 Sn 6 O 16 prepared in Example 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/36 B01J 23/36 A 23/835 35/02 J 35/02 C02F 1/32 C02F 1/32 B01J 23/82 A (72)発明者 山内 正一 茨城県つくば市天久保2−4−21 カサグ ランデ208─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/36 B01J 23/36 A 23/835 35/02 J 35/02 C02F 1/32 C02F 1 / 32 B01J 23/82 A (72) Inventor Shoichi Yamauchi 2-4-21 Amakubo Tsukuba City, Ibaraki Prefecture Kasag Lande 208

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式:Ax y Sn8-y 16(式中、
Aはアルカリ金属元素又はアルカリ土類金属元素から選
ばれた1種又は2種以上の元素、Mは2価又は3価金属
元素であり、x,yは、 0.7<x≦2.0 及び 0.7<y≦
2.0 を示す。)で表され、ホーランダイト型結晶構造を
有する結晶相からなることを特徴とする水中有機塩素化
合物浄化触媒。
1. A general formula: A x M y Sn 8-y O 16 (wherein
A is one or more elements selected from alkali metal elements or alkaline earth metal elements, M is a divalent or trivalent metal element, and x and y are 0.7 <x ≦ 2.0 and 0.7 <y ≤
Indicates 2.0. ) And consisting of a crystal phase having a hollandite type crystal structure.
JP10832896A 1996-04-04 1996-04-04 Underwater organochlorine purification catalyst Expired - Fee Related JP3721430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10832896A JP3721430B2 (en) 1996-04-04 1996-04-04 Underwater organochlorine purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10832896A JP3721430B2 (en) 1996-04-04 1996-04-04 Underwater organochlorine purification catalyst

Publications (2)

Publication Number Publication Date
JPH09271666A true JPH09271666A (en) 1997-10-21
JP3721430B2 JP3721430B2 (en) 2005-11-30

Family

ID=14481922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10832896A Expired - Fee Related JP3721430B2 (en) 1996-04-04 1996-04-04 Underwater organochlorine purification catalyst

Country Status (1)

Country Link
JP (1) JP3721430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001301A (en) * 2000-06-15 2002-01-08 Kokudo Sogo Kensetsu Kk Engineering method for improving soil decontaminating
JP2002301369A (en) * 2001-04-10 2002-10-15 Japan Science & Technology Corp PHOTOCATALYST USING OXIDE CONTAINING TYPICAL METALLIC ION IN d10 ELECTRONIC STATE
JP2019119667A (en) * 2017-12-28 2019-07-22 国立研究開発法人産業技術総合研究所 Potassium compound, solid electrolyte for potassium ion secondary battery, cathode active material for potassium ion secondary battery, and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001301A (en) * 2000-06-15 2002-01-08 Kokudo Sogo Kensetsu Kk Engineering method for improving soil decontaminating
JP4600615B2 (en) * 2000-06-15 2010-12-15 あおみ建設株式会社 Ground improvement method to purify contaminated soil
JP2002301369A (en) * 2001-04-10 2002-10-15 Japan Science & Technology Corp PHOTOCATALYST USING OXIDE CONTAINING TYPICAL METALLIC ION IN d10 ELECTRONIC STATE
JP2019119667A (en) * 2017-12-28 2019-07-22 国立研究開発法人産業技術総合研究所 Potassium compound, solid electrolyte for potassium ion secondary battery, cathode active material for potassium ion secondary battery, and secondary battery

Also Published As

Publication number Publication date
JP3721430B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
Tokunaga et al. Removal of fluoride ions from aqueous solutions by multivalent metal compounds
FI94125C (en) Catalyst for the decomposition of an oxidizing agent such as hypohalite ions and the use of a catalyst
US20070193875A1 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Wang et al. High-efficiency adsorption for acid dyes over CeO2· xH2O synthesized by a facile method
JP2013116429A (en) Photocatalyst, method for production thereof, and method for treating water containing nitrate nitrogen
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP2540401B2 (en) Method for precipitating and separating radioactive iodine compounds
JP4348426B2 (en) Highly selective dephosphorizing agent and method for producing the same
JPH09271666A (en) Catalyst for purifying organochlorine compound in water
JP4883913B2 (en) Photocatalyst and method for producing the same
JP3567004B2 (en) Photocatalyst and method for producing the same
JP3051918B2 (en) Photocatalyst for decomposing nitrate ion in water and method for decomposing and removing nitrate ion
JP2001259436A (en) Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JP4526619B2 (en) Visible light active photocatalyst
JP3752552B2 (en) Photocatalyst for removal of organochlorine compounds in water
JP3062740B2 (en) Photocatalyst for reductive decomposition and removal of nitric oxide in gas phase and purification method using the catalyst
SU660571A3 (en) Catalyst for purifying waste gas from nitrogen oxides
US6544426B2 (en) Method of quickly decomposing and removing an organic chlorine compound by a hollandite-type photocatalyst
JP2000202303A (en) Hollandite type photocatalyst and removal of phenol in water using the same
JP2021130104A (en) Deodorization catalyst, deodorization catalyst structure, and deodorization unit
KR100348142B1 (en) A Method for Removing Stink by Ammonia And/Or Amine Using A Manganese Ore
JPH10174881A (en) Photocatalyst body and its production
JPH08252461A (en) Preparation of photocatalyst
JP3803701B2 (en) Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water
JPH074506B2 (en) Exhaust gas purification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees