JPH09270229A - Field emission electron source - Google Patents

Field emission electron source

Info

Publication number
JPH09270229A
JPH09270229A JP7853996A JP7853996A JPH09270229A JP H09270229 A JPH09270229 A JP H09270229A JP 7853996 A JP7853996 A JP 7853996A JP 7853996 A JP7853996 A JP 7853996A JP H09270229 A JPH09270229 A JP H09270229A
Authority
JP
Japan
Prior art keywords
electron source
electrode
electrons
field emission
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7853996A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7853996A priority Critical patent/JPH09270229A/en
Publication of JPH09270229A publication Critical patent/JPH09270229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a field emission electron source which can provide high electric current density. SOLUTION: An intense electric field is converged into tip end parts 3 and electrons are emitted out of the cathode tip end parts 3 due to the field effect by applying positive voltage to a second electrode layer 6 relative to a first electrode layer 2. The electron emitted out of the cathode tip end parts 3 are accelerated and come into collision against a mesh electrode 7 by applying higher voltage to the mesh electrode 7 than that applied to a gate electrode 6. At that time, secondary electrons in the number more than that of primary electrons are emitted out of the mesh electrode 7 made of a metal and the secondary electrons amplified and emitted by the mesh electrode 7 arrive at an anode 8 to which further higher voltage is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、平面型の固体表示
素子又は超高速の微小真空素子への応用が期待される冷
電子源に係わるものである。特に大電流動作の実現可能
な電界放射型電子源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold electron source which is expected to be applied to a flat type solid state display device or an ultra high speed micro vacuum device. In particular, the present invention relates to a field emission electron source capable of realizing a large current operation.

【0002】[0002]

【従来の技術】半導体の微細加工技術の進展により、微
小電界放射陰極の形成が可能となった。スピントらがコ
ーン型の電界放射陰極を提案し、微小電界放射型電子源
が注目されるに至っている(参考文献1: C.A.Spindt,
J.Appl. Phys. Vol.39, p.3504(1986))。
2. Description of the Related Art Advances in fine processing technology for semiconductors have made it possible to form minute field emission cathodes. Spindt et al. Proposed a cone-type field emission cathode, and attention has been paid to a small field emission electron source (Reference 1: CASpindt,
J. Appl. Phys. Vol.39, p.3504 (1986)).

【0003】スピントの提案した電界放射陰極の構造及
び作成方法を第1の従来例として図4に示す。(a)導
電性基板101の表面に絶縁層102、ゲートとなる金
属膜103を成膜する。金属膜103、絶縁層102に
小孔104を通常のフォトリソプロセスで形成する。
(b)次にアルミナ層の犠牲層105を基板101に対
して浅い角度で蒸着する。この工程によりゲート口径は
縮小するとともにゲート電極膜は犠牲層105に覆われ
る。(c)その後モリブデン等のエミッタとなる金属1
06を基板に対して垂直に蒸着する。ゲート口径は蒸着
とともに小さくなるので小孔の内部に円錐形のエミッタ
(陰極)107が形成できる。(d)そして、犠牲層の
エッチングによるリフトオフ法により不要の金属を除去
する。この素子は、エミッタ107の先端からゲート電
極103によって電子を真空中に引出し、別途エミッタ
に対向して設置されたアノード電極(陽極)で受けるこ
とで動作する。
The structure and manufacturing method of the field emission cathode proposed by Spindt are shown in FIG. 4 as a first conventional example. (A) An insulating layer 102 and a metal film 103 to be a gate are formed on the surface of the conductive substrate 101. Small holes 104 are formed in the metal film 103 and the insulating layer 102 by a normal photolithography process.
(B) Next, a sacrificial layer 105 of an alumina layer is deposited on the substrate 101 at a shallow angle. By this step, the gate diameter is reduced and the gate electrode film is covered with the sacrificial layer 105. (C) Metal 1 that will later become the emitter such as molybdenum
06 is deposited perpendicular to the substrate. Since the gate diameter becomes smaller with vapor deposition, a conical emitter (cathode) 107 can be formed inside the small hole. (D) Then, unnecessary metal is removed by a lift-off method by etching the sacrificial layer. This element operates by drawing electrons into a vacuum from the tip of the emitter 107 by the gate electrode 103 and receiving the electrons by an anode electrode (anode) separately provided opposite to the emitter.

