JPH08252461A - Preparation of photocatalyst - Google Patents

Preparation of photocatalyst

Info

Publication number
JPH08252461A
JPH08252461A JP7084562A JP8456295A JPH08252461A JP H08252461 A JPH08252461 A JP H08252461A JP 7084562 A JP7084562 A JP 7084562A JP 8456295 A JP8456295 A JP 8456295A JP H08252461 A JPH08252461 A JP H08252461A
Authority
JP
Japan
Prior art keywords
acid
photocatalyst
titanium
heat treatment
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7084562A
Other languages
Japanese (ja)
Inventor
Chiaki Igarashi
千秋 五十嵐
Masayuki Murabayashi
▲眞▼行 村林
Kiminori Ito
公紀 伊藤
Takeshi Yamanaka
剛 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP7084562A priority Critical patent/JPH08252461A/en
Publication of JPH08252461A publication Critical patent/JPH08252461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide an easy method for preparing a photocatalyst which is strong and has high catalytic activity. CONSTITUTION: Metal or alloy containing titanium as a main component and 0-20wt.% of transition metal as a subordinate component, after being acid- treated with an inorganic acid, is heat-treated. The transition metal is selected from chromium, manganese, iron, cobalt, nickel, copper, zinc, rubidium and palladium; the inorganic acid is selected from hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, and hydrochloric acid; the heat treatment is conducted in air at 200-400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光触媒の製造方法に係
り、特に、トリクロロエチレンやPCBに代表される有
機塩素化合物、フミン、農薬、重油、ベンゼン等の難分
解性有機化合物、NOx、NH3 、あるいは悪臭成分な
ど様々な物質の分解に用いられる光触媒の簡易な製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a photocatalyst, and in particular, an organic chlorine compound represented by trichloroethylene or PCB, a humic acid, an agricultural chemical, heavy oil, a persistent organic compound such as benzene, NOx, NH 3 , Alternatively, it relates to a simple method for producing a photocatalyst used for decomposing various substances such as malodorous components.

【0002】[0002]

【従来の技術】光触媒は、紫外線を含む光が照射された
ときに触媒上に生じる正孔と電子によって各種有機物を
分解するものであり、処理対象が液相、気相を問わず広
く環境浄化に用いられている。触媒活性の高い光触媒の
代表組成は酸化チタンであり、その一般的製造方法はゾ
ルゲル法である。ゾルゲル法は、チタンアルコキシド溶
液をそのまま、もしくは担持物質に塗布して、乾燥した
のち、空気中400〜700℃で焼成するものである
が、所定の厚さの光触媒層を生成させるには塗布乾燥あ
るいは焼成工程を何度も繰り返す必要があり、手間とエ
ネルギーを多用する手法である。
2. Description of the Related Art A photocatalyst decomposes various organic substances by holes and electrons generated on the catalyst when it is irradiated with light including ultraviolet rays, and widely treats the environment regardless of the liquid phase or gas phase. Is used for. A typical composition of a photocatalyst having high catalytic activity is titanium oxide, and a general manufacturing method thereof is a sol-gel method. The sol-gel method is a method in which a titanium alkoxide solution is applied as it is or applied to a carrier material, dried, and then baked in air at 400 to 700 ° C., but application drying is required to form a photocatalyst layer having a predetermined thickness. Alternatively, the firing process needs to be repeated many times, which is a technique that requires a lot of labor and energy.

