JP2002301369A - PHOTOCATALYST USING OXIDE CONTAINING TYPICAL METALLIC ION IN d10 ELECTRONIC STATE - Google Patents

PHOTOCATALYST USING OXIDE CONTAINING TYPICAL METALLIC ION IN d10 ELECTRONIC STATE

Info

Publication number
JP2002301369A
JP2002301369A JP2001110870A JP2001110870A JP2002301369A JP 2002301369 A JP2002301369 A JP 2002301369A JP 2001110870 A JP2001110870 A JP 2001110870A JP 2001110870 A JP2001110870 A JP 2001110870A JP 2002301369 A JP2002301369 A JP 2002301369A
Authority
JP
Japan
Prior art keywords
photocatalyst
water
ruo
alkaline earth
electronic state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001110870A
Other languages
Japanese (ja)
Other versions
JP4025029B2 (en
Inventor
Yasunobu Inoue
泰宣 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001110870A priority Critical patent/JP4025029B2/en
Publication of JP2002301369A publication Critical patent/JP2002301369A/en
Application granted granted Critical
Publication of JP4025029B2 publication Critical patent/JP4025029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel photocatalyst, particularly useful for the complete decomposition of water. SOLUTION: The photocatalyst, particularly the photocatalyst for the complete decomposition of water is composed of an RuO2 supported B2 Xn Om (where, B represents an alkaline earth metal atom or Zn, X represents a metallic ion in d<10> electronic state and particularly Ge, Sn or Sb, (n) has a relation of n=(m-1)/3 and (n) represents 1 or 2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な光触媒に関
する。特にRuO2担持B2nm(ここでBはアルカリ
土類金属原子またはZnであり、Xはd10電子状態の金
属イオンであり、n=(m−1)/3であり、nは1ま
たは2である。)からなる光触媒、特に水の完全分解用
光触媒に関する。
The present invention relates to a novel photocatalyst. Particularly RuO 2 supported B 2 X n O m (B here is an alkaline earth metal atom or Zn, X is a d 10 of electronic state metal ion, n = (m-1) / a 3, n Is 1 or 2.), especially a photocatalyst for complete decomposition of water.

【0002】[0002]

【従来技術】水の光分解反応は光エネルギー変換の観点
から興味が持たれている。また、水の光分解反応に活性
を示す光触媒は、光吸収、電荷分離、表面での酸化還元
反応といった機能を備えた高度な光機能材料と見ること
ができる。工藤、加藤等は、タンタル酸アルカリ、アル
カリ土類等が、前記水の完全光分解反応に高い活性を示
す光触媒であることを多くの先行文献を挙げて説明して
いる〔例えば、Catal.Lett.,58(1999).153-155、Chem.L
ett.,(1999),1207、表面,Vol.36,No.12(1998),625-645
(文献Aという)〕。
2. Description of the Related Art The photolysis reaction of water is of interest from the viewpoint of light energy conversion. In addition, a photocatalyst that is active in the photodecomposition reaction of water can be regarded as an advanced photofunctional material having functions such as light absorption, charge separation, and redox reaction on the surface. Kudo, Kato et al. Have described many prior documents that alkali tantalate, alkaline earth, and the like are photocatalysts exhibiting high activity in the complete photolysis reaction of water (for example, Catal. Lett. ., 58 (1999) .153-155, Chem.L
ett., (1999), 1207, Surface, Vol. 36, No. 12 (1998), 625-645.
(Referred to as Document A)].

【0003】前記文献Aにおいては、水を光触媒を用い
て水素と酸素に分解する反応を進めるのに有用な光触媒
材料について解説しており、水の完全光分解反応用光触
媒についての多くの示唆をしている。先ず、水の完全光
分解において、タンタル酸塩は、助触媒なしに純水から
水素と酸素を量論比で生成する光触媒として機能するこ
とを見出したこと、また、NiO助触媒を担持させるこ
とにより、前記触媒活性が飛躍的に向上することが分か
ったことが報告されている(635頁右欄)。また、K
4Nb617についても、純水から助触媒なしに水素と酸
素を生成させることができること、また、これを粉砕し
て微結晶にしたものは著しく高い活性を示すとの報告が
あることを解説している。更に、K2La2Ti310
様なペロブスカイト構造を有する化合物は、層間が水和
し易いことにより光触媒活性が高いことが説明されてい
る。
[0003] Reference A describes a photocatalyst material useful for promoting the reaction of decomposing water into hydrogen and oxygen using a photocatalyst, and provides many suggestions for a photocatalyst for complete photolysis of water. are doing. First, in the complete photolysis of water, tantalate was found to function as a photocatalyst that generates hydrogen and oxygen at a stoichiometric ratio from pure water without a cocatalyst. Reported that the catalyst activity was dramatically improved (p. 635, right column). Also, K
For even 4 Nb 6 O 17, it is possible to produce hydrogen and oxygen without the co-catalyst from the pure water, also that there are reported to show a significantly higher activity obtained by this ground to fine crystals Explains. Further, it is described that a compound having a perovskite structure such as K 2 La 2 Ti 3 O 10 has high photocatalytic activity due to easy hydration between layers.

【0004】また、629頁の図6には不均一系光触媒
材料の主要構成元素について解説し、d0およびd10
電子配置を有する遷移金属イオンまたはpブロックの金
属イオンからなる酸化物であることが述べられている。
そして、640頁にはIn23とZnO積層については
メタノールの分解による水素発生やAgNO3分解によ
る酸素発生、およびβ−Ga23についてはIn23
固溶体を形成させて用いることなどが解説されている。
ただし、Ge、Sn、Sbについて何らの解説もされて
いない。
FIG. 6 on page 629 describes the main constituent elements of the heterogeneous photocatalyst material, which is an oxide composed of a transition metal ion having a d 0 and d 10 electron configuration or a p-block metal ion. That is stated.
On page 640, for the In 2 O 3 and ZnO stacked layers, hydrogen is generated by decomposition of methanol and oxygen is generated by decomposition of AgNO 3 , and β-Ga 2 O 3 is used by forming a solid solution with In 2 O 3. Are explained.
However, Ge, Sn, and Sb are not described at all.

【0005】特許出願2000−245690におい
て、RuO2担持A2nmまたはRuO2担持BXnm
(ここでAはアルカリ金属原子、Bはアルカリ土類金属
原子またはZnであり、Xはd10電子状態の金属イオン
であり、n=m/2またはn=m/3であり、nは2であ
る。)からなる光触媒として、XはIn、GaまたはS
bであり、アルカリ金属原子はNa、K又はRb、アル
カリ土類金属原子はCa、Sr又はBaである光触媒が
完全分解用光触媒として特許出願されている。しかし、
SnとGeについては、光触媒となることは報告されて
いない。また、Sbでは上記以外の組成については、光
触媒となることは報告されていない。
[0005] In patent application 2000-245690, RuO 2 supported A 2 X n O m or RuO 2 supported BX n O m
(Where A is an alkali metal atom, B is an alkaline earth metal atom or Zn, X is a d 10 of electronic state metal ion, a n = m / 2 or n = m / 3, n is 2 X is In, Ga or S
b, the alkali metal atom is Na, K or Rb, and the alkaline earth metal atom is Ca, Sr or Ba. A patent application has been filed as a photocatalyst for complete decomposition. But,
Sn and Ge have not been reported to be photocatalysts. Further, it has not been reported that Sb has a composition other than the above as a photocatalyst.

【0006】[0006]

【発明が解決しようとする課題】上記のような中で、本
発明者はd10の電子配置を有する遷移金属イオンを用い
た光触媒について高い活性を発現させるための研究検討
をし、特に水の光分解を可能にする触媒を提供すること
を課題として種々の化合物について多くの実験を繰り返
してきた。その中で、アルカリ土類金属とd10の電子配
置を有する典型金属Ge、Sn、または化学式(化学量
論)の異なるSbイオンとの塩が、RuO2を担持させ
ることにより、前記先行技術のようにメタノールやAg
NO3の分解ではなく、水の完全分解が可能であること
を発見し前記課題を解決した。
In the above-described [0005] The present inventors have studies examined for the expression of high activity for photocatalytic using transition metal ions having electron configuration of d 10, in particular water Many experiments have been repeated on various compounds to provide a catalyst that enables photolysis. Among them, a typical metal Ge having electron configuration of an alkaline earth metal and d 10, Sn or Formula and salts with different Sb ions of (stoichiometric), by supporting a RuO 2, of the prior art Like methanol or Ag
The inventors have found that water can be completely decomposed instead of decomposing NO 3 , and the above problem has been solved.

【0007】[0007]

【課題を解決するための手段】本発明は、RuO2担持
2nm(ここでBはアルカリ土類金属原子またはZ
nであり、Xはd10電子状態の金属イオンであり、n=
(m−1)/3であり、nは1または2である。)から
なる光触媒である。好ましくは、XはGe、Snまたは
Sbであり、アルカリ土類金属原子はCa、Sr又はB
aであることを特徴とする前記光触媒であり、より好ま
しくは、前記光触媒がRuO2を担持した亜鉛ゲルマニ
ウム塩、アルカリ土類金属スズ塩、またはアルカリ土類
金属アンチモン塩であることを特徴とする水の光分解反
応用光触媒である。
Means for Solving the Problems The present invention, RuO 2 supported B 2 X n O m (where B is an alkaline earth metal atom or Z
a n, X is a d 10 of electronic state metal ion, n =
(M-1) / 3, and n is 1 or 2. ). Preferably, X is Ge, Sn or Sb and the alkaline earth metal atom is Ca, Sr or B
a, wherein the photocatalyst is a zinc germanium salt supporting RuO 2 , an alkaline earth metal tin salt, or an alkaline earth metal antimony salt. It is a photocatalyst for the photolysis reaction of water.

【0008】[0008]

【本発明の実施の態様】本発明をより詳細に説明する。
ここでは、RuO2を担持したアルカリ土類スズ塩の調
製方法について述べるが、Ge塩、Sb塩おいても同様
の方法で合成することができる。 I.光触媒の作成方法 a.アルカリ土類金属スズ塩の調製は、アルカリ土類金
属の炭酸塩とスズ酸化物を所定のモル比で混合し、大気
下1000℃で8時間焼成する。RuO2担持触媒は、
Ruのカルボニル錯体であるRu3(CO)12、あるい
はRu(acac)のTHF(テトラヒドロフラン)溶
液を用い、含浸法により、Ru金属の重量(wt)%が
0.25〜2.0wt%となるように、前記のように調
製したスズ塩に担持させた後、200〜400℃で加熱
してRuO2とすることによって得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail.
Here, a method for preparing an alkaline earth tin salt supporting RuO 2 will be described, but a Ge salt and an Sb salt can be synthesized in the same manner. I. Method of making photocatalyst a. In preparing the alkaline earth metal tin salt, a carbonate of the alkaline earth metal and tin oxide are mixed at a predetermined molar ratio, and the mixture is fired at 1000 ° C. for 8 hours in the atmosphere. The RuO 2 supported catalyst is
Using a solution of Ru 3 (CO) 12 , which is a carbonyl complex of Ru, or a solution of Ru (acac) in THF (tetrahydrofuran), the weight (wt)% of Ru metal becomes 0.25 to 2.0 wt% by an impregnation method. As described above, after being supported on the tin salt prepared as described above, it is obtained by heating at 200 to 400 ° C. to obtain RuO 2 .

【0009】II.光触媒の試験法 光触媒反応の活性の測定には、従来からこの技術分野で
使用されている、真空係、反応系および分析系から構成
される閉鎖循環系反応装置を用いた。該装置内で生成す
る気体は、反応循環装置に予め加えた100Torrの圧力
のArと共にピストンポンプにより反応中循環させ、反
応系に直結したガスクロマトグラフにより随時分析する
ことにより発生量が計測される。光触媒粉末、0.25
gを、石英製の縦反応装置に入れ、蒸留水をさらにイオ
ン交換した純水に懸濁した。光触媒の撹拌には、反応循
環装置内に加えた100Torrの圧力のArのバブリング
によって行った。光照射には、500WXeランプ光
〔波長域260nm〜600nm〕あるいはHg−Xe
ランプ光(波長域248nm〜 436nm)を用いた。
II. Test Method for Photocatalyst The activity of the photocatalytic reaction was measured using a closed-circulation system reactor conventionally used in this technical field and composed of a vacuum system, a reaction system, and an analysis system. The gas generated in the apparatus is circulated during the reaction by means of a piston pump together with Ar having a pressure of 100 Torr previously applied to the reaction circulation apparatus, and is analyzed as needed by a gas chromatograph directly connected to the reaction system to measure the amount of gas generated. Photocatalyst powder, 0.25
g was placed in a vertical reactor made of quartz, and distilled water was further suspended in ion-exchanged pure water. The stirring of the photocatalyst was performed by bubbling Ar at a pressure of 100 Torr applied in the reaction circulation device. For light irradiation, 500 WXe lamp light (wavelength range 260 nm to 600 nm) or Hg-Xe
Lamp light (wavelength range 248 nm to 436 nm) was used.

【0010】[0010]

【実施例】実施例1 RuO2担持Sr2SnO4光触媒の活性 焼成温度を1000℃にしてSr2SnO4を作製し、得
られた化合物をX線回折による解析を行った。主ピーク
は、2θ=30.65゜、31.20゜、44.70゜
に生じ、JSPDカード(24−1241)に記載の回
折パターンとよい一致を示す回折パターンが得られた。
Example 1 Activity of RuO 2 -supported Sr 2 SnO 4 photocatalyst Sr 2 SnO 4 was prepared at a firing temperature of 1000 ° C., and the obtained compound was analyzed by X-ray diffraction. Main peaks occurred at 2θ = 30.65 °, 31.20 °, and 44.70 °, and diffraction patterns showing good agreement with the diffraction pattern described in the JSPD card (24-1241) were obtained.

【0011】Ru3(CO)12を担持させ400℃で酸
化して、1重量%のRuO2を担持したSr2SnO4
触媒を得、これを用いて前記IIに記載の閉鎖循環系反応
装置を用い、光触媒の活性と、その活性の経時変化を調
べた。光源としては、200WHg−Xeランプを使用
した。その結果を図1に示す。なお、発生試験装置は閉
鎖系であるので、気相の水素および酸素を排気し、その
操作を3サイクル繰り返し、触媒の活性の変化を調べ
た。延べ時間で10時間反応させた後も触媒活性は初期
の特性を維持していた。
[0011] is oxidized with 400 ° C. by supporting Ru 3 (CO) 12, to give a 1 wt% of Sr 2 SnO 4 photocatalyst carrying RuO 2, closed circulation system reactor according to the II with this Was used to examine the activity of the photocatalyst and the change over time in the activity. As a light source, a 200 WHg-Xe lamp was used. The result is shown in FIG. Since the generation test device is a closed system, hydrogen and oxygen in the gas phase were exhausted, and the operation was repeated three cycles to examine the change in the activity of the catalyst. Even after the reaction was performed for a total of 10 hours, the catalyst activity maintained its initial properties.

【0012】図2に、焼成温度を1000℃で調製した
アルカリ土類金属、すなわち、カルシウム(a)、スト
ロンチウム(b)、およびバリウム(c)のスズ塩の拡
散反射UVスペクトルを示す。380nm付近より光吸
収がはじまり、300nmでの緩やかな吸収と270n
mより短波長での急な吸収構造をもち、250nmで最
大吸収を示した。
FIG. 2 shows diffuse reflection UV spectra of tin salts of alkaline earth metals, ie, calcium (a), strontium (b), and barium (c), prepared at a firing temperature of 1000 ° C. The light absorption starts from around 380 nm, and the gradual absorption at 300 nm and 270 n
It has a steep absorption structure at a wavelength shorter than m and shows maximum absorption at 250 nm.

【0013】実施例2 RuO2担持Zn2GeO4の光触媒活性 1000℃で焼成したZn2GeO 4 のX線回折パターン
において、主ピークは、2θ=30.7°、33.2
°、37.9°、47.8°に現れた。最も高いピーク
は2θ=33.2°に生じた。この焼成温度で得られた
ものが、JSPDカード(11・0687)記載の回折
パターンとよく対応する回折パターンが得られた。図3
には、Ruのカルボニル錯体Ru3(CO)12を用いて
浸含法により得られた、1重量%のRuO2を担持した
Zn2GeO4光触媒の活性の経時変化を示す。水素と酸
素が生成し、延べ時間で3時間反応させた後も触媒活性
は初期の特性を維持した。
[0013] In X-ray diffraction pattern of Example 2 RuO 2 supported Zn 2 GeO 4 of Zn 2 GeO 4 calcined at photocatalytic activity 1000 ° C., the main peak, 2θ = 30.7 °, 33.2
°, 37.9 ° and 47.8 °. The highest peak occurred at 2θ = 33.2 °. The diffraction pattern obtained at this firing temperature gave a diffraction pattern which corresponded well to the diffraction pattern described in the JSPD card (11-0687). FIG.
2 shows the time-dependent changes in the activity of a Zn 2 GeO 4 photocatalyst carrying 1% by weight of RuO 2 obtained by the impregnation method using a carbonyl complex of Ru 3 (CO) 12 . Hydrogen and oxygen were generated, and the catalyst activity maintained its initial properties even after reacting for a total of 3 hours.

【0014】図4に、焼成温度を1000℃で作成した
Zn2GeO4のUV拡散反射スペクトルを示す。300
nm付近より光吸収がはじまり、280nmでの緩やか
な吸収と270nmより短波長での急な吸収構造をも
ち、260〜230nmの範囲で最大吸収を示した。
FIG. 4 shows the UV diffuse reflection spectrum of Zn 2 GeO 4 prepared at a firing temperature of 1000 ° C. 300
The light absorption starts at around nm, has a gradual absorption at 280 nm and a sharp absorption structure at a wavelength shorter than 270 nm, and has a maximum absorption in the range of 260 to 230 nm.

【0015】実施例3 RuO2担持アンチモン塩、B2Sb27(B=Ca、S
r)の光触媒活性RuO2担持B2Sb27(B=Ca、
Sr)の調製は、前記光活性触媒の調製方法にしたがっ
て実施した。RuO2担持B2Sb27(B=Ca、S
r)光触媒の水の光分解特性を図5に示す。(a)はC
2Sb27であり、(b)はSr2Sb27である。
Example 3 RuO 2 -supported antimony salt, B 2 Sb 2 O 7 (B = Ca, S
r) Photocatalytically active RuO 2 supported B 2 Sb 2 O 7 (B = Ca,
The preparation of Sr) was carried out according to the method for preparing a photoactive catalyst. RuO 2 supported B 2 Sb 2 O 7 (B = Ca, S
r) Photodegradation characteristics of water of the photocatalyst are shown in FIG. (A) is C
a 2 Sb 2 O 7 , and (b) Sr 2 Sb 2 O 7 .