【0004】[0004]

【発明が解決しようとする課題】前記の実施例に示した
電子源は、急峻な陰極先端部を有しかつ微小なゲート口
径を有するので、ゲート電極に比較的低い電圧を印加す
ることにより電界放射電流を得ることが可能である。と
ころが、陰極先端部の電子放出部の面積が極めて小さい
ことから電子源の一素子から放出可能な電流は数μAか
ら数10μAに限定されている。
Since the electron source shown in the above embodiment has a steep cathode tip portion and a minute gate aperture, it is possible to generate an electric field by applying a relatively low voltage to the gate electrode. It is possible to obtain the emission current. However, since the area of the electron emitting portion at the tip of the cathode is extremely small, the current that can be emitted from one element of the electron source is limited to several μA to several tens of μA.

【0005】電流密度を大きくするためには電子源を高
密度にアレイ状に配置させて使用する方法が提案されて
いるが、フォトリソ技術により電子源が作製されるので
集積密度に限界があった。また例え高密度に集積化した
としてもフォトリソ技術のばらつきに起因して特定の電
流を放出しやすい電子源だけが動作することになり、結
局、十分に大きな電流密度を得ることが困難であった。
そのために、応用範囲が限定され、また大電流動作時の
信頼性にも問題があった。
In order to increase the current density, a method of arranging and using an electron source in a high density has been proposed, but since the electron source is manufactured by the photolithography technique, the integration density is limited. . Further, even if integrated at a high density, only the electron source that easily emits a specific current operates due to the variation in the photolithography technique, and eventually it is difficult to obtain a sufficiently large current density. .
Therefore, the range of application is limited, and there is a problem in reliability during high current operation.

【0006】本発明は、この様な問題を克服し、大電流
密度で信頼性の高い電界放出電子源を提供するものであ
る。
The present invention overcomes such problems and provides a highly reliable field emission electron source with a large current density.

【0007】[0007]

【課題を解決するための手段】本発明は、二次電子によ
る電子の増幅機能を用いることにより冷陰極からの放出
電流が増加させることに基づくものである。具体的に請
求項1の発明が講じた解決手段は、電界効果により固体
表面から電子を放出する冷陰極でなる一次電子源と冷陰
極から放出された一次電子を受けて二次電子を放出する
二次電子源を有することを特徴とする電界放射型電子源
である。
The present invention is based on the fact that the emission current from the cold cathode is increased by using the electron amplification function of secondary electrons. Specifically, the means for solving the problems according to the invention of claim 1 emits secondary electrons by receiving a primary electron source made of a cold cathode which emits electrons from a solid surface by a field effect and a primary electron emitted from the cold cathode. A field emission type electron source having a secondary electron source.

【0008】請求項2の発明は前記二次電子の数が一次
電子の数よりも多いことを特徴とする請求項1に記載の
電界放射型電子源である。
The invention of claim 2 is the field emission type electron source according to claim 1, wherein the number of the secondary electrons is larger than the number of the primary electrons.

【0009】請求項3の発明は、前記一次電子源が基板
上にアレイ状に配置され、かつ二次電子源が一次電子源
に対して一定の距離を隔てて対向して配置されているこ
とを特徴とする請求項1に記載の電界放射型電子源であ
る。
According to a third aspect of the present invention, the primary electron sources are arranged in an array on the substrate, and the secondary electron sources are arranged so as to face the primary electron source at a constant distance. The field emission type electron source according to claim 1.

【0010】請求項4の発明は前記一次電子源及び二次
電子源が同一の基板に形成されていることを特徴とする
請求項1に記載の電界放射型電子源である。
The invention of claim 4 is the field emission type electron source according to claim 1, wherein the primary electron source and the secondary electron source are formed on the same substrate.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施形態)以下、本発明の第1の実施形態に係
わる電界放出電子源の構造について図1を参照しながら
説明する。
(First Embodiment) The structure of a field emission electron source according to the first embodiment of the present invention will be described below with reference to FIG.

【0012】図1において、1はガラス基板でありそ
の、表面に第1の電極層2が形成されている。そして、
電極層2の表面には急峻な先端部3を有するコーン形状
の微小構造4が形成されている。その周辺部の基板表面
には絶縁層5と第2の電極層6(ゲート電極)が形成さ
れている。更に、先端部3から一定の距離を隔てて二次
電子源となる金属製のメッシュ状電極7が設置されてい
る。 第1の電極層2に対して第2の電極層6に正の電
圧(V1)を印加することにより、先端部3に高い電界
が集中し電界効果により陰極先端部3から電子が放出さ
れる。またメッシュ状電極7にはゲート電極6に印加さ
れた電圧よりも高い電圧(V2)が印加され、陰極先端
部3から放出した一次電子9は加速されてメッシュ電極
7に衝突する。この時、金属でなるメッシュ電極7から
一次電子の数以上の個数の二次電子10が放射され、メ
ッシュ電極7から増幅放射された二次電子は更に高い電
圧(V3)の印加された陽極8に到達する。
In FIG. 1, reference numeral 1 is a glass substrate on which a first electrode layer 2 is formed. And
On the surface of the electrode layer 2, a cone-shaped microstructure 4 having a sharp tip 3 is formed. An insulating layer 5 and a second electrode layer 6 (gate electrode) are formed on the peripheral surface of the substrate. Further, a metal mesh electrode 7 serving as a secondary electron source is installed at a fixed distance from the tip portion 3. By applying a positive voltage (V1) to the second electrode layer 6 with respect to the first electrode layer 2, a high electric field is concentrated on the tip 3 and electrons are emitted from the cathode tip 3 due to the field effect. . A voltage (V2) higher than the voltage applied to the gate electrode 6 is applied to the mesh electrode 7, and the primary electrons 9 emitted from the cathode tip 3 are accelerated and collide with the mesh electrode 7. At this time, the number of secondary electrons 10 that are equal to or larger than the number of primary electrons is emitted from the mesh electrode 7 made of metal, and the secondary electrons amplified and emitted from the mesh electrode 7 are applied to the anode 8 to which a higher voltage (V3) is applied. To reach.

【0013】本実施例においては一次電子源の構成にガ
ラス基板を用いその表面に電極層を形成した基板を用い
たが、シリコン等の半導体基板や、金属基板等、導電性
の基板を用いることも可能である。また二次電子源に金
属材料を用いたが、二次電子を放出する導電性材料であ
れば特に限定されることはない。また、導電性の材料に
表面に酸化物等の二次電子を放出しやすい材料を被覆し
て用いることも可能である。また、本実施例でにおいて
は、一次電子源の一素子に対して二次電子源のメッシュ
の一孔が対応してして設置されているが、複数の一次電
子源に対して二次電子源メッシュの一孔が対応して設置
することも可能である。
In this embodiment, a glass substrate is used for the structure of the primary electron source and a substrate having an electrode layer formed on the surface thereof is used. However, a conductive substrate such as a semiconductor substrate made of silicon or a metal substrate is used. Is also possible. Further, although a metal material is used for the secondary electron source, it is not particularly limited as long as it is a conductive material that emits secondary electrons. It is also possible to coat the surface of a conductive material with a material such as an oxide that easily emits secondary electrons. In addition, in the present embodiment, one hole of the mesh of the secondary electron source is installed corresponding to one element of the primary electron source, but the secondary electron is provided for a plurality of primary electron sources. It is also possible to install one hole of the source mesh correspondingly.

【0014】(第2の実施形態)上記の実施例において
は、二次電子源を一次電子源に対向して一定の距離を隔
てて別途設置した場合の実施例を示したが、一次電子源
と二次電子源が同一基板に形成することも可能である。
この様に同一基板に形成された電界放出電子源の構造に
ついて第2の実施形態として説明する。
(Second Embodiment) In the above-described embodiment, an example is shown in which the secondary electron source is separately installed facing the primary electron source with a certain distance therebetween. The secondary electron source and the secondary electron source can be formed on the same substrate.
The structure of the field emission electron source thus formed on the same substrate will be described as a second embodiment.

【0015】以下、本発明の第2の実施形態に係わる電
界放出電子源の構造について図2を参照しながら説明す
る。
The structure of the field emission electron source according to the second embodiment of the present invention will be described below with reference to FIG.

