JP2000202303A - Hollandite type photocatalyst and removal of phenol in water using the same - Google Patents

Hollandite type photocatalyst and removal of phenol in water using the same

Info

Publication number
JP2000202303A
JP2000202303A JP994499A JP994499A JP2000202303A JP 2000202303 A JP2000202303 A JP 2000202303A JP 994499 A JP994499 A JP 994499A JP 994499 A JP994499 A JP 994499A JP 2000202303 A JP2000202303 A JP 2000202303A
Authority
JP
Japan
Prior art keywords
phenol
water
formic acid
hollandite
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP994499A
Other languages
Japanese (ja)
Other versions
JP3579709B2 (en
Inventor
Toshiyuki Mori
利之 森
Jun Watanabe
遵 渡辺
Jun Suzuki
潤 鈴木
Kenjiro Fujimoto
憲次郎 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP994499A priority Critical patent/JP3579709B2/en
Publication of JP2000202303A publication Critical patent/JP2000202303A/en
Application granted granted Critical
Publication of JP3579709B2 publication Critical patent/JP3579709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove phenol being an internal secretion disturbing material harmful to a human body contained in groundwater, river water, public water and sewage water, industrial waste water, or the like, by converting that to formic acid being a liner chain compound and which is not the internal section disturbing material. SOLUTION: A photocatalyst is expressed by the formula: Ax My N8-y O16 (in the formula, A indicates one or two or more kinds of elements selected from the group consisting of K, Rb, Cs, Ca, Ba and Na, M indicates a divalent or trivalent metallic element, and N indicates a rutile oxide including Ti, Sn and Mn. However, Na element is limited only when M is Cr. (x) and (y) indicate 0.7<x<=2.0 and 0.7<y<=2.0), and comprises a hollandite type crystalline phase, does not support an activated metal, and has capacity of removing phenol by converting selectively phenol being the internal secretion-disturbing material to formic acid which is not an internal secresion-disturbing material under coexistence of dissolved oxygen. Phenol in water is removed by using this photocatalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地下水、河川水、
上下水道水、工業用廃水等に含まれる人体に有害な内分
泌かく乱物質であるフェノールを内分泌かく乱物質では
ない直鎖状化合物であるギ酸に転化することにより除去
する水中のフェノール除去用光触媒と該触媒を用いた水
中のフェノール除去方法に関するものである。
TECHNICAL FIELD The present invention relates to groundwater, river water,
Photocatalyst for removing phenol in water, which removes phenol, which is an endocrine disruptor harmful to the human body contained in water and sewage water, industrial wastewater, etc., by converting it into formic acid, a linear compound that is not an endocrine disruptor, and the catalyst The present invention relates to a method for removing phenol in water using phenol.

【0002】[0002]

【従来の技術】フェノールは、炭素6員環を有する芳香
族化合物であり、内分泌かく乱物質として問題視されて
いる代表例であるビスフェノールAなどの基本骨格とな
る化合物であり、多くの芳香族化合物が内分泌かく乱物
質としてあげられているなか、フェノール自体もその人
体への影響が問題視されているのみならず、触媒反応に
おいては、芳香族系内分泌かく乱物質の分解または除去
反応性を知る上で、極めて重要なモデル物質である。
2. Description of the Related Art Phenol is an aromatic compound having a six-membered carbon ring, and is a compound serving as a basic skeleton such as bisphenol A, which is a typical example regarded as a problem as an endocrine disrupting substance. Although phenol itself is listed as an endocrine disruptor, not only is phenol itself considered to have an effect on the human body, but in the catalytic reaction, it is important to know the reactivity of decomposition or removal of aromatic endocrine disruptors. Is a very important model substance.

【0003】従来、水中のフェノールを除去するための
方法としては、オゾン酸化処理によりフェノールを酸化
分解する方法や、微生物を用いてフェノールを分解除去
する方法が考えられているが、前者の場合には、副生成
物が多量に発生するという問題点を有しており、また、
後者の場合には、微生物を扱うという技術的な面から、
その処理費用や処理技術の難しさによリ未だ実用に至っ
ていない。
Conventionally, as a method for removing phenol in water, a method of oxidatively decomposing phenol by an ozone oxidation treatment or a method of decomposing and removing phenol using a microorganism have been considered. Has the problem that a large amount of by-products are generated,
In the latter case, from the technical aspect of dealing with microorganisms,
Due to the processing cost and difficulty of the processing technology, it has not yet been put to practical use.

【0004】また最近になって、こうした問題点を克服
するべく、TiO2 系光触媒を用いてフェノールを分解
しようとする試みがなされているが、TiO2 系光触媒
を用いてもべンゾキノンなどの芳香族化合物をはじめと
した数種類の副生成物が発生することから、TiO2
光触媒とオゾン酸化法の組み合わせなどが検討されてい
る。しかし、この方法を用いることにより副生成物の発
生は低減するが、オゾン酸化処理技術と組み合わせると
いう技術的な面から、光触媒を用いるメリットである処
理の簡便性が損なわれる一方、完全には二酸化炭素以外
の副生成物を無くすことはできないなどの問題点を有し
ていた。
[0004] Recently, attempts have been made to decompose phenol by using a TiO 2 -based photocatalyst in order to overcome such problems. However, even if a TiO 2 -based photocatalyst is used, aromatic compounds such as benzoquinone can be used. Since several types of by-products including group III compounds are generated, a combination of a TiO 2 -based photocatalyst and an ozone oxidation method is being studied. However, although the generation of by-products is reduced by using this method, the technical advantage of using the photocatalyst impairs the simplicity of the processing, which is a merit of using the ozone oxidation processing technology, while completely reducing the generation of dioxide. There was a problem that by-products other than carbon could not be eliminated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、例えば、地下水、河川水、上下水道水、工
業用廃水などに含まれる人体に特に有害なフェノールを
微量の光エネルギーにより除去する水中のフェノール分
解用光触媒を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems. For example, phenol contained in groundwater, river water, water supply and sewage water, industrial wastewater and the like, which is particularly harmful to the human body, is subjected to a trace amount of light energy. To provide a photocatalyst for decomposing phenol in water which is removed by water.

【0006】[0006]

【課題を解決するための手段】本発明者は、水中に含ま
れるフェノールを溶存酸素の共存下において、微量の光
エネルギーを用いて、水中から除去する触媒能力を持
ち、かつ耐久性に優れた光触媒を開発するべく検討を続
けた結果、 一般式:Ax y 8-y 16(式中、Aは、K,Rb,
Cs,Ca,BaおよびNaからなる群より選ばれた1
種または2種以上の元素、Mは、2価または3価金属元
素、Nは、Ti、Sn、Mnをはじめとしたルチル型酸
化物を形成する元素を示す。ただし、Na元素は、Mが
Crの場合に限る。xおよびyは、0.7<x≦2.0
および0.7<y≦2.0を示す。)で表されるホーラ
ンダイト型結晶相からなる触媒が、水中に含まれるフェ
ノールを溶存酸素の共存下において、微量の光エネルギ
ーで選択的にギ酸に転化させて除去する能力が高く、耐
久性にも優れるものであることを見出した。
Means for Solving the Problems The present inventor has a catalyst capable of removing phenol contained in water from water using a small amount of light energy in the presence of dissolved oxygen, and has excellent durability. a result of continued studies to develop a photocatalyst represented by the general formula: a x M y N 8- y O 16 ( wherein, a represents, K, Rb,
1 selected from the group consisting of Cs, Ca, Ba and Na
Species or two or more elements, M is a divalent or trivalent metal element, and N is an element that forms a rutile oxide such as Ti, Sn, and Mn. However, the Na element is limited only when M is Cr. x and y are 0.7 <x ≦ 2.0
And 0.7 <y ≦ 2.0. ) Has a high ability to selectively convert phenol contained in water to formic acid with a small amount of light energy in the coexistence of dissolved oxygen, and has high durability. Was also found to be excellent.

【0007】すなわち、本発明の水中のフェノール除去
用光触媒の組成は、 一般式:Ax y 8-y 16(式中、Aは、K,Rb,
Cs,Ca,BaおよびNaからなる群より選ばれた1
種または2種以上の元素、Mは、2価または3価金属元
素、Nは、Ti、Sn、Mnをはじめとしたルチル型酸
化物を形成する元素を示す。ただし、Na元素は、Mが
Crの場合に限る。xおよびyは、0.7<x≦2.0
および0.7<y≦2.0を示す。)で表され、ホーラ
ンダイト型結晶相からなる触媒でなければならない。
Namely, the composition of the phenol removal photocatalytic water of the present invention, the general formula: A x M y N 8- y O 16 ( wherein, A represents, K, Rb,
1 selected from the group consisting of Cs, Ca, Ba and Na
Species or two or more elements, M is a divalent or trivalent metal element, and N is an element that forms a rutile oxide such as Ti, Sn, and Mn. However, the Na element is limited only when M is Cr. x and y are 0.7 <x ≦ 2.0
And 0.7 <y ≦ 2.0. ) And must be a catalyst comprising a hollandite-type crystal phase.

【0008】ホーランダイト型結晶は、一次元トンネル
構造を有する化合物である。トンネルイオンとしては、
K等のアルカリ金属イオンあるいはBa等のアルカリ土
類金属イオンがある。Naの場合には、Crと組み合わ
せて用いた場合のみホーランダイト型結晶構造をとるこ
とができるが、その他の元素と組み合わせた場合には、
当該トンネル構造が失われ、フロイデンバ一ジャイト型
結晶構造等となるので好ましくない。
The hollandite type crystal is a compound having a one-dimensional tunnel structure. As tunnel ions,
There are alkali metal ions such as K or alkaline earth metal ions such as Ba. In the case of Na, a hollandite type crystal structure can be obtained only when used in combination with Cr, but when combined with other elements,
The tunnel structure is lost, resulting in a Freudenbergite-type crystal structure or the like, which is not preferable.

【0009】xおよびyの値は、それぞれ、0.7<x
≦2.0および0.7<y≦2.0でなければならず、
この範囲を上回るかまたは下回る場合には、アルカリ金
属の酸化物または炭酸塩、アルカリ土類金属の酸化物ま
たは炭酸塩、2価または3価金属の酸化物およびTiの
酸化物が析出し、活性が著しく低下するために好ましく
ない。また、Baを用いる場合には、化合物中の電気的
中性条件から、M=2価ならy=xであり、M=3価な
らy=2xとすることが好ましい。
The values of x and y are respectively 0.7 <x
≦ 2.0 and 0.7 <y ≦ 2.0,
Above or below this range, oxides or carbonates of alkali metals, oxides or carbonates of alkaline earth metals, oxides of divalent or trivalent metals and oxides of Ti precipitate, and the activity of Is not preferred because it is significantly reduced. In addition, when Ba is used, it is preferable that y = x if M = 2 and y = 2x if M = 3 from the electrical neutral condition in the compound.

【0010】アルカリ金属とアルカリ土類金属元素を組
み合わせる場合にも、同様な理由から、0.7<x<
1.2が好ましい。
When the alkali metal and the alkaline earth metal are combined, for the same reason, 0.7 <x <
1.2 is preferred.

【0011】また、本発明の光触媒において用いられる
2価または3価金属元素としては、Al、Ga、Crま
たはMg等がホーランダイト型結晶構造を作る上で好ま
しい。
As the divalent or trivalent metal element used in the photocatalyst of the present invention, Al, Ga, Cr, Mg or the like is preferable for forming a hollandite type crystal structure.

【0012】さらに、本発明の光触媒を用いた水中のフ
ェノール除去方法では、ホーランダイト型化合物とフェ
ノールを水中において、溶存酸素の共存のもと、光照射
下において接触させることにより、水中の内分泌かく乱
物質である芳香族系化合物であるフェノールを内分泌か
く乱物質ではない直鎖状のギ酸に高効率に転化すること
により除去することが可能である。照射する光の波長
は、紫外線より長い波長の光を用いればよく、蛍光灯ま
たは太陽光を用いることも可能であるが、波長が長い
分、反応速度が低下するので紫外線領域、特に360n
m近傍の光を用いることが効果的である。
Further, in the method for removing phenol in water using a photocatalyst according to the present invention, the hollandite-type compound and phenol are brought into contact with each other in water in the coexistence of dissolved oxygen under light irradiation, whereby endocrine disruption in water is achieved. It is possible to remove phenol, which is an aromatic compound, by converting it efficiently to linear formic acid which is not an endocrine disrupting substance. As the wavelength of the light to be irradiated, light having a wavelength longer than that of ultraviolet light may be used, and a fluorescent lamp or sunlight may be used.
It is effective to use light near m.