【0016】図6にB2Sb27(B=Ca、Sr)の
UV拡散反射スペクトルを示す。Ca2Sb27(a)
において、光吸収は380nm付近から緩やかに始ま
り、320nmで急激な吸収となり、280nmでふた
たび緩やかな吸収となった。Sr3Sb27(b)で
は、吸収端は340nmで最大吸収は280nmとなっ
た。この光触媒により水を水素と酸素に分解できること
が分かる。
FIG. 6 shows a UV diffuse reflection spectrum of B 2 Sb 2 O 7 (B = Ca, Sr). Ca 2 Sb 2 O 7 (a)
In, the light absorption started gently at around 380 nm, became a sharp absorption at 320 nm, and became a gradual absorption again at 280 nm. With Sr 3 Sb 2 O 7 (b), the absorption edge was 340 nm and the maximum absorption was 280 nm. It can be seen that this photocatalyst can decompose water into hydrogen and oxygen.

【0017】[0017]

【発明の効果】本発明は、水の完全分解反応を行う光触
媒が、従来d0電子状態の金属塩のみに限られていたの
に対し、d10電子状態の金属塩でも可能であることを発
見した点で、水の完全光分解用の新規な材料の開発に対
して貢献することは明らかである。
According to the present invention, the photocatalyst to conduct the complete decomposition reaction of water, the contrast has been limited only to a metal salt of a conventional d 0 electronic states are possible in d 10 of electronic state metal salt It is clear that the findings contribute to the development of new materials for the complete photolysis of water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 1重量%RuO2担持Sr2SnO4触媒の水
の完全分解特性
FIG. 1 Complete water decomposition characteristics of 1 wt% RuO 2 supported Sr 2 SnO 4 catalyst

【図2】 B2SnO4(B=Ca、Sr、Ba)のUV
拡散反射スペクトル特性
FIG. 2 UV of B 2 SnO 4 (B = Ca, Sr, Ba)
Diffuse reflection spectrum characteristics

【図3】 1重量%RuO2担持Zn2GeO4光触媒の
水の光分解特性
FIG. 3 Photodecomposition characteristics of water by 1 wt% RuO 2 -supported Zn 2 GeO 4 photocatalyst

【図4】 Zn2GeO4のUV拡散反射スペクトル特性[FIG. 4] UV diffuse reflection spectrum characteristics of Zn 2 GeO 4

【図5】 RuO2担持Ca2Sb27(a)、RuO2
担持Sr2Sb27(b)光触媒の水の光分解特性
FIG. 5: RuO 2 -supported Ca 2 Sb 2 O 7 (a), RuO 2
Photodegradation characteristics of water on supported Sr 2 Sb 2 O 7 (b) photocatalyst

【図6】 Ca2Sb27(a)およびSr2Sb2
7(b)のUV拡散反射スペクトル特性
FIG. 6: Ca 2 Sb 2 O 7 (a) and Sr 2 Sb 2 O
7 (b) UV diffuse reflection spectrum characteristics

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 9/00 C01G 17/00 17/00 19/00 A 19/00 B01J 23/64 101M Fターム(参考) 4G042 BA08 BB04 BC06 4G047 AA04 AB01 AC03 4G069 AA03 AA08 BA48A BB04A BB04B BB06A BB06B BC08A BC09A BC09B BC12A BC12B BC13A BC13B BC22A BC22B BC23A BC23B BC26A BC26B BC35A BC35B BC70A BC70B CC33 EC25 FA01 FB30 FC07──────────────────────────────────────────────────続 き Continued on the front page (51) Int. Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01G 9/00 C01G 17/00 17/00 19/00 A 19/00 B01J 23/64 101M F-term (Reference) 4G042 BA08 BB04 BC06 4G047 AA04 AB01 AC03 4G069 AA03 AA08 BA48A BB04A BB04B BB06A BB06B BC08A BC09A BC09B BC12A BC12B BC13A BC13B BC22A BC22B BC23A BC23B BC26A BC26 BC30ABC BC35 BC35