【0003】この光触媒には、以下の問題点がある。 触媒活性を高めようとすると、粒子径が極めて小さ
くなり、取り扱いが厄介となる。 ゾルゲル法に用いる試薬コストが高く、製造プロセ
スが複雑で、エネルギー消費量も大きい。一方、粉末状
光触媒の実用化には、微細な触媒そのものの分離が必要
となる。特に対象物質が液相の場合には、膜分離等が必
要となり処理プロセスが複雑化する。そのため触媒の固
定化が重要となる。固定化方法として、担体への添加、
塗布、焼結、溶射等が試みられているが、固定化層の触
媒活性の維持、耐剥離性、耐磨耗性等に問題がある。
This photocatalyst has the following problems. When trying to increase the catalytic activity, the particle size becomes extremely small, which makes handling difficult. The cost of reagents used in the sol-gel method is high, the manufacturing process is complicated, and the energy consumption is large. On the other hand, for practical use of the powdery photocatalyst, it is necessary to separate the fine catalyst itself. In particular, when the target substance is in the liquid phase, membrane separation or the like is required, and the treatment process becomes complicated. Therefore, the immobilization of the catalyst is important. As an immobilization method, addition to a carrier,
Although coating, sintering, thermal spraying, and the like have been tried, there are problems in maintaining the catalytic activity of the immobilization layer, peeling resistance, abrasion resistance, and the like.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、強固で触媒活性の高い光触媒の、
簡易な製造方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a photocatalyst which is strong and has high catalytic activity.
It is an object to provide a simple manufacturing method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、チタンを主成分とし、0〜20%wt
の遷移金属を副成分として含有する金属又は合金を、無
機酸を用いて酸処理したのち、熱処理することを特徴と
する光触媒の製造方法としたものである。次に、本発明
を詳細に説明する。本発明で用いる金属チタンの組成
は、純度を極端に高める必要はなく、また、酸処理によ
りチタンと類似の中間生成物を生成し得る他種金属が存
在しても良い。場合によっては、第2成分を複数添加し
て合金を生成し、触媒能を高めることも可能である。添
加成分は、チタンとの親和性や酸との反応性の面から遷
移金属を用いると良く、その添加量は、チタンに対して
0〜20%wt、特に2〜10%wtの範囲が好まし
い。
In order to solve the above problems, in the present invention, titanium is the main component and 0 to 20% wt.
In the method for producing a photocatalyst, the metal or alloy containing the transition metal as a subcomponent is acid-treated with an inorganic acid and then heat-treated. Next, the present invention will be described in detail. The composition of the titanium metal used in the present invention does not need to have an extremely high purity, and there may be other metals capable of forming an intermediate product similar to titanium by acid treatment. In some cases, it is possible to add a plurality of second components to form an alloy and enhance the catalytic ability. A transition metal is preferably used as the additive component from the viewpoint of affinity with titanium and reactivity with acid, and the addition amount thereof is preferably 0 to 20% by weight, and particularly preferably 2 to 10% by weight with respect to titanium. .

【0006】遷移金属としては、クロム、マンガン、
鉄、コバルト、ニッケル、銅、亜鉛、ルビジウム、パラ
ジウムを適宜選定できる。これらの成分はマトリックス
内に混合、溶解されて、光触媒表面でのホール(正孔)
生成を促進する。またこのような素材を他種担体(たと
えば各種金属、ガラス板など)表面に担持させた複合材
料を用いることもできる。本発明における酸処理の役目
は金属表面の洗浄(酸化物除去、清浄金属表面出し)で
はなく、別種中間成分の生成と考えるべきである。その
ために、腐食性、酸化性の強酸が用いられる。無機酸よ
りマイルドな酸である有機酸は、その酸化力が弱いため
チタン表面を変化させられず、時間をかけても所定の効
果を得られない。酸処理の機構についても詳細は不明で
あり、その最適条件を決定するに至っていないが、実験
的には、酸剤として塩酸、硝酸、燐酸、硫酸、フッ酸、
塩素酸を1種もしくは複数種用いうる。半導体電極製造
で用いられるフッ酸、硝酸系のエッチング剤の単独使用
もしくは併用が適当である。
Transition metals include chromium, manganese,
Iron, cobalt, nickel, copper, zinc, rubidium and palladium can be appropriately selected. These components are mixed and dissolved in the matrix to form holes on the photocatalyst surface.
Promotes production. It is also possible to use a composite material in which such a material is carried on the surface of another type of carrier (for example, various metals, glass plates, etc.). It should be considered that the role of the acid treatment in the present invention is not the cleaning of the metal surface (removal of oxides, exposure of clean metal surface) but the production of another intermediate component. Therefore, a corrosive and oxidizing strong acid is used. An organic acid, which is a milder acid than an inorganic acid, has a weak oxidizing power, so that the titanium surface cannot be changed and a predetermined effect cannot be obtained even if it takes time. The details of the mechanism of acid treatment are not clear, and the optimum conditions have not been determined yet, but experimentally, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid,
One or more chloric acids may be used. The hydrofluoric acid and nitric acid-based etching agents used in the production of semiconductor electrodes are preferably used alone or in combination.