【0013】さらに、こうした光触媒反応は、触媒表面
上でフェノールと水中に溶解している溶存酸素が室温に
おいて反応することにより進行するが、酸素のバブリン
グなどにより、酸素を水中に送り込むことにより、酸素
と触媒表面の接触を良くし、あわせて撹拌効率を向上さ
せることも反応効率を向上させるためには有効である。
Further, such a photocatalytic reaction proceeds when phenol and dissolved oxygen dissolved in water react on the surface of the catalyst at room temperature, and oxygen is introduced into the water by bubbling of oxygen or the like, whereby the oxygen is dissolved. Improving the contact between the catalyst and the catalyst surface and improving the stirring efficiency are also effective for improving the reaction efficiency.

【0014】水中におけるフェノールの排出基準は10
ppm程度であり、この濃度のフェノールを除去するた
めに必要とされる化学量論量の酸素の濃度も必然的に同
程度の濃度となる。そのため、処理すべきフェノールの
濃度から考えて、溶存酸素量が不足することが懸念され
る場合には、上記のとおり酸素のバブリングにより、円
滑に反応を進めることが可能となる。
The emission standard of phenol in water is 10
ppm, and the stoichiometric amount of oxygen required to remove this concentration of phenol will necessarily be of the same order. Therefore, when it is feared that the amount of dissolved oxygen is insufficient in view of the concentration of the phenol to be treated, the reaction can be smoothly performed by bubbling oxygen as described above.

【0015】本発明が対象とする水中のフェノールの濃
度については特に制限はないが、共存させる酸素の飽和
溶存量から、水中での含有量が10ppm以下の領域で
の使用が実用上好ましい。
There is no particular limitation on the concentration of phenol in water which is the object of the present invention, but it is practically preferable to use the phenol in a region where the content in water is 10 ppm or less, based on the saturated dissolved amount of coexisting oxygen.

【0016】また、本発明によるホーランダイト型触媒
に、光触媒活性な白金等の金属や酸化ルテニウムなどの
酸化物を必要に応じて担持して光触媒として使用するこ
とも可能である。
The hollandite type catalyst according to the present invention can be used as a photocatalyst by supporting a photocatalytically active metal such as platinum or an oxide such as ruthenium oxide as required.

【0017】本発明における光照射方法についても特に
制限はなく、触媒を固定化した反応管の内側からでも、
外側からでも必要に応じて光照射を行うことが可能であ
る。
There is no particular limitation on the light irradiation method in the present invention.
Light irradiation can be performed from the outside as needed.

【0018】また、この触媒は、粉末として用いる他
に、多孔質の触媒担体や石英ガラス管、石英ガラス基板
上または代表的な光触媒であるTiO2 を繊維状にした
TiO 2 繊維や、このTiO2 繊維を2次元的に編み込
んだ布状試料、またはTiO2繊維を3次元的に成形し
た成形体などの表面にホーランダイト型触媒をコーティ
ングしてホーランダイト型結晶相の膜として用いること
ができる。
This catalyst is used as a powder.
In addition, porous catalyst carriers, quartz glass tubes, quartz glass substrates
TiO as the top or representative photocatalystTwoMade fibrous
TiO TwoFiber and this TiOTwoWeave fiber two-dimensionally
Cloth sample or TiOTwoThe fiber is formed three-dimensionally
Hollandite type catalyst is coated on the surface of
And use it as a film of hollandite type crystal phase
Can be.

【0019】膜として用いる場合には、ホーランダイト
型触媒を分散させた水溶液または非水溶液に多孔質の触
媒担体や石英ガラス管、石英ガラス基板または代表的な
光触媒であるTiO2 繊維またはこのTiO2 繊維を2
次元的に編み込んだ布状試料またはTiO2 繊維を3次
元的に成形した成形体を浸けることにより膜を形成する
方法などがとられる。
[0019] When used as films, porous catalyst support or a quartz glass tube of the aqueous or non-aqueous dispersed therein hollandite type catalyst, TiO 2 fibers or the TiO 2 is a quartz glass substrate or representative photocatalysts 2 fibers
A method of forming a film by soaking a three-dimensionally molded cloth-shaped sample or a three-dimensionally molded TiO 2 fiber or the like is adopted.

【0020】一般式:Ax y 8-y 16(式中、A
は、K,Rb,Cs,Ca,BaおよびNaからなる群
より選ばれた1種または2種以上の元素、Mは、2価ま
たは3価金属元素、Nは、Ti、Sn、Mnをはじめと
したルチル型酸化物を形成する元素を示す。ただし、N
a元素は、MがCrの場合に限る。xおよびyは、0.
7<x≦2.0および0.7<y≦2.0を示す。)で
表される本発明の光触媒を構成するホーランダイト型触
媒の製造方法も特に限定されるものではない。
[0020] General formula: A x M y N 8- y O 16 ( in the formula, A
Is one or more elements selected from the group consisting of K, Rb, Cs, Ca, Ba and Na, M is a divalent or trivalent metal element, N is Ti, Sn, Mn, The elements that form the rutile-type oxide are shown below. Where N
The element a is limited to the case where M is Cr. x and y are 0.
7 <x ≦ 2.0 and 0.7 <y ≦ 2.0. The method for producing the hollandite-type catalyst constituting the photocatalyst of the present invention represented by the formula (1) is not particularly limited.

【0021】ホーランダイト型結晶相は、種々の方法に
より合成できることが知られている。例えば、固相合成
法としては、アルカリ金属またはアルカリ土類金属元素
の炭酸塩、酸化チタンおよび2価または3価金属元素の
酸化物を混合後、1200℃以上1500℃以下の温度
で焼成する方法、液相法としては、アルカリ金属または
アルカリ土類金属元素の硝酸塩、塩化チタンおよび2価
または3価金属元素の硝酸塩などの無機塩水溶液を用い
て、この混合溶液をアンモニア水またはアンモニア水と
シュウ酸アンモニウム水溶液に滴下し、沈殿を得て、そ
の沈殿を水洗、ろ過、乾燥した後、500℃以上120
0℃以下の温度で焼成する共沈法、アルコキシド法とし
ては、アルカリ金属またはアルカリ土類金属元素および
2価または3価金属元素のメトキシド、エトキシド、ブ
トキシドなどのアルコキシドを非水溶液中で混合し、加
水分解、乾燥した後、800℃以上1200℃以下の温
度で焼成して得ることができる。
It is known that the hollandite type crystal phase can be synthesized by various methods. For example, as a solid phase synthesis method, a method in which a carbonate of an alkali metal or an alkaline earth metal, titanium oxide, and an oxide of a divalent or trivalent metal element are mixed and then fired at a temperature of 1200 to 1500 ° C. As a liquid phase method, an aqueous solution of an inorganic salt such as a nitrate of an alkali metal or an alkaline earth metal, titanium chloride and a nitrate of a divalent or trivalent metal element is used, and the mixed solution is mixed with aqueous ammonia or aqueous ammonia. The solution was dropped into an aqueous solution of ammonium acid to obtain a precipitate, and the precipitate was washed with water, filtered and dried.
As a coprecipitation method and an alkoxide method of firing at a temperature of 0 ° C. or lower, alkoxides such as alkoxides such as alkali metal or alkaline earth metal elements and divalent or trivalent metal elements such as methoxide, ethoxide and butoxide are mixed in a non-aqueous solution, After hydrolysis and drying, it can be obtained by firing at a temperature of 800 ° C. or more and 1200 ° C. or less.

【0022】焼成温度については、1500℃以上の焼
成温度でもホーランダイト型結晶構造は安定に生成する
が、高温での焼成は、触媒の比表面積の低下を生じ、あ
まり好ましくない。また、焼成時間は、あまり長時間と
しても比表面積の低下を生じることから好ましくない。
Regarding the calcination temperature, a hollandite-type crystal structure is stably formed even at a calcination temperature of 1500 ° C. or higher, but calcination at a high temperature causes a decrease in the specific surface area of the catalyst, and is not preferred. Further, the firing time is not preferable because the specific surface area decreases even if the firing time is too long.

【0023】ホーランダイト型触媒の比表面積は、1m
2 /g程度以上であれば、水中でのフェノールを溶存酸
素共存下において除去することができる。この触媒のフ
ェノール除去効率は、比表面積が大きいほど大きくな
り、特に連続流通式で処理水量が多い処理装置になった
場合には、比表面積が大きい方が好ましい。また、多孔
体構造もフェノール除去効率に重要な影響を与え、特に
メソポア領域に細孔分布を有する多孔体を用いることが
有効である。
The specific surface area of the hollandite type catalyst is 1 m
If it is about 2 / g or more, phenol in water can be removed in the presence of dissolved oxygen. The phenol removal efficiency of this catalyst increases as the specific surface area increases, and in particular, in the case of a continuous flow type processing apparatus having a large amount of treated water, the larger the specific surface area is, the more preferable. The porous structure also has an important effect on the phenol removal efficiency, and it is particularly effective to use a porous body having a pore distribution in the mesopore region.

【0024】[0024]

【実施例】以下、実施例および比較例により、本発明を
さらに詳細に説明するが、本発明は、これらの実施例お
よび比較例によって限定されるものではない。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples and comparative examples.

【0025】実施例1 組成がK1.7 A11.7 Ti6.3 16になるように、酸化
チタン(キシダ化学株式会社製)、酸化アルミニウム
(キシダ化学株式会社製)および炭酸カリウム(キシダ
化学株式会社製)を秤量し、メノー乳鉢で30分混合し
た後、1200℃で2時間焼成することにより、ホ一ラ
ンダイト型K1.7 A11.7 Ti6.3 16の単相粉末を合
成した。
Example 1 Composition K1.7A11.7Ti6.3O16Oxidation
Titanium (made by Kishida Chemical Co., Ltd.), aluminum oxide
(Manufactured by Kishida Chemical Co., Ltd.) and potassium carbonate (Kishida
(Manufactured by Kagaku Co., Ltd.) and mixed in an agate mortar for 30 minutes.
After firing for 2 hours at 1200 ° C,
Nite type K1.7A11.7Ti6.3O 16Of single phase powder
Done.

【0026】こうして得られた触媒のX線回折図を図1
に示す。また、触媒活性評価試験はバッチ式の反応装置
を用いて行った。すなわち、10ppmのフェノールを
含んだ蒸留水1リットル中に触媒1gを入れ、撹拌しな
がら15W、360nmの紫外線を照射し、一定時間ご
との水溶液中のフェノールと副生成物濃度を分析するこ
とにより実施した。その試験結果を表1〜表3に示し
た。
The X-ray diffraction pattern of the catalyst thus obtained is shown in FIG.
Shown in The catalyst activity evaluation test was performed using a batch-type reactor. That is, 1 g of the catalyst was placed in 1 liter of distilled water containing 10 ppm of phenol, irradiated with 15 W, 360 nm ultraviolet rays with stirring, and analyzed for phenol and by-product concentrations in the aqueous solution at regular intervals. did. The test results are shown in Tables 1 to 3.

【0027】ただし、水中でのフェノール転化率、ギ酸
生成率、べンゾキノン生成率、マレイン酸生成率および
グリオキシル酸生成率は、(1)式から(5)式で示さ
れる式により算出した。
However, the phenol conversion rate, formic acid formation rate, benzoquinone formation rate, maleic acid formation rate, and glyoxylic acid formation rate in water were calculated by the formulas (1) to (5).

【0028】 フェノール転化率(%) ={( Ph0 −Pht ) /Ph0 }×100 (1式) ギ酸生成率(%) ={ギ酸t /ギ酸calc. }×100 (2式) ベンゾキノン生成率(%) ={Bzt /Bzcalc. }×100 (3式) マレイン酸生成率(%) ={MAt /MAcalc. }×100 (4式) グリオキシル酸生成率(%) ={GAt /GAcalc. }×100 (5式) ここで、 Ph0 :フェノールの初期濃度 (ppm) Pht :t時間後のフェノール濃度(ppm) ギ酸t :t時間後のギ酸濃度 (ppm) ギ酸calc:フェノールが全てギ酸に変化した場合の生成
量(ppm) Bzt :t時間後のべンゾキノン濃度(ppm) Bzcalc:フェノールが全てべンゾキノンに変化した場
合の生成量(ppm) MAt :t時間後のマレイン酸濃度(ppm) MAcalc. :フェノールが全てマレイン酸に変化した場
合の生成量(ppm) GAt :t時間後のグリオキシル酸濃度(ppm) GAcalc. :フェノールが全てグリオキシル酸に変化し
た場合の生成量(ppm) なお、各化合物の濃度は、高速液体クロマトグラフによ
り測定した。
[0028] Phenol conversion (%) = {(Ph 0 -Ph t) / Ph 0} × 100 (1 type) formic acid production rate (%) = {formic acid t / formic acid calc.} × 100 (2 expression) benzoquinone production rate (%) = {Bz t / Bz calc.} × 100 (3 type) maleate production rate (%) = {MA t / MA calc.} × 100 (4 type) glyoxylic acid production rate (%) = {GA t / GA calc. } × 100 (5 equations) where Ph 0 : initial concentration of phenol (ppm) Ph t : phenol concentration after t hours (ppm) Formic acid t : formic acid concentration after t hours (ppm) ) Formic acid calc : Amount when all phenols are converted to formic acid (ppm) Bz t : Benzoquinone concentration after t hours (ppm) Bz calc : Amount when all phenols are converted to benzoquinone (ppm) MA t: t time after the maleic acid concentration (ppm) MA calc:. generation amount when phenol is changed all maleic acid (ppm) GA t: t time after glyoxylic Concentration (ppm) GA calc:. Generation amount when phenol is changed to all glyoxylic acid (ppm) The concentration of each compound was determined by high performance liquid chromatography.

【0029】表1〜表3の結果から分かるように、フェ
ノールは、反応初期に触媒表面に吸着したことにより、
見かけの転化率が生じたのち、二酸化炭素には変化せ
ず、フェノールの部分酸化生成物であるギ酸に転化して
いることを高速液体クロマトグラフにより確認した。ま
た、この部分酸化反応(フェノール分子に酸素を挿入す
る反応)にともない、フェノールは、水中から除去され
ることが確認された。
As can be seen from the results of Tables 1 to 3, phenol was adsorbed on the catalyst surface at the beginning of the reaction,
After the apparent conversion occurred, it was confirmed by high-performance liquid chromatography that it did not change to carbon dioxide but converted to formic acid, which is a partial oxidation product of phenol. In addition, it was confirmed that phenol was removed from water with this partial oxidation reaction (reaction for inserting oxygen into phenol molecules).

【0030】実施例2 組成がK2.0 Ga2.0 Sn6.0 16になるように、酸化
ガリウム(キシダ化学株式会社製)、酸化スズ(キシダ
化学株式会社製)および炭酸カリウム(キシダ化学株式
会社製)を秤量し、メノー乳鉢で30分混合した後、1
200℃で2時間焼成することにより、ホーランダイト
型K2.0 Ga2.0 Sn6.0 16の単相粉末を合成した。
Example 2 Gallium oxide (manufactured by Kishida Chemical Co., Ltd.), tin oxide (manufactured by Kishida Chemical Co., Ltd.) and potassium carbonate (manufactured by Kishida Chemical Co., Ltd.) so that the composition becomes K 2.0 Ga 2.0 Sn 6.0 O 16. Weighed and mixed for 30 minutes in an agate mortar,
By baking at 200 ° C. for 2 hours, a single-phase powder of hollandite type K 2.0 Ga 2.0 Sn 6.0 O 16 was synthesized.

【0031】ただし、触媒活性評価は、実施例1に準拠
して行った。その結果を表1〜表3にあわせて示した。
実施例1と同様に、フェノールは、反応初期に触媒表面
に吸着したことにより、見かけの転化率が生じたのち、
二酸化炭素には変化せず、フェノールの部分酸化生成物
であるギ酸に転化していることを高速液体クロマトグラ
フにより確認した。また、この部分酸化反応(フェノー
ル分子に酸素を挿入する反応)にともない、フェノール
は、水中から除去されることが確認された。
However, the catalyst activity was evaluated in accordance with Example 1. The results are shown in Tables 1 to 3.
As in Example 1, phenol was adsorbed on the catalyst surface at the beginning of the reaction, resulting in an apparent conversion rate.
It was confirmed by high performance liquid chromatography that it did not change to carbon dioxide but was converted to formic acid, a partial oxidation product of phenol. In addition, it was confirmed that phenol was removed from water with this partial oxidation reaction (reaction for inserting oxygen into phenol molecules).

【0032】実施例3 組成がK1.8 Ga1.8 Sn6.2 16になるように、カリ
ウムブトキシド(トリケミカル研究所製)、ガリウムブ
トキシド(トリケミカル研究所製)およびスズエトキシ
ド(トリケミカル研究所製)を秤量し、脱水2−メトキ
シエタノールに溶解したのち、混合したのちゾル溶液を
作製した。その後、この溶液に加水分解水を滴下し、加
水分解を行った。加水分解ゲルは、乾燥・粉砕したの
ち、1100℃で3時間焼成することにより、ホーラン
ダイト型結晶構造を有する単相粉末を合成した。
Example 3 Potassium butoxide (manufactured by Tri-Chemical Research Laboratories), gallium butoxide (manufactured by Tri-Chemical Research Laboratories) and tin ethoxide (manufactured by Tri-Chemical Research Laboratories) were used so that the composition became K 1.8 Ga 1.8 Sn 6.2 O 16. After weighing and dissolving in dehydrated 2-methoxyethanol, mixing was performed to prepare a sol solution. Thereafter, hydrolysis water was added dropwise to this solution to perform hydrolysis. The hydrolyzed gel was dried and pulverized and then calcined at 1100 ° C. for 3 hours to synthesize a single-phase powder having a hollandite-type crystal structure.

【0033】得られた触媒は、比表面積が30m2 /g
のメソポア多孔体であった。ただし、触媒活性評価は、
実施例1に準拠して行った。その結果を表1〜表3にあ
わせて示した。実施例3の場合も、実施例1および実施
例2の場合と同様に、フェノールは、溶存酸素による単
純な酸化反応により二酸化炭素に変化する過程を経るの
ではなく、フェノールの部分酸化生成物であるギ酸に選
択的に転化していることを高速液体クロマトグラフによ
り確認した。また、この部分酸化反応(メタノール分子
に酸素を挿入する反応)にともない、フェノールは、水
中から除去されることが確認された。
The obtained catalyst has a specific surface area of 30 m 2 / g.
Was a porous mesopore material. However, the catalytic activity evaluation
Performed according to Example 1. The results are shown in Tables 1 to 3. In the case of Example 3, as in the case of Examples 1 and 2, phenol does not undergo a process of being converted into carbon dioxide by a simple oxidation reaction with dissolved oxygen, but is a partial oxidation product of phenol. It was confirmed by high performance liquid chromatography that it was selectively converted to certain formic acid. In addition, it was confirmed that phenol was removed from water with this partial oxidation reaction (reaction for inserting oxygen into methanol molecules).

【0034】実施例4 組成がK1.4 Ga1.4 Sn6.6 16になるように、カリ
ウムブトキシド(トリケミカル研究所製)、ガリウムブ
トキシド(トリケミカル研究所製)およびスズエトキシ
ド(トリケミカル研究所製)を秤量し、実施倒3の方法
に準拠して、ホーランダイト型結晶構造を有する単相粉
末を合成した。得られた触媒は、比表面積が38m2
gのメソポア多孔体であった。また、触媒活性評価は、
実施例1に準拠して行った。その結果を表1〜表3にあ
わせて示した。上記の実施例と同様に、フェノールの部
分酸化生成物であるギ酸に転化していることを高速液体
クロマトグラフにより確認した。また、この部分酸化反
応(フェノール分子に酸素を挿入する反応)にともな
い、フェノールは、水中から除去されることが確認され
た。
[0034] As Example 4 composition becomes K 1.4 Ga 1.4 Sn 6.6 O 16 , potassium butoxide (manufactured by Tri Chemical Laboratories), gallium butoxide (manufactured by Tri Chemical Laboratories) and Suzuetokishido (manufactured by Tri Chemical Laboratories) It was weighed, and a single-phase powder having a hollandite-type crystal structure was synthesized according to the method of Example 3. The resulting catalyst has a specific surface area of 38 m 2 /
g of mesopore porous body. In addition, catalyst activity evaluation,
Performed according to Example 1. The results are shown in Tables 1 to 3. It was confirmed by high performance liquid chromatography that the phenol was converted to formic acid, which is a partial oxidation product, as in the above example. In addition, it was confirmed that phenol was removed from water with this partial oxidation reaction (reaction for inserting oxygen into phenol molecules).

【0035】実施例5 組成がK1.8 Ga1.8 Mn6.2 16になるように、カリ
ウムブトキシド(トリケミカル研究所製)、ガリウムブ
トキシド(トリケミカル研究所製)およびマンガンエト
キシド(トリケミカル研究所製)を秤量し、実施例3の
方法に準拠して、ホーランダイト型結晶構造を有する単
相粉末を合成した。得られた触媒は、比表面積が30m
2 /gのメソポア多孔体であった。また、触媒活性評価
は、実施例1に準拠して行った。その結果を表1〜表3
にあわせて示した。
[0035] As Example 5 composition is K 1.8 Ga 1.8 Mn 6.2 O 16 , potassium butoxide (manufactured by Tri Chemical Laboratories), gallium butoxide (manufactured by Tri Chemical Laboratories) and manganese ethoxide (Tri Chemical Laboratories Ltd. ) Was weighed, and a single-phase powder having a hollandite-type crystal structure was synthesized according to the method of Example 3. The resulting catalyst has a specific surface area of 30 m.
It was a 2 / g porous mesopore. The evaluation of the catalyst activity was performed in accordance with Example 1. The results are shown in Tables 1 to 3.
It is shown along with

【0036】上記の実施例と同様に、フェノールの部分
酸化生成物であるギ酸に転化していることを高速液体ク
ロマトグラフにより確認した。また、この部分酸化反応
(フェノール分子に酸素を挿入する反応)にともない、
フェノールは、水中から除去されることが確認された。
In the same manner as in the above example, it was confirmed by high performance liquid chromatography that the phenol was converted into formic acid which is a partial oxidation product. In addition, with this partial oxidation reaction (reaction to insert oxygen into phenol molecules),
Phenol was confirmed to be removed from the water.

【0037】実施例6 組成がNa1.8 Cr1.8 Sn6.2 16になるように、ナ
トリウムブトキシド(トリケミカル研究所製)、クロミ
ウムブトキシド(トリケミカル研究所製)およびスズエ
トキシド(トリケミカル研究所製)を秤量し、実施例3
の方法に準拠して、ホーランダイト型結晶構造を有する
単相粉末を合成した。得られた触媒は、比表面積が20
2 /gのメソポア多孔体であった。また、触媒活性評
価は、実施例1に準拠して行った。その結果を表1〜表
3にあわせて示した。
Example 6 Sodium butoxide (manufactured by Tri-Chemical Research Laboratories), chromium butoxide (manufactured by Tri-Chemical Research Laboratories) and tin ethoxide (manufactured by Tri-Chemical Research Laboratories) were used so that the composition became Na 1.8 Cr 1.8 Sn 6.2 O 16. Weighed, Example 3
A single-phase powder having a hollandite-type crystal structure was synthesized according to the method described in (1). The resulting catalyst has a specific surface area of 20
It was a m 2 / g mesopore porous body. The evaluation of the catalyst activity was performed in accordance with Example 1. The results are shown in Tables 1 to 3.

【0038】上記の実施例と同様に、フェノールの部分
酸化生成物であるギ酸に転化していることを高速液体ク
ロマトグラフにより確認した。また、この部分酸化反応
(フェノール分子に酸素を挿入する反応)にともない、
フェノールは、水中から除去されることが確認された。
In the same manner as in the above Examples, it was confirmed by high performance liquid chromatography that the phenol was converted into formic acid, which is a partial oxidation product. In addition, with this partial oxidation reaction (reaction to insert oxygen into phenol molecules),
Phenol was confirmed to be removed from the water.

【0039】比較例1 組成がK2.5 Al2.5 Ti5.5 16になるように、酸化
チタン(キシダ化学株式会社製)、酸化アルミニウム
(キシダ化学株式会社製)および炭酸カリウム(キシダ
化学株式会社製)を秤量し、メノー乳鉢で30分混合し
た後、1200℃で2時間焼成して、粉末を得た。得ら
れた粉末は、極微量のホーランダイト型結晶相と六チタ
ン酸カリウムおよび酸化アルミニウムからなる混相であ
った。触媒の活性評価は、実施例1に準拠して行った。
結果を表1〜表3にあわせて示す。
Comparative Example 1 Titanium oxide (manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (manufactured by Kishida Chemical Co., Ltd.) and potassium carbonate (manufactured by Kishida Chemical Co., Ltd.) so that the composition becomes K 2.5 Al 2.5 Ti 5.5 O 16. Was weighed, mixed for 30 minutes in an agate mortar, and baked at 1200 ° C. for 2 hours to obtain a powder. The obtained powder was a mixed phase composed of a trace amount of a hollandite-type crystal phase and potassium hexatitanate and aluminum oxide. The activity evaluation of the catalyst was performed according to Example 1.
The results are shown in Tables 1 to 3.

【0040】比較例2 組成がK0.3 Ga0.3 Sn7.7 16になるように、酸化
スズ(キシダ化学株式会社製)、酸化ガリウム(キシダ
化学株式会社製)および炭酸カリウム(キシダ化学株式
会社製)を秤量し、メノー乳鉢で30分混合した後、1
200℃で2時間焼成して、粉末を得た。得られた粉末
は、極微量のホーランダィト型結晶相と酸化スズおよび
酸化ガリウムからなる混相であった。触媒の活性評価
は、実施例1に準拠して行った。結果を表1〜表3にあ
わせて示す。比較例1、比較例2の組成の粉末では、光
の照射時間が100時間後においても、フェノール除去
機能は小さいものであった。
Comparative Example 2 Tin oxide (manufactured by Kishida Chemical Co., Ltd.), gallium oxide (manufactured by Kishida Chemical Co., Ltd.) and potassium carbonate (manufactured by Kishida Chemical Co., Ltd.) so that the composition becomes K 0.3 Ga 0.3 Sn 7.7 O 16. Weighed and mixed for 30 minutes in an agate mortar,
The powder was fired at 200 ° C. for 2 hours to obtain a powder. The obtained powder was a mixed phase comprising a trace amount of a hollandite type crystal phase and tin oxide and gallium oxide. The activity evaluation of the catalyst was performed according to Example 1. The results are shown in Tables 1 to 3. The powders of the compositions of Comparative Examples 1 and 2 had a small phenol removing function even after 100 hours of light irradiation.

【0041】比較例3 組成がK0.01Ga0.01Ti7.9916になるように、カリ
ウムブトキシド(トリケミカル研究所製)、ガリウムブ
トキシド(トリケミカル研究所製)およびチタンエトキ
シド(トリケミカル研究所製)を秤量し、脱水2−メト
キシエタノールに溶解したのち、各溶液を混合して出発
ゾル溶液を作製した。その後、この溶液に加水分解水を
滴下し、加水分解を行った。加水分解ゲルは、乾燥・粉
砕したのち、1100℃で3時間焼成した。得られた触
媒は、主としてルチル相と微量の酸化ガリウムからなる
混合物であり、比表面積は20m2 /gであった。
[0041] As Comparative Example 3 composition becomes K 0.01 Ga 0.01 Ti 7.99 O 16 , potassium butoxide (manufactured by Tri Chemical Laboratories), gallium butoxide (manufactured by Tri Chemical Laboratories) and titanium ethoxide (Tri Chemical Laboratories Ltd. ) Was weighed and dissolved in dehydrated 2-methoxyethanol, and each solution was mixed to prepare a starting sol solution. Thereafter, hydrolysis water was added dropwise to this solution to perform hydrolysis. The hydrolyzed gel was dried and pulverized and calcined at 1100 ° C. for 3 hours. The obtained catalyst was a mixture mainly composed of a rutile phase and a small amount of gallium oxide, and had a specific surface area of 20 m 2 / g.

【0042】また、触媒活性評価は、実施例1に準拠し
て行った。その結果を表1〜表3にあわせて示した。結
果は、表1〜表3から明らかなように、実施例の場合と
は大きく異なり、フェノールは、ギ酸に転化せず、べン
ゾキノンといった芳香族系化合物をはじめ、マレイン
酸、グリオキシル酸といった副生成物への転化が認めら
れた。芳香族化合物であるフェノールが、同じ芳香族で
あるベンゾキノンなどへ転化していることから、比較例
3の組成物の環境浄化機能面における有用性は、極めて
低いものと考えられた。
The catalyst activity was evaluated in accordance with Example 1. The results are shown in Tables 1 to 3. As is clear from Tables 1 to 3, the results are significantly different from those of the examples, and phenol is not converted to formic acid, and aromatic compounds such as benzoquinone, as well as by-products such as maleic acid and glyoxylic acid are produced. Conversion to material was observed. Since the phenol, which is an aromatic compound, was converted to benzoquinone, which is the same aromatic compound, the usefulness of the composition of Comparative Example 3 in terms of the environmental purification function was considered to be extremely low.

【0043】なお、表1〜表3において、比較例3の副
生成物の生成率の合計が、フェノール除去率に一致しな
い部分が認められたが、その差分が二酸化炭素に転化し
たものと推察された。
In Tables 1 to 3, a portion where the sum of the by-product formation rates of Comparative Example 3 did not match the phenol removal rate was observed, but it is presumed that the difference was converted to carbon dioxide. Was done.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で調製された触媒のX線回折図であ
る。
FIG. 1 is an X-ray diffraction diagram of a catalyst prepared in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/34 B01J 23/34 M C02F 1/32 C02F 1/32 1/58 1/58 F 1/72 101 1/72 101 (72)発明者 藤本 憲次郎 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 Fターム(参考) 4D037 AA02 AA05 AA11 AB11 AB16 BA18 CA12 4D038 AA02 AA04 AA08 AB11 BA02 BB06 BB07 BB16 4D050 AA02 AA13 AB15 BB01 BC06 BC09 BD08 4G069 AA02 AA08 BA36A BA48A BB06A BB06B BC02A BC03A BC03B BC05A BC06A BC09A BC13A BC16B BC17B BC22A BC22B BC50A BC50B BC58B BC62A BC62B CA05 CA07 CA10 CA11 EA01Y EA03Y EA09 EC02Y EC09Y EC22X FA01 FB07 FB09 FB30 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/34 B01J 23/34 M C02F 1/32 C02F 1/32 1/58 1/58 F 1/72 101 1/72 101 (72) Inventor Kenjiro Fujimoto 1-1-1, Namiki, Tsukuba-shi, Ibaraki Pref. BB16 4D050 AA02 AA13 AB15 BB01 BC06 BC09 BD08 4G069 AA02 AA08 BA36A BA48A BB06A BB06B BC02A BC03A BC03B BC05A BC06A BC09A BC13A BC16B BC17B BC22A BC22B BC50A BC50B BC58B BC62A BC62E CA13 EA07CA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式:Ax y 8-y 16(式中、A
は、K,Rb,Cs,Ca,BaおよびNaからなる群
より選ばれた1種または2種以上の元素、Mは、2価ま
たは3価金属元素、Nは、Ti、Sn、Mnをはじめと
したルチル型酸化物を形成する元素を示す。ただし、N
a元素は、MがCrの場合に限る。xおよびyは、0.
7<x≦2.0および0.7<y≦2.0を示す。)で
表され、ホーランダイト型結晶相からなり、活性金属を
担持せず、溶存酸素の共存下において選択的に内分泌か
く乱物質であるフェノールを内分泌かく乱物質ではない
ギ酸に転化することによりフェノールを除去する性能を
有することを特徴とする水中のフェノール除去用光触
媒。
1. A general formula: A x M y N 8- y O 16 ( in the formula, A
Is one or more elements selected from the group consisting of K, Rb, Cs, Ca, Ba and Na, M is a divalent or trivalent metal element, N is Ti, Sn, Mn, The elements that form the rutile-type oxide are shown below. Where N
The element a is limited to the case where M is Cr. x and y are 0.
7 <x ≦ 2.0 and 0.7 <y ≦ 2.0. ), Which consists of a hollandite-type crystal phase, does not carry active metals, and removes phenol by selectively converting phenol, an endocrine disruptor, to formic acid, which is not an endocrine disrupter, in the presence of dissolved oxygen. A photocatalyst for removing phenol in water, which has the ability to perform.
【請求項2】 上記ホーランダイト型化合物とフェノー
ルを水中において、溶存酸素の共存のもと、光照射下に
おいて接触させることにより、水中の内分泌かく乱物質
であるフェノールを内分泌かく乱物質ではないギ酸に転
化することにより水中から除去することを特徴とする水
中のフェノール除去方法。
2. The hollandite-type compound and phenol are brought into contact with each other in water in the presence of dissolved oxygen under light irradiation to convert phenol, which is an endocrine disrupting substance, into formic acid, which is not an endocrine disrupting substance. A method for removing phenol in water, wherein the method removes phenol from water.
JP994499A 1999-01-18 1999-01-18 Hollandite-type photocatalyst and method for removing phenol in water using the catalyst Expired - Lifetime JP3579709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP994499A JP3579709B2 (en) 1999-01-18 1999-01-18 Hollandite-type photocatalyst and method for removing phenol in water using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP994499A JP3579709B2 (en) 1999-01-18 1999-01-18 Hollandite-type photocatalyst and method for removing phenol in water using the catalyst

Publications (2)

Publication Number Publication Date
JP2000202303A true JP2000202303A (en) 2000-07-25
JP3579709B2 JP3579709B2 (en) 2004-10-20

Family

ID=11734115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP994499A Expired - Lifetime JP3579709B2 (en) 1999-01-18 1999-01-18 Hollandite-type photocatalyst and method for removing phenol in water using the catalyst

Country Status (1)

Country Link
JP (1) JP3579709B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013965A1 (en) * 2000-08-14 2002-02-21 Japan Science And Technology Corporation Photocatalysts made by using oxides containing metal ions of d10 electronic state
WO2005075051A1 (en) 2004-02-10 2005-08-18 Cataler Corporation Production method for filter catalyst
CN111841488A (en) * 2020-09-10 2020-10-30 榆林学院 Ni-Al@γ-Fe2O3Preparation method and application of-Ni-Fe-LDHs adsorption photocatalyst
JP2021109176A (en) * 2020-01-14 2021-08-02 飯田グループホールディングス株式会社 Formic acid generation method and formic acid generation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013965A1 (en) * 2000-08-14 2002-02-21 Japan Science And Technology Corporation Photocatalysts made by using oxides containing metal ions of d10 electronic state
US6482767B2 (en) 2000-08-14 2002-11-19 Japan Science & Technology Corporation Photocatalysts made by using oxides containing metal ions of d10 electronic state
WO2005075051A1 (en) 2004-02-10 2005-08-18 Cataler Corporation Production method for filter catalyst
JP2021109176A (en) * 2020-01-14 2021-08-02 飯田グループホールディングス株式会社 Formic acid generation method and formic acid generation system
JP7076113B2 (en) 2020-01-14 2022-05-27 飯田グループホールディングス株式会社 Formic acid production method and formic acid production system
CN114945549A (en) * 2020-01-14 2022-08-26 饭田集团控股株式会社 Formic acid generation method and formic acid generation system
CN111841488A (en) * 2020-09-10 2020-10-30 榆林学院 Ni-Al@γ-Fe2O3Preparation method and application of-Ni-Fe-LDHs adsorption photocatalyst
CN111841488B (en) * 2020-09-10 2022-11-18 榆林学院 Ni-Al@γ-Fe 2 O 3 Preparation method and application of-Ni-Fe-LDHs adsorption photocatalyst

Also Published As

Publication number Publication date
JP3579709B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
Yamashita et al. Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2powder catalysts
JP3790189B2 (en) Novel synthesis method of visible light responsive BiVO4 fine powder, photocatalyst comprising the BiVO4 fine powder, and purification method using the photocatalyst
JP2909403B2 (en) Titanium oxide for photocatalyst and method for producing the same
Al-Rasheed et al. Photocatalytic degradation of humic acid in saline waters: Part 2. Effects of various photocatalytic materials
Chen et al. Photocatalytic decolorization of methyl orange in aqueous medium of TiO2 and Ag–TiO2 immobilized on γ-Al2O3
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JP2013116429A (en) Photocatalyst, method for production thereof, and method for treating water containing nitrate nitrogen
US7033566B2 (en) Photocatalyst and use thereof for decomposing chemical substance
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
EP2485838A2 (en) Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
Tanigawa et al. Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate
JP2000202303A (en) Hollandite type photocatalyst and removal of phenol in water using the same
CN113244929B (en) Iron bismuth oxide Bi 2 Fe 4 O 9 Preparation method and application in organic wastewater treatment
JP3051918B2 (en) Photocatalyst for decomposing nitrate ion in water and method for decomposing and removing nitrate ion
JP3777417B2 (en) High-speed decomposition and removal method of organochlorine compounds with hollandite-type photocatalyst
Morawski et al. A new method for preparation of potassium-pillared layered titanate applied in photocatalysis
KR100489219B1 (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel
JP4089989B2 (en) Method of treating harmful substances in water with titanium oxide photocatalyst
JP3721430B2 (en) Underwater organochlorine purification catalyst
JP2004082088A (en) Photocatalyst and photocatalyst material
JP3062740B2 (en) Photocatalyst for reductive decomposition and removal of nitric oxide in gas phase and purification method using the catalyst
JP2003033661A (en) Visible light responsive photocatalyst and method of manufacturing hydrogen by using the same and toxic chemical substance decomposition method
Kim et al. Photocatalytic degradation of 2, 4-dinitrophenol using TiO2 in aqueous solution
JP3903179B2 (en) Indium complex oxide visible light responsive photocatalyst and oxidative decomposition method of materials using the same
JP3803701B2 (en) Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term