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 RuO2担持B2nm(ここでBはアル
カリ土類金属原子またはZnであり、Xはd10電子状態
の金属イオンであり、n=(m−1)/3であり、nは
1または2である。)からなる光触媒。
1. A RuO 2 supported B 2 X n O m (B here is an alkaline earth metal atom or Zn, X is a d 10 of electronic state metal ion, n = (m-1) / 3 And n is 1 or 2.).
【請求項2】 B2nm(ここでBはアルカリ土類金
属原子またはZnであり、Xはd10電子状態の金属イオ
ンであり、n=(m−1)/3であり、nは1または2
である。)が、1000〜1200℃で焼成した粉末焼
成法により得られたものであることを特徴とする請求項
1に記載の光触媒。
2. B 2 X n O m (where B is an alkaline earth metal atom or Zn, X is a metal ion in the d 10 electronic state, n = (m−1) / 3, n is 1 or 2
It is. The photocatalyst according to claim 1, wherein the photocatalyst is obtained by a powder firing method fired at 1000 to 1200 ° C.
【請求項3】 XはGe、SnまたはSbであり、アル
カリ土類金属原子はCa、Sr又はBaであることを特
徴とする請求項1または2に記載の光触媒。
3. The photocatalyst according to claim 1, wherein X is Ge, Sn or Sb, and the alkaline earth metal atom is Ca, Sr or Ba.
【請求項4】 請求項1乃至3に記載のいずれかの光触
媒からなることを特徴とする水の完全分解用光触媒。
4. A photocatalyst for completely decomposing water, comprising the photocatalyst according to any one of claims 1 to 3.
JP2001110870A 2001-04-10 2001-04-10 Photocatalyst using oxide containing typical metal ion in d10 electronic state Expired - Fee Related JP4025029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110870A JP4025029B2 (en) 2001-04-10 2001-04-10 Photocatalyst using oxide containing typical metal ion in d10 electronic state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110870A JP4025029B2 (en) 2001-04-10 2001-04-10 Photocatalyst using oxide containing typical metal ion in d10 electronic state

Publications (2)

Publication Number Publication Date
JP2002301369A true JP2002301369A (en) 2002-10-15
JP4025029B2 JP4025029B2 (en) 2007-12-19

Family

ID=18962564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110870A Expired - Fee Related JP4025029B2 (en) 2001-04-10 2001-04-10 Photocatalyst using oxide containing typical metal ion in d10 electronic state

Country Status (1)

Country Link
JP (1) JP4025029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097924A (en) * 2002-09-09 2004-04-02 Japan Science & Technology Corp PHOTOCATALYST USING COMPOSITE OXIDE CONTAINING MEAL ION IN d10 AND d0 ELECTRONIC STATE
JP2005246202A (en) * 2004-03-03 2005-09-15 Japan Science & Technology Agency PHOTOCATALYST USING OXIDE CONTAINING p-BLOCK METAL ION IN d10-d10 ELECTRONIC STATE
US7015172B2 (en) * 2001-07-12 2006-03-21 Japan Science And Technology Agency Phosphate photocatalyst comprising metal ion in d10 or d0 electron state
JP2008155099A (en) * 2006-12-22 2008-07-10 Nagaoka Univ Of Technology Photocatalyst for decomposing water and organic matter, and manufacturing method of this photocatalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788370A (en) * 1993-09-24 1995-04-04 Yasunobu Inoue Photocatalyst and production of photocatalyst
JPH09271666A (en) * 1996-04-04 1997-10-21 Natl Inst For Res In Inorg Mater Catalyst for purifying organochlorine compound in water
JP2002059008A (en) * 2000-08-14 2002-02-26 Japan Science & Technology Corp Photocatalyst using oxide containing metal ions of d10 electron state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788370A (en) * 1993-09-24 1995-04-04 Yasunobu Inoue Photocatalyst and production of photocatalyst
JPH09271666A (en) * 1996-04-04 1997-10-21 Natl Inst For Res In Inorg Mater Catalyst for purifying organochlorine compound in water
JP2002059008A (en) * 2000-08-14 2002-02-26 Japan Science & Technology Corp Photocatalyst using oxide containing metal ions of d10 electron state