【0007】酸処理温度は、高い方(熱無機酸となる)
が反応速度が高く処理時間が短くて好ましいが、高すぎ
るとエネルギーを消費するので、通常、常温付近が好ま
しい。酸処理時間は、長すぎて触媒性能に悪影響を及ぼ
すようなことはないが、金属成分を溶解損失することに
なって経済的でない。また、短すぎれば表面状態の改質
が不十分であり、適当な時間が存在する。その時間は、
チタンの組成や、酸の種類、酸の温度等により変わり、
最適状態の判断基準がないので経済的に決定する。通常
の条件下ではおおむね1〜60分程度である。本発明に
おける熱処理工程は、清浄金属表面の酸素による酸化で
ないものの、酸素の妨害も特に考えられないから、熱処
理雰囲気を厳密に制限する必要はなく、空気中で実施し
得る。熱処理温度によって、生成する触媒層の組成・能
力は変化するので、注意が必要である。特に高温側では
限界値があり、500℃以上では性能が低い物しか得ら
れない。低温では酸化に長時間を要す。通常、200〜
400℃が適当である。一般的な熱処理条件としては、
空気中、300℃、3時間程度である。
Higher acid treatment temperature (becomes a thermal inorganic acid)
Is preferable because the reaction rate is high and the processing time is short, but if it is too high, energy is consumed, so that it is usually preferable that the temperature is around room temperature. The acid treatment time is not too long and does not adversely affect the catalyst performance, but it is not economical because it results in dissolution loss of the metal component. On the other hand, if it is too short, the modification of the surface state is insufficient and there is an appropriate time. That time is
Depending on the composition of titanium, the type of acid, the temperature of the acid, etc.,
Since there is no standard for determining the optimum state, it is economically decided. Under normal conditions, it takes about 1 to 60 minutes. Although the heat treatment step in the present invention does not oxidize the surface of the clean metal with oxygen, oxygen interference is not particularly considered. Therefore, it is not necessary to strictly limit the heat treatment atmosphere, and the heat treatment step can be performed in air. Care must be taken because the composition / capacity of the resulting catalyst layer changes depending on the heat treatment temperature. In particular, there is a limit value on the high temperature side, and at 500 ° C. or higher, only products with low performance can be obtained. It takes a long time to oxidize at low temperature. Usually 200 ~
400 ° C is suitable. As general heat treatment conditions,
In air, at 300 ° C. for about 3 hours.

【0008】[0008]

【作用】本発明の機構や作用機序は、中間生成物や最終
生成物の同定が困難で不完全なため不明な点が多いが、
現在のところ以下のように考えられる。即ち、金属チタ
ン表面が酸処理により変性を受けて中間生成物が生成
し、これが熱処理により変化して酸化チタンと思われる
最終生成物を形成するものである。これは、 金属チ
タンは空気中では変化せず、酸素中610℃以上で初め
て酸化され二酸化チタンとなると言われていること(理
化学辞典)、 本発明では空気中、300℃程度の熱
処理で触媒層が生成していること、 金属チタンは硝
酸には酸化されてメタチタン酸(TiO2 ・H2 O)と
なること(理化学辞典)などから推定される。
The mechanism and mechanism of action of the present invention are often unclear because identification of intermediate products and final products is difficult and incomplete.
At present, it can be considered as follows. That is, the surface of titanium metal is modified by acid treatment to produce an intermediate product, which is changed by heat treatment to form a final product which is considered to be titanium oxide. This is because it is said that metallic titanium does not change in air and is oxidized into titanium dioxide at 610 ° C. or higher in oxygen for the first time (physical chemistry dictionary). In the present invention, the catalyst layer is heat-treated in air at about 300 ° C. Is generated, and metallic titanium is oxidized by nitric acid to become metatitanic acid (TiO 2 · H 2 O) (physical chemistry dictionary).

【0009】[0009]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 プロセス比較(酸処理・熱処理の併用) 金属チタンとして、トーホーテック(株)製純チタン板
(長さ75mm、幅25mm、厚さ1mm)を試験片と
して用いた。酸処理は、常温の混液(組成、水:フッ
酸:硝酸=50:1:1)100ml中に、試験片を1
枚、25分浸漬して実施した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 Process comparison (combination of acid treatment and heat treatment) As metal titanium, a pure titanium plate manufactured by Toho Tech Co., Ltd. (length 75 mm, width 25 mm, thickness 1 mm) was used as a test piece. The acid treatment was carried out by adding 1 part of the test piece to 100 ml of a mixture (composition, water: hydrofluoric acid: nitric acid = 50: 1: 1) at room temperature.
It was carried out by immersing the sheet for 25 minutes.

【0010】焼成処理は、空気中、300℃で3時間と
した。300℃の温度に達した電気炉内に、室温に保存
した試験片を挿入し、所定時間後に炉外に取り出して、
常温空気にて冷却した。触媒活性は、以下の手法で求め
たガス状トリクロロエチレン(TCE)の光分解能力で
評価した。すなわち、直径35mm、長さ150mm、
両端をフランジ止めとした容量144mlの円筒状ガラ
スセル内に上記試験片を置き、セル内にTCE濃度10
00ppmの空気を導入し、60mmの距離を保って周
囲からブラックライト(20W灯8本)を照射した。所
定時間(10分)後のTCE濃度をFTIR及びガスク
ロマトグラフィーにて計測した。試験片を交換して、同
様の実験を行った。その結果は、以下の表1の通りであ
った。
The firing treatment was carried out in air at 300 ° C. for 3 hours. Insert the test piece stored at room temperature into the electric furnace that reached the temperature of 300 ° C, and take it out of the furnace after a predetermined time,
It was cooled with room temperature air. The catalytic activity was evaluated by the photolytic ability of gaseous trichlorethylene (TCE) obtained by the following method. That is, diameter 35 mm, length 150 mm,
The test piece was placed in a cylindrical glass cell having a capacity of 144 ml with flanges at both ends, and the TCE concentration was 10 in the cell.
Air of 00 ppm was introduced, and a black light (8 20 W lamps) was irradiated from the surroundings while maintaining a distance of 60 mm. The TCE concentration after a predetermined time (10 minutes) was measured by FTIR and gas chromatography. The test piece was exchanged and the same experiment was conducted. The results are shown in Table 1 below.

【0011】[0011]

【表1】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回)[Table 1] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (Coating / drying cycles, 20 times)

【0012】上記結果より、本法により製造した試験片
は、 光触媒活性を持つこと(ブラックライト照射な
しではTCEの分解が認められない)、 酸処理と熱
処理を両方施さないと触媒活性を持たないこと、 触
媒活性はゾルゲル法により製造したものと同程度以上で
あることがわかる。また、上記試験とは別に、試験片の
耐剥離性、耐磨耗性を調べたところ、良好な結果を得
た。
From the above results, the test piece manufactured by this method has photocatalytic activity (decomposition of TCE is not observed without irradiation with black light), and does not have catalytic activity unless both acid treatment and heat treatment are performed. It can be seen that the catalytic activity is equal to or higher than that produced by the sol-gel method. Separately from the above test, the peel resistance and abrasion resistance of the test piece were examined, and good results were obtained.

【0013】実施例2 (酸組成、酸処理時間の影
響) 実施例1とは酸組成と処理時間が異なる条件で試験片を
調製し、実施例1と同様の評価手法で、その触媒能を評
価した。その結果を表2に示す。
Example 2 (Influence of Acid Composition and Acid Treatment Time) A test piece was prepared under the condition that the acid composition and the treatment time were different from those of Example 1, and the catalytic ability was evaluated by the same evaluation method as in Example 1. evaluated. The results are shown in Table 2.

【表2】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回) この結果より、用いる酸組成は腐食性もしくは酸化性を
持つ強酸(フッ酸、硝酸、硫酸、塩酸、燐酸、塩素酸)
が良く、低濃度の場合でも時間をかければ良いことがわ
かる。また、その触媒能は、従来法(ゾルゲル法による
ガラス板担持酸化チタン)と同等以上であることがわか
る。
[Table 2] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (The number of times of coating / drying is repeated 20 times) From these results, the acid composition used is a corrosive or oxidizing strong acid (hydrofluoric acid, nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, chloric acid).
It is clear that even if the concentration is low, it takes a long time even if the concentration is low. Further, it can be seen that the catalytic ability is equal to or higher than that of the conventional method (glass plate-supported titanium oxide by the sol-gel method).

【0014】実施例3 (熱処理温度の影響) 実施例1とは熱処理温度のみが異なる条件で試験片を調
製し、実施例1と同様の評価手法で、その触媒能を評価
した。その結果を表3に示す。
Example 3 (Influence of heat treatment temperature) A test piece was prepared under the condition that only the heat treatment temperature was different from that of Example 1, and its catalytic ability was evaluated by the same evaluation method as in Example 1. Table 3 shows the results.

【表3】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回) この結果より、熱処理温度は200〜400℃が良いこ
とがわかる。また、その触媒能は、従来法(ゾルゲル法
によるガラス板担持酸化チタン)と同等以上であること
がわかる。
[Table 3] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (Repeating / repeating times, 20 times) From these results, it is understood that the heat treatment temperature is preferably 200 to 400 ° C. Further, it can be seen that the catalytic ability is equal to or higher than that of the conventional method (glass plate-supported titanium oxide by the sol-gel method).

【0015】実施例4 操作条件(チタン組成) 実施例1とはチタン板の組成のみが異なる条件で試験片
を調製し、実施例1と同様の評価手法で、その触媒能を
評価した。その結果を表4に示す。
Example 4 Operating Conditions (Titanium Composition) A test piece was prepared under the condition that only the composition of the titanium plate was different from that of Example 1, and its catalytic ability was evaluated by the same evaluation method as in Example 1. The results are shown in Table 4.

【表4】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回) この結果より、用いるチタン板組成は、チタンを主成分
とし、副成分として遷移金属を1種もしくは複数種含有
するものが良いことがわかる。また、その触媒能は、従
来法(ゾルゲル法によるガラス板担持酸化チタン)と同
等以上であることがわかる。
[Table 4] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (The number of times of coating and drying is repeated, 20 times) From these results, it is found that the titanium plate composition to be used preferably has titanium as a main component and one or more transition metals as sub-components. Further, it can be seen that the catalytic ability is equal to or higher than that of the conventional method (glass plate-supported titanium oxide by the sol-gel method).

【0016】実施例5 処理対象(悪臭) 実施例1で製作した試験片を用い、対象試料のみをアセ
トアルデヒド20ppmを含む空気に変えて同様の実験
を行った。その結果を表5に示す。
Example 5 Object to be Treated (Odor) Using the test piece manufactured in Example 1, the same experiment was conducted by changing only the object sample to air containing 20 ppm of acetaldehyde. The results are shown in Table 5.

【表5】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回) この結果より、本発明による触媒は、悪臭物質の代表で
あるアセトアルデヒドにも効果的であり、その能力は、
従来法の物と同等以上であることがわかる。
[Table 5] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (Repeating / repeating times, 20 times) From these results, the catalyst of the present invention is effective for acetaldehyde, which is a representative of malodorous substances, and its ability is
It can be seen that it is equivalent to or better than that of the conventional method.

【0017】実施例6 処理対象(液相、トリクロロ
エチレン) 実施例1で製作した試験片を用い、対象試料のみをトリ
クロロエチレン100ppmを含む地下水に変えて同様
の実験を行った。その結果を表6に示す。
Example 6 Object to be Treated (Liquid Phase, Trichlorethylene) Using the test piece prepared in Example 1, the same experiment was conducted by changing only the object sample to groundwater containing 100 ppm of trichlorethylene. Table 6 shows the results.

【表6】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回) この結果より、本発明による触媒は、地下水汚染の代表
物質であるトリクロロエチレンにも効果的であり、その
能力は、従来法の物と同等以上であることがわかる。
[Table 6] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (Repeating / repeating times, 20 times) From these results, the catalyst of the present invention is effective for trichlorethylene, which is a representative substance of groundwater pollution, and its ability is equal to or higher than that of the conventional method. Recognize.

【0018】実施例7 処理対象(液相、微生物殺
菌) 実施例1で製作した試験片を用い、対象試料のみを一般
細菌を1000ケ/mlを含む地下水に変えて同様の実
験を行った。その結果を表7に示す。
Example 7 Treatment Target (Liquid Phase, Microbial Sterilization) Using the test piece prepared in Example 1, the same experiment was conducted by changing only the target sample to groundwater containing 1,000 bacteria / ml of general bacteria. The results are shown in Table 7.

【表7】 * 試験片と同寸のガラス板上に、ゾルゲル法で酸化チタンを担持させたもの。 (塗布・乾燥繰り返し回数、20回) この結果より、本発明による触媒は、微生物汚染の代表
物質である一般細菌にも効果的であり、その能力は、従
来法の物と同等以上であることがわかる。
[Table 7] * A titanium plate supported by the sol-gel method on a glass plate of the same size as the test piece. (Repeating and drying times, 20 times) From these results, the catalyst according to the present invention is effective against general bacteria, which is a representative substance of microbial contamination, and its ability is equal to or higher than that of the conventional method. I understand.

【0019】実施例8 利用形態(液相、トラフ、加
工容易) 実施例1の条件で製作したチタン板を樋状(幅300m
m、深さ200mm、長さ5m)に加工し、浄水場で用
いられている凝集沈澱装置の集水部に用いた。対象とし
て、同寸に加工したチタン板を用いた。屋外に3ケ月間
設置した後の観察結果は、表8の通りであり、本発明に
よる触媒は、付着性微生物の発生を抑える効果があるこ
とがわかった。また、製作は容易であり、数ケ月間の使
用では剥離等の問題は起こらなかった。
Example 8 Usage form (liquid phase, trough, easy processing) The titanium plate manufactured under the conditions of Example 1 was gutter-shaped (width 300 m).
m, depth 200 mm, length 5 m) and used for the water collecting part of the coagulating sedimentation device used in water purification plants. As a target, a titanium plate processed to the same size was used. Table 8 shows the observation results after the outdoor installation for 3 months, and it was found that the catalyst according to the present invention has an effect of suppressing the generation of adherent microorganisms. Moreover, the production was easy, and no problems such as peeling occurred during use for several months.

【表8】 [Table 8]

【0020】実施例9 利用形態(気相、触媒板形
状、波板) 実施例1の条件で製作したチタン板から波板(波深さ2
0mm、ピッチ20mm、長さ500mm)を製造し、
この波板をブラックライト蛍光灯を取り巻くように設置
し、円筒状リアクタ(外径80mm、長さ600mm)
を構成した。このリアクタを5セット設け、自動車道路
トンネル内ガスを直列に通気し、NOx濃度を計測し
た。比較例としてチタン板を用いた装置を用いた。結果
は、表9の通りであり、本発明による触媒はNOxを分
解する効果があることがわかった。また、製作は容易で
あり、数ケ月の使用では剥離等の問題は起こらなかっ
た。
Example 9 Usage pattern (gas phase, catalyst plate shape, corrugated plate) From a titanium plate manufactured under the conditions of Example 1, corrugated plate (wave depth 2
0mm, pitch 20mm, length 500mm),
This corrugated plate was installed so as to surround a black light fluorescent lamp, and a cylindrical reactor (outer diameter 80 mm, length 600 mm)
Was configured. Five sets of this reactor were provided, the gas in the road tunnel was ventilated in series, and the NOx concentration was measured. An apparatus using a titanium plate was used as a comparative example. The results are shown in Table 9, and it was found that the catalyst according to the present invention has an effect of decomposing NOx. Moreover, the production was easy, and no problems such as peeling occurred when used for several months.

【表9】 [Table 9]

【0021】[0021]

【発明の効果】本発明によれば、強固で、高性能な光触
媒を低コストで提供できる。光触媒材料として十分実用
できるほか、そのまま有機物分解、殺菌用等の半導体電
極としても用いうる。
According to the present invention, a strong and high-performance photocatalyst can be provided at low cost. In addition to being practically applicable as a photocatalyst material, it can be used as it is as a semiconductor electrode for decomposing and sterilizing organic substances.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/02 ZAB B01J 23/34 ZABM 23/06 ZAB 23/44 ZABM 23/16 ZAB 23/70 ZABM 23/34 ZAB 23/72 ZABM 23/44 ZAB 37/08 23/70 ZAB B01D 53/36 J 23/72 ZAB ZABG 23/745 102D 23/755 B01J 23/74 301M 37/08 321M (72)発明者 伊藤 公紀 神奈川県横浜市保土ヶ谷区常盤台156番地 横浜国立大学内 (72)発明者 山中 剛 神奈川県横浜市保土ヶ谷区常盤台156番地 横浜国立大学内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/02 ZAB B01J 23/34 ZABM 23/06 ZAB 23/44 ZABM 23/16 ZAB 23/70 ZABM 23/34 ZAB 23/72 ZABM 23/44 ZAB 37/08 23/70 ZAB B01D 53/36 J 23/72 ZAB ZABG 23/745 102D 23/755 B01J 23/74 301M 37/08 321M (72) Invention Author Koki Ito 156 Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa Yokohama National University (72) Inventor Go Yamanaka 156 Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa Yokohama National University

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタンを主成分とし、0〜20%wtの
遷移金属を副成分として含有する金属又は合金を、無機
酸を用いて酸処理したのち、熱処理することを特徴とす
る光触媒の製造方法。
1. A method for producing a photocatalyst, which comprises subjecting a metal or an alloy containing titanium as a main component and 0 to 20% by weight of a transition metal as a subcomponent to an acid treatment using an inorganic acid and then performing a heat treatment. Method.
【請求項2】 前記遷移金属は、クロム、マンガン、
鉄、コバルト、ニッケル、銅、亜鉛、ルビジウム又はパ
ラジウムのうちから選ばれた1種以上の金属であること
を特徴とする請求項1記載の光触媒の製造方法。
2. The transition metal is chromium, manganese,
The method for producing a photocatalyst according to claim 1, which is one or more metals selected from iron, cobalt, nickel, copper, zinc, rubidium, and palladium.
【請求項3】 前記無機酸は、腐食性もしくは酸化性を
持つ塩酸、硝酸、燐酸、硫酸、フッ酸又は塩素酸のうち
から選ばれた1種以上の強酸であることを特徴とする請
求項1又は2記載の光触媒の製造方法。
3. The inorganic acid is one or more strong acids selected from corrosive or oxidizing hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid or chloric acid. 1. The method for producing a photocatalyst according to 1 or 2.
【請求項4】 前記熱処理は、空気中、200〜400
℃で所定時間行うことを特徴とする請求項1、2又は3
記載の光触媒の製造方法。
4. The heat treatment is performed in air at 200 to 400.
The method according to claim 1, 2 or 3, which is carried out at a temperature of a predetermined temperature.
A method for producing the photocatalyst described.
JP7084562A 1995-03-17 1995-03-17 Preparation of photocatalyst Pending JPH08252461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084562A JPH08252461A (en) 1995-03-17 1995-03-17 Preparation of photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084562A JPH08252461A (en) 1995-03-17 1995-03-17 Preparation of photocatalyst

Publications (1)

Publication Number Publication Date
JPH08252461A true JPH08252461A (en) 1996-10-01

Family

ID=13834102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084562A Pending JPH08252461A (en) 1995-03-17 1995-03-17 Preparation of photocatalyst

Country Status (1)

Country Link
JP (1) JPH08252461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296082A (en) * 1997-04-25 1998-11-10 Aqueous Res:Kk Organic substance decomposition catalyst and air cleaner
JP2002172334A (en) * 2000-12-06 2002-06-18 Nippon Shokubai Co Ltd Photocatalyst for removing nitrogen oxide
KR100405375B1 (en) * 2000-02-25 2003-11-12 이종호 Manufactural method of activated carbon as a bactericidal photo-catalyst
JP3759960B2 (en) * 1996-08-05 2006-03-29 日本板硝子 株式会社 Photocatalyst carrier
CN104549272A (en) * 2014-12-17 2015-04-29 中国人民解放军防化学院 Preparation method of ordered mesoporous alumina loaded copper catalyst
KR20190002159A (en) * 2017-06-29 2019-01-08 허경삼 Method for manufacturing visible-light active titanium dioxide photocatalyst by using chemicasurface modification

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759960B2 (en) * 1996-08-05 2006-03-29 日本板硝子 株式会社 Photocatalyst carrier
JPH10296082A (en) * 1997-04-25 1998-11-10 Aqueous Res:Kk Organic substance decomposition catalyst and air cleaner
KR100405375B1 (en) * 2000-02-25 2003-11-12 이종호 Manufactural method of activated carbon as a bactericidal photo-catalyst
JP2002172334A (en) * 2000-12-06 2002-06-18 Nippon Shokubai Co Ltd Photocatalyst for removing nitrogen oxide
CN104549272A (en) * 2014-12-17 2015-04-29 中国人民解放军防化学院 Preparation method of ordered mesoporous alumina loaded copper catalyst
KR20190002159A (en) * 2017-06-29 2019-01-08 허경삼 Method for manufacturing visible-light active titanium dioxide photocatalyst by using chemicasurface modification

Similar Documents

Publication Publication Date Title
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2600103B2 (en) Photocatalytic filter and method for producing the same
He et al. Decomposition of tetracycline in aqueous solution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst
JP4118328B2 (en) Process and equipment for wastewater treatment by oxidation and denitrification in the presence of heterogeneous catalysts
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
CN110787835A (en) Preparation method of peanut shell melamine biochar composite material
JP5436399B2 (en) Decomposition and removal method using photocatalytic material
WO1996000189A1 (en) Photoelectrochemical reactor
JPH08252461A (en) Preparation of photocatalyst
CN106582611A (en) Preparation method of organic pollutant photolysis catalyst
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP3118558B2 (en) Water treatment catalyst and water treatment method
CN111632590B (en) Loaded ZnSn (OH) 6 Glass pearly-lustre catalyst and preparation method and application thereof
CN113262778B (en) Oxygen vacancy-containing molybdenum dioxide/bismuth photocatalyst and preparation method and application thereof
CN114643043A (en) Magnetic control graphene-based micro-nano motor and preparation method thereof
JP2001276615A (en) Titanium oxide powder for photocatalyst
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JPS63305922A (en) Method for treating waste ozone
JP2003001066A (en) Reaction vessel with photocatalyst
JP3803701B2 (en) Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water
JP3082036B2 (en) Fixed photocatalyst carrying palladium, method and apparatus for treating organic matter in plating effluent
TWM479924U (en) Photocatalyst filter composite structure for degrading organics in water
JPH1128360A (en) Atomic oxygen-generating catalyst and method for generating atomic oxygen