【0016】図2において、21はガラス基板でありそ
の、表面に第1の電極層22が形成されている。そし
て、電極層22の表面には急峻な先端部23を有するコ
ーン形状の微小構造24が形成されている。その周辺部
の基板表面には絶縁層25と第2の電極層26(ゲート
電極)が形成されている。更に、その表面に絶縁層2
5’を介して第3の電極(二次電子電極)27が設置さ
れている。第1の電極層22に対してゲート電極26に
正の電圧(V1)を印加することにより、先端部23に
高い電界が集中し電界効果により陰極先端部23から一
次電子29が放出される。また二次電子電極27にはゲ
ート電極26に印加された電圧よりも高い電圧(V2)
が印加され、陰極先端部23から放出した電子は加速さ
れて第3電極27(二次電子電極)に衝突する。この
時、金属でなる第3電極27から一次電子の数以上の二
次電子30が放射され、第3電極から増幅放射された二
次電子は更に高い電圧(V3)の印加された陽極28に
到達する。
In FIG. 2, reference numeral 21 is a glass substrate, on the surface of which a first electrode layer 22 is formed. A cone-shaped microstructure 24 having a steep tip portion 23 is formed on the surface of the electrode layer 22. An insulating layer 25 and a second electrode layer 26 (gate electrode) are formed on the peripheral surface of the substrate. Furthermore, the insulating layer 2 is formed on the surface of the insulating layer 2.
A third electrode (secondary electron electrode) 27 is installed via 5 '. By applying a positive voltage (V1) to the gate electrode 26 with respect to the first electrode layer 22, a high electric field is concentrated on the tip portion 23, and primary electrons 29 are emitted from the cathode tip portion 23 due to the electric field effect. Further, the secondary electron electrode 27 has a voltage (V2) higher than the voltage applied to the gate electrode 26.
Is applied, the electrons emitted from the cathode tip portion 23 are accelerated and collide with the third electrode 27 (secondary electron electrode). At this time, secondary electrons 30 more than the number of primary electrons are emitted from the third electrode 27 made of metal, and the secondary electrons amplified and emitted from the third electrode are applied to the anode 28 to which a higher voltage (V3) is applied. To reach.

【0017】本実施例においても一次電子源の構成にガ
ラス基板を用いその表面に電極層を形成した基板を用い
たが、シリコン等の半導体基板や、金属基板等、導電性
の基板を用いることも可能である。また同様に二次電子
源に金属材料を用いたが、二次電子を放出する導電性材
料であれば特に限定されることはない。また、導電性の
材料に表面に酸化物等の二次電子を放出しやすい材料を
被覆して用いることも可能である。
Also in this embodiment, a glass substrate is used for the structure of the primary electron source and a substrate having an electrode layer formed on the surface thereof is used. However, a conductive substrate such as a semiconductor substrate made of silicon or a metal substrate is used. Is also possible. Similarly, although a metal material is used for the secondary electron source, it is not particularly limited as long as it is a conductive material that emits secondary electrons. It is also possible to coat the surface of a conductive material with a material such as an oxide that easily emits secondary electrons.

【0018】(第3の実施形態)上記の実施例において
は、二次電子源を一次電子源に対向して一定の距離を隔
てて設置した場合の実施例を示したが、一次電子源と二
次電子源が基板の同一表面に形成することも可能であ
る。この様に同一表面に形成された電界放出電子源の構
造について第3の実施形態として説明する。
(Third Embodiment) In the above-mentioned embodiment, an example in which the secondary electron source is installed facing the primary electron source with a certain distance is shown. It is also possible that the secondary electron source is formed on the same surface of the substrate. The structure of the field emission electron source thus formed on the same surface will be described as a third embodiment.

【0019】以下、本発明の第3の実施形態に係わる電
界放出電子源の構造について図3を参照しながら説明す
る。
The structure of the field emission electron source according to the third embodiment of the present invention will be described below with reference to FIG.

【0020】図3において、31は導電性シリコン基板
であり、その裏面に第1の電極層32が形成されてい
る。そして、シリコン基板の表面には急峻な先端部33
を有するカクテルグラス形状の微小構造34が形成され
ている。その周辺部の基板表面には絶縁層35と第2の
電極層36(ゲート電極)が形成されている。また、絶
縁膜の表面に金属でなるの第3の電極(二次電子電極)
37が設置されている。更に、絶縁膜35の表面には陽
極電極38が設置されている。
In FIG. 3, reference numeral 31 is a conductive silicon substrate, on the back surface of which a first electrode layer 32 is formed. Then, a sharp tip 33 is formed on the surface of the silicon substrate.
Forming a cocktail glass-shaped microstructure 34. An insulating layer 35 and a second electrode layer 36 (gate electrode) are formed on the peripheral surface of the substrate. Also, a third electrode (secondary electron electrode) made of metal on the surface of the insulating film
37 is installed. Further, an anode electrode 38 is provided on the surface of the insulating film 35.

【0021】第1の電極層32に対してゲート電極36
に正の電圧を印加することにより、先端部33に高い電
界が集中し電界効果により陰極先端部33から電子が放
出される。また金属電極37にはゲート電極36に印加
された電圧よりも高い電圧が印加され、陰極先端部33
から放出した一次39電子は加速されて第3電極37に
衝突する。この時、金属でなる第3電極37から一次電
子の数以上の二次電子40が放射され、第3電極から増
幅放射された二次電子は更に高い電圧の印加された陽極
38に到達する。
A gate electrode 36 is formed on the first electrode layer 32.
When a positive voltage is applied to the cathode 33, a high electric field is concentrated on the tip 33 and electrons are emitted from the cathode tip 33 due to the field effect. Further, a voltage higher than the voltage applied to the gate electrode 36 is applied to the metal electrode 37, and the cathode tip 33
The primary 39 electrons emitted from the electrons are accelerated and collide with the third electrode 37. At this time, secondary electrons 40 more than the number of primary electrons are emitted from the metal third electrode 37, and the secondary electrons amplified and emitted from the third electrode reach the anode 38 to which a higher voltage is applied.

【0022】本実施例においてはシリコン基板上に形成
したカクテルグラス型の電子源を用いたが、コーン型の
陰極構造であってもよい。また、本実施例では陽極も同
一基板に形成しているが、第2の実施例と同様に陽極を
外部に設置する構成も可能である。また、以上の本発明
では、二次電子を放出させる電極を一段設置している
が、二次電子を放出させる電極を多段に設置することも
可能である。
In this embodiment, a cocktail glass type electron source formed on a silicon substrate was used, but a cone type cathode structure may be used. Further, in this embodiment, the anode is also formed on the same substrate, but it is also possible to arrange the anode outside as in the second embodiment. Further, in the above-mentioned present invention, the electrode for emitting the secondary electron is provided in one stage, but the electrode for emitting the secondary electron can be provided in multiple stages.

【0023】[0023]

【発明の効果】以上の様に、本発明では従来の電界放射
型電子源の電流密度の限界を克服し、大電流密度の電子
源を提供するものである。大電流密度の増加により電子
源の応用範囲が拡大すると共に、高い信頼性を実現する
ことが可能となるもにであり、産業上極めて大きな効果
が期待できる。
As described above, the present invention overcomes the limitation of the current density of the conventional field emission electron source and provides an electron source of large current density. Due to the increase in the large current density, the application range of the electron source can be expanded and high reliability can be realized, and an extremely great effect in industry can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係わる電界放出型電
子源の断面図
FIG. 1 is a sectional view of a field emission electron source according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係わる電界放出型電
子源の断面図
FIG. 2 is a sectional view of a field emission electron source according to a second embodiment of the present invention.

【図3】本発明の第2の実施形態に係わる電界放出型電
子源の断面図
FIG. 3 is a sectional view of a field emission type electron source according to a second embodiment of the present invention.

【図4】従来の電界放出型電子源及びその製造方法の断
面図
FIG. 4 is a sectional view of a conventional field emission electron source and a method for manufacturing the same.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 第1の電極層 3 陰極先端部 4 コーン形状の微小構造 5 絶縁層 6 ゲート電極 7 メッシュ状電極 8 陽極 1 Glass Substrate 2 First Electrode Layer 3 Cathode Tip 4 Cone-shaped Microstructure 5 Insulating Layer 6 Gate Electrode 7 Mesh-like Electrode 8 Anode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電界効果により固体表面から電子を放出す
る冷陰極でなる一次電子源と冷陰極から放出された一次
電子を受けて二次電子を放出する二次電子源を有するこ
とを特徴とする電界放射型電子源。
1. A primary electron source composed of a cold cathode that emits electrons from a solid surface by a field effect, and a secondary electron source that receives primary electrons emitted from the cold cathode and emits secondary electrons. Field emission electron source.
【請求項2】前記二次電子の数が一次電子の数よりも多
いことを特徴とする請求項1に記載の電界放射型電子
源。
2. The field emission electron source according to claim 1, wherein the number of secondary electrons is larger than the number of primary electrons.
【請求項3】前記一次電子源が基板上にアレイ状に配置
され、かつ二次電子源が一次電子源に対して一定の距離
を隔てて対向して配置されていることを特徴とする請求
項1に記載の電界放射型電子源。
3. The primary electron sources are arranged in an array on a substrate, and the secondary electron sources are arranged to face the primary electron source with a certain distance therebetween. Item 1. A field emission electron source according to Item 1.
【請求項4】前記一次電子源及び二次電子源が同一の基
板に形成されていることを特徴とする請求項1に記載の
電界放射型電子源。
4. The field emission electron source according to claim 1, wherein the primary electron source and the secondary electron source are formed on the same substrate.
JP7853996A 1996-04-01 1996-04-01 Field emission electron source Pending JPH09270229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853996A JPH09270229A (en) 1996-04-01 1996-04-01 Field emission electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853996A JPH09270229A (en) 1996-04-01 1996-04-01 Field emission electron source

Publications (1)

Publication Number Publication Date
JPH09270229A true JPH09270229A (en) 1997-10-14

Family

ID=13664727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853996A Pending JPH09270229A (en) 1996-04-01 1996-04-01 Field emission electron source

Country Status (1)

Country Link
JP (1) JPH09270229A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499120B1 (en) * 2000-02-25 2005-07-04 삼성에스디아이 주식회사 Triode structure field emission display using carbon nanotube
KR100499046B1 (en) * 1999-12-24 2005-07-04 한국전자통신연구원 X-ray Image Sensor Using Multi-channel Plate
KR100522692B1 (en) * 2003-07-02 2005-10-19 삼성에스디아이 주식회사 Field emission device and manufacturing method thereof
KR100766958B1 (en) * 2001-04-12 2007-10-15 삼성에스디아이 주식회사 Field emission display device
KR100893685B1 (en) * 2003-02-14 2009-04-17 삼성에스디아이 주식회사 Field emission display having grid plate
JP2010211955A (en) * 2009-03-06 2010-09-24 Toppan Printing Co Ltd Light emitting device
US7825591B2 (en) 2006-02-15 2010-11-02 Panasonic Corporation Mesh structure and field-emission electron source apparatus using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499046B1 (en) * 1999-12-24 2005-07-04 한국전자통신연구원 X-ray Image Sensor Using Multi-channel Plate
KR100499120B1 (en) * 2000-02-25 2005-07-04 삼성에스디아이 주식회사 Triode structure field emission display using carbon nanotube
KR100766958B1 (en) * 2001-04-12 2007-10-15 삼성에스디아이 주식회사 Field emission display device
KR100893685B1 (en) * 2003-02-14 2009-04-17 삼성에스디아이 주식회사 Field emission display having grid plate
KR100522692B1 (en) * 2003-07-02 2005-10-19 삼성에스디아이 주식회사 Field emission device and manufacturing method thereof
US7825591B2 (en) 2006-02-15 2010-11-02 Panasonic Corporation Mesh structure and field-emission electron source apparatus using the same
JP2010211955A (en) * 2009-03-06 2010-09-24 Toppan Printing Co Ltd Light emitting device

Similar Documents

Publication Publication Date Title
US6339281B2 (en) Method for fabricating triode-structure carbon nanotube field emitter array
US7504767B2 (en) Electrode structures, display devices containing the same
US5551903A (en) Flat panel display based on diamond thin films
US5628659A (en) Method of making a field emission electron source with random micro-tip structures
US20060061289A1 (en) Electron emission device, electron source, and image display having dipole layer
JPH04229923A (en) Electric field electron radiator structure and manufacture of path emitting getter material from activity
US5969467A (en) Field emission cathode and cleaning method therefor
KR100243990B1 (en) Field emission cathode and method for manufacturing the same
JPH09270229A (en) Field emission electron source
JPH07122179A (en) Field emitting cathode and manufacture of field emitting cathode
US6777169B2 (en) Method of forming emitter tips for use in a field emission display
US7112920B2 (en) Field emission source with plural emitters in an opening
JP3156903B2 (en) Field emission type electron source
JPH04167325A (en) Field emission type emitter
KR100205056B1 (en) Manufacturing method of volcano typed metal fea
JP3826539B2 (en) Method for manufacturing cold electron-emitting device
JPH1154025A (en) Cold electron emitting element and its manufacture
JPH09270228A (en) Manufacture of field emission electron source
KR100186253B1 (en) Method of manufacturing silicon fea by locos
JPH09288962A (en) Electron emitting element, and its manufacture
JPH11162326A (en) Field electron-emission element
WO1997009733A1 (en) High-frequency field-emission device and fabrication process
JPH11260247A (en) Field-emission element and its forming method and use
JPH11167858A (en) Cold electron emitting element and its manufacture
JPH09320454A (en) Cold electron emitting element and its manufacture