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015172B2 (en) * 2001-07-12 2006-03-21 Japan Science And Technology Agency Phosphate photocatalyst comprising metal ion in d10 or d0 electron state
JP2004097924A (en) * 2002-09-09 2004-04-02 Japan Science & Technology Corp PHOTOCATALYST USING COMPOSITE OXIDE CONTAINING MEAL ION IN d10 AND d0 ELECTRONIC STATE
JP2005246202A (en) * 2004-03-03 2005-09-15 Japan Science & Technology Agency PHOTOCATALYST USING OXIDE CONTAINING p-BLOCK METAL ION IN d10-d10 ELECTRONIC STATE
JP4567992B2 (en) * 2004-03-03 2010-10-27 独立行政法人科学技術振興機構 Photocatalyst using oxide containing p-block metal ion in d10-d10 electronic state
JP2008155099A (en) * 2006-12-22 2008-07-10 Nagaoka Univ Of Technology Photocatalyst for decomposing water and organic matter, and manufacturing method of this photocatalyst

Also Published As

Publication number Publication date
JP4025029B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
Machida et al. Photocatalytic properties of layered perovskite tantalates, MLnTa 2 O 7 (M= Cs, Rb, Na, and H; Ln= La, Pr, Nd, and Sm)
WO2002018048A1 (en) Photocatalyst comprising metal oxynitride responsive to visible light
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
JP4982736B2 (en) A water splitting catalyst by light and a method for producing the same.
CN113477252B (en) Preparation method and application of composite porous catalyst containing titanium and other transition metals simultaneously
WO2002062467A1 (en) Oxysulfide photocatalyst for use in decomposition of water by visible light
JP4064065B2 (en) Photocatalyst for visible light decomposition of water
JP4112162B2 (en) Photocatalyst using oxide containing metal ion in d10 electronic state
JPH0724329A (en) Photocatalyst
JP2002301369A (en) PHOTOCATALYST USING OXIDE CONTAINING TYPICAL METALLIC ION IN d10 ELECTRONIC STATE
JP2023160953A (en) Photocatalyst and method of producing the same
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP4051247B2 (en) Photocatalyst using composite oxide containing metal ions in d10 and d0 electronic states
JP4090827B2 (en) Photocatalyst using composite oxide containing metal ions in d10s2 and d0 electronic states
JP2003236389A (en) Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light
KR101229824B1 (en) Photocatalysts for water splitting and synthesis methods thereof
JPH0889804A (en) Photocatalyst
JP3249776B2 (en) Interlayer crosslinked product of layered titanium oxide and photocatalyst
JP4312471B2 (en) A photocatalyst comprising AgGaS2 for generating hydrogen from an aqueous solution containing a sulfur compound under irradiation with visible light
JPH08198601A (en) Decomposing method for water using titanium oxide or derivative thereof having laminar structure as photocatalyst
JP3834776B2 (en) Catalyst for photo-water splitting containing germanium nitride structure
JP4567992B2 (en) Photocatalyst using oxide containing p-block metal ion in d10-d10 electronic state
JP3138738B1 (en) Photocatalyst and method for producing the same
JP4116900B2 (en) Photocatalyst using composite oxide containing metal ions in d10s2 and d10 electronic states
Han et al. Theoretical Insights into the Structure, Stability, Electronic, and Photocatalytic Properties of BaNbO2N Low-Index Surfaces

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees