JPH09269307A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH09269307A
JPH09269307A JP7853396A JP7853396A JPH09269307A JP H09269307 A JPH09269307 A JP H09269307A JP 7853396 A JP7853396 A JP 7853396A JP 7853396 A JP7853396 A JP 7853396A JP H09269307 A JPH09269307 A JP H09269307A
Authority
JP
Japan
Prior art keywords
film
carbon monoxide
type semiconductor
gas
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7853396A
Other languages
Japanese (ja)
Inventor
Masao Maki
正雄 牧
Takashi Niwa
孝 二羽
Akio Fukuda
明雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7853396A priority Critical patent/JPH09269307A/en
Publication of JPH09269307A publication Critical patent/JPH09269307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas sensor of high reliability capable of being mounted on combustion machinery, having stable output characteristics against the irregularity of an environmental factor inclusive of temp. irregularity accompanied by the load fluctuations of the combustion machinery and enhanced in durable reliability related to the deterioration of an electrode and a catalyst. SOLUTION: Two pairs of comb-shaped electrodes 2 are formed on the same substrate 1 in order to cancel fluctuation effect by providing a compensation element for cancelling a fluctuation factor other than carbon monoxide and N-type semiconductor oxide sintered material films 3 are formed on the respective electrodes 2. Further, a porous carbon monoxide and hydrogen oxidizing catalyst film 4 is formed on one N-type semiconductor oxide sintered material film while a porous hydrogen selective oxidizing catalyst film 5 having no carbon monoxide oxidizing capacity is formed on the other N-type semiconductor oxide sintered material film 3 to obtain extremely stable output characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一般大気中もしく
はガス、石油を燃料とする各種燃焼機器の排ガス中の可
燃性ガスとくに一酸化炭素を検出するためのセンサに関
し、燃焼排気ガスの幅広い環境変化に安定なセンサで、
さらに化学センサにおいて最大の課題となる耐久性の面
で優れた特性を備えてなるガスセンサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for detecting combustible gas, particularly carbon monoxide, in the general atmosphere or in exhaust gas of various combustion equipment that uses gas or petroleum as a fuel. A sensor that is stable against changes,
Further, the present invention relates to a gas sensor having excellent characteristics in terms of durability, which is the greatest problem in chemical sensors.

【0002】[0002]

【従来の技術】一酸化炭素(CO)は無色、無味、無臭
の気体で、空気よりやや軽いが毒性が強く200PPM
くらいの低濃度でも2〜3時間呼吸すると頭痛などおこ
し、3000PPM以上になると10分位で、6000
PPM以上では、数分間の呼吸で死亡する。
2. Description of the Related Art Carbon monoxide (CO) is a colorless, tasteless, and odorless gas, slightly lighter than air but highly toxic, and has a pressure of 200 PPM.
Even if the concentration is as low as 2 to 3 hours, it causes headaches, etc., and when it reaches 3000 PPM or higher, it takes about 6000 minutes in 10 minutes.
Above PPM, death for a few minutes of breathing.

【0003】一般家庭でも瞬間湯沸かし器、風呂釜、石
油・ガス暖房器具や炭火から発生することから、これら
の機器に内蔵して用いたり、または室内に設置して用い
るための安価で小型で信頼性の高い一酸化炭素センサが
強く要望されている。
Since it is generated from instant water heaters, bath kettles, oil and gas heating appliances and charcoal fires even in ordinary households, it is cheap, compact and reliable to be used by being built into these devices or installed indoors. There is a strong demand for a high carbon monoxide sensor.

【0004】従来から提案されているガスセンサとくに
一酸化炭素検知センサとしては、電解液に一酸化炭素
(CO)を吸収させて酸化する電極を設けて、CO濃度
に比例する電流値からCO濃度を検知する方式(定電位
電解ガスセンサ)、貴金属などの微量の添加元素で増感
した酸化スズ(Sn02)などの焼結体タイプのn型半
導体酸化物を用いて、これらの半導体が可燃性ガスと接
触した際に電気電導度が変化する特性を利用してガスを
検知する方式(半導体型ガスセンサ)で、20μm程度
の白金の細線にアルミナを添着し、貴金属を担持したも
のと担持しない一対の比較素子を用いて一定温度に加熱
して使い、可燃性ガスがこの素子に接触して触媒酸化反
応を行った際の発熱差を検出する方式(接触燃焼式ガス
センサ)などが知られている。これらは例えば [文献1]大森豊明監修:「センサ実用事典」:フジ・
テクノシステム 第14章 ガスセンサの基礎(春田正毅担当)、P11
2ー130(1986)に詳しい記述がある。
As a conventionally proposed gas sensor, especially a carbon monoxide detection sensor, an electrode for absorbing carbon monoxide (CO) to oxidize it is provided in an electrolytic solution, and the CO concentration is determined from a current value proportional to the CO concentration. Using a detection method (constant potential electrolysis gas sensor), a sintered body type n-type semiconductor oxide such as tin oxide (Sn02) sensitized with a trace amount of additional elements such as noble metals, these semiconductors are treated as flammable gas. A method of detecting gas by utilizing the characteristic that the electric conductivity changes when contacting (semiconductor type gas sensor), a pair of comparison of a platinum fine wire of about 20 μm with alumina and no precious metal Known as a method (catalytic combustion type gas sensor) that detects the difference in heat generation when a combustible gas comes into contact with this element to carry out a catalytic oxidation reaction by heating it to a certain temperature using an element. To have. For example, [Reference 1] Supervision by Toyoaki Omori: “Practical Encyclopedia of Sensors” by Fuji
Techno System Chapter 14 Basics of Gas Sensor (Masaki Haruta), P11
2-130 (1986) has a detailed description.

【0005】とくに半導体式COセンサとしては、 [文献2]特公昭53−43320号公報 [文献3]特開昭61−50051号公報 に金属酸化物半導体の抵抗値の変化を利用したガスセン
サを、高温域と低温域に交互に周期的に加熱し、低温域
におけるガスセンサの出力を間欠的にサンプリングして
COガスを検出する方法およびその改良が提案されてい
る。これらは、主に信号処理面からの工夫によりCO検
出の選択性を高める点に特徴がある。
Particularly, as a semiconductor type CO sensor, a gas sensor utilizing a change in resistance value of a metal oxide semiconductor is disclosed in [Reference 2] Japanese Patent Publication No. 53-43320 [Reference 3] Japanese Patent Publication No. 61-50051. There has been proposed a method of periodically heating in a high temperature region and a low temperature region alternately and intermittently sampling the output of a gas sensor in the low temperature region to detect CO gas, and an improvement thereof. These are characterized in that the selectivity of CO detection is enhanced mainly by devising from the signal processing side.

【0006】また [文献4]特開平1−227951号公報 には、ガスにより抵抗値が変化する金属酸化物をセンサ
本体としたガスセンサにおいて、センサ本体の表面にゼ
オライトの被覆層を設けたガスセンサが提案されてい
る。これも狙いはCO検出の選択性を改良する点にあ
る。
Further, [Document 4] Japanese Patent Application Laid-Open No. 1-227951 discloses a gas sensor using a metal oxide whose resistance value changes with gas as a sensor body, in which a zeolite coating layer is provided on the surface of the sensor body. Proposed. This also aims at improving the selectivity of CO detection.

【0007】一般の半導体式ガスセンサの構成を図12
に示す。図12は、熱線半導体式センサの例で白金線コ
イル18を用いて、この白金線コイル18の表面に酸化
錫を主成分にパラジウムなどを添加した半導体膜19を
形成している。白金線に通電して、半導体膜を昇温する
とともに、電極線として抵抗値変化を捕らえるもので、
一酸化炭素濃度が低濃度の場合の感度が高いという特徴
がある。
FIG. 12 shows the structure of a general semiconductor gas sensor.
Shown in FIG. 12 shows an example of a hot wire semiconductor type sensor in which a platinum wire coil 18 is used, and a semiconductor film 19 in which palladium or the like is mainly added to tin oxide is formed on the surface of the platinum wire coil 18. It energizes the platinum wire to raise the temperature of the semiconductor film and captures the change in resistance as an electrode wire.
It is characterized by high sensitivity when the carbon monoxide concentration is low.

【0008】本発明の要点の一つであるガス選択透過膜
については、 [文献5]大久保達也、諸岡成冶、無機分離膜の現状と
今後の展開、ケミカルエンジニアリング、12、1(1
988、1989) に記載されている。ここでは、セラミックガス選択透過
膜すなわち無機分離膜の代表的な作製法と膜構造などが
紹介されている。しかし、無機分離膜をガスセンサに応
用することは、過去に試みられた例がない。
Regarding the gas selective permeable membrane which is one of the main points of the present invention, [Reference 5] Tatsuya Okubo, Seiji Morooka, Current status and future development of inorganic separation membranes, Chemical Engineering, 12, 1 (1)
988, 1989). Here, a typical production method of a ceramic gas selective permeable membrane, that is, an inorganic separation membrane, and a membrane structure are introduced. However, application of the inorganic separation membrane to the gas sensor has never been attempted in the past.

【0009】[0009]

【発明が解決しようとする課題】従来から実績のあるガ
ス漏れ警報器の場合は、人間が居住する室内環境での動
作を目的とするので、温度条件も緩やかで周囲温度の変
化が小さいのに対して、燃焼機器の場合には、センサは
機器の排ガス流路に設置することになる。センサの周囲
温度は、当然その設置場所により異なる。しかし、温度
変化が比較的緩やかな場所を選定したとしても燃焼機器
の負荷の変動に伴って強燃焼から弱燃焼の範囲で、少な
くとも30℃から300℃位まで、条件によっては50
0℃程度までの大きな温度変化が生じる。
In the case of a gas leak alarm device which has a proven track record, it is intended to operate in an indoor environment in which humans live, so the temperature condition is gentle and the change in ambient temperature is small. On the other hand, in the case of combustion equipment, the sensor is installed in the exhaust gas flow path of the equipment. The ambient temperature of the sensor naturally depends on the installation location. However, even if the location where the temperature change is relatively gradual is selected, it varies from the strong combustion to the weak combustion with the fluctuation of the load of the combustion equipment, at least from 30 ° C to 300 ° C, and depending on the condition, 50
A large temperature change up to about 0 ° C occurs.

【0010】接触燃焼式では、原理的に一酸化炭素の酸
化による燃焼熱を検知するため300℃を越えると出力
は得られなくなる。半導体式では、従来の技術を適用す
る限りこれだけの温度幅だと出力の変動幅が大きく、温
度誤差に埋もれて一酸化炭素の検出ができなくなるとい
う問題がある。
In the catalytic combustion type, since the combustion heat due to the oxidation of carbon monoxide is detected in principle, an output cannot be obtained when the temperature exceeds 300 ° C. In the semiconductor type, as long as the conventional technique is applied, if the temperature range is this much, the fluctuation range of the output is large, and there is a problem that carbon monoxide cannot be detected due to being buried in the temperature error.

【0011】さらに燃焼機器排ガス用センサに要求され
る特性は、温度誤差が少ないことだけではない。燃焼機
器のバーナ特性によって、一酸化炭素と同様に水素が発
生する。水素濃度の変動幅は、一酸化炭素の半分のレベ
ルから、倍のレベルまで変動する。
Further, the characteristics required of the exhaust gas sensor for combustion equipment are not limited to the small temperature error. Due to the burner characteristics of the combustion equipment, hydrogen is generated like carbon monoxide. The fluctuation range of the hydrogen concentration fluctuates from a half level of carbon monoxide to a double level.

【0012】この変動幅を吸収できる選択性がないと、
極めて誤動作の多いシステムとなり実用にならない。水
素に対する一酸化炭素の選択性高いものが求められる。
一般に一酸化炭素よりは、水素の方が反応性が高いた
め、ほとんど全ての化学センサにおいて水素は妨害作用
を示す。水素妨害の削除が大きな課題である。
If there is no selectivity that can absorb this fluctuation range,
It becomes a system with many malfunctions and is not practical. High selectivity of carbon monoxide to hydrogen is required.
Since hydrogen is generally more reactive than carbon monoxide, hydrogen exhibits an interfering action in almost all chemical sensors. Removing hydrogen interference is a major issue.

【0013】さらに、燃焼排気ガスでは、水蒸気分圧、
酸素分圧、炭酸ガス分圧が燃焼条件によって著しく変動
し、誤動作要因になる。従ってこの環境条件の変動に耐
え得る特性をもつガスセンサが求められるのに対して、
現状ではこれに答えるものは、ない。
Further, in the combustion exhaust gas, the partial pressure of water vapor,
Oxygen partial pressure and carbon dioxide partial pressure fluctuate remarkably depending on combustion conditions, which causes malfunction. Therefore, while a gas sensor with the characteristics that can withstand this change in environmental conditions is required,
There is currently no answer to this.

【0014】従来からガスセンサとして広く用いられて
いる化学センサの最大の課題は耐久性である。これは、
化学センサの機能の中心を担う、電極や触媒が反応の進
行とともに経時的に劣化することによる。特に、一酸化
炭素の検知を目的とする場合、センサは一般的に一酸化
炭素のみならず、水素などの還元ガスの妨害影響を強く
受ける。
The most important issue of chemical sensors that have been widely used as gas sensors has been durability. this is,
This is because the electrodes and catalysts that play a central role in the function of the chemical sensor deteriorate over time as the reaction progresses. Particularly, for the purpose of detecting carbon monoxide, the sensor is generally strongly affected by not only carbon monoxide but also reducing gas such as hydrogen.

【0015】基本的に触媒あるいは化学吸着現象を応用
する化学センサの場合、一般に触媒の耐久性と選択性と
は相反する面があり、前記の還元ガスの妨害影響を少な
くする目的で、化学センサの動作を触媒反応の活性化支
配側(低温側)で動作させると選択性は改善されるが、
触媒表面上への種々の被毒ガスの吸着が起こり易く、触
媒の劣化が速く進行し耐久性が持たない。逆に動作を拡
散支配側(高温側)で使うと選択性が悪くなる面があ
る。
In the case of a chemical sensor which basically applies a catalyst or a chemisorption phenomenon, the durability and the selectivity of the catalyst are generally contradictory with each other, and the chemical sensor is used for the purpose of reducing the interference effect of the reducing gas. When the operation of is operated on the activation control side (low temperature side) of the catalytic reaction, the selectivity is improved,
Adsorption of various poisonous gases onto the surface of the catalyst is likely to occur, and the catalyst deteriorates rapidly and has no durability. On the contrary, if the operation is used on the diffusion control side (high temperature side), the selectivity is deteriorated.

【0016】例えば、半導体型ガスセンサとしてTi4+
をドープしたαFe23に金微粒子を担持した素子を用
いるセンサの場合、極めてCOの水素、アルコールなど
に対する選択性は優れているが触媒の耐久性に欠点があ
る。前記文献2−4に記載の方法は、センサ自体が耐久
性に関係する各種被毒ガスから保護されていないため基
本的に素子の耐久性を改善するものではない。またこの
点では、ゼオライトは被毒ガスの除去効果が期待できる
が、但し、実際に効果を有効にしようとすればゼオライ
ト自体の細孔構造以上にゼオライト皮膜の細孔構造の制
御が必要になるが、これは、制御が極めて困難なため実
際上のゼオライトの効果が少なくなってしまう。すなわ
ち、この方法はガスセンサの選択性を向上させる効果は
あっても、耐久性向上にはあまり寄与しない。
For example, as a semiconductor type gas sensor, Ti 4+ is used.
In the case of a sensor using an element in which fine gold particles are supported on αFe 2 O 3 doped with, the selectivity of CO for hydrogen and alcohol is excellent, but the durability of the catalyst is disadvantageous. The methods described in Documents 2-4 do not basically improve the durability of the element because the sensor itself is not protected from various poisonous gases related to durability. In this respect, zeolite can be expected to have an effect of removing poisoning gas, however, in order to actually make the effect effective, it is necessary to control the pore structure of the zeolite coating more than the pore structure of the zeolite itself. However, since this is extremely difficult to control, the practical effect of zeolite is reduced. That is, although this method has the effect of improving the selectivity of the gas sensor, it does not contribute much to the improvement of durability.

【0017】金属酸化物半導体の抵抗変化を利用するガ
スセンサの場合、一般にガス漏れ警報器として実用化さ
れているが、耐久性は、通常3年程度とされている。こ
れは被毒ガスによる半導体酸化物の劣化が原因である。
一酸化炭素検知ガスセンサを燃焼機器に内蔵する場合、
ガスセンサの耐久性としては、10年程度が必要であ
り、従来技術に対しての大幅な耐久性の向上が求められ
る。
The gas sensor utilizing the resistance change of the metal oxide semiconductor is generally put into practical use as a gas leak alarm, but the durability is usually about 3 years. This is due to the deterioration of the semiconductor oxide due to the poisoning gas.
When incorporating a carbon monoxide detection gas sensor in a combustion device,
The durability of the gas sensor needs to be about 10 years, and a drastic improvement in durability over the conventional technology is required.

【0018】いずれの方式のセンサにおいてもセンサ機
能の中心を担う電極、または触媒、または増感剤などに
貴金属を用いる場合が多く、硫黄系化合物やシリコーン
系化合物で劣化し、耐久性の確保が非常に困難になって
いる。また燃焼機器排気ガスに共存する炭化水素は、分
子量も大きく、分子のサイズも大きいため、白金の表面
に吸着すると、一酸化炭素の吸着が阻害され、妨害ガス
として悪影響を及ぼす。
In any type of sensor, a noble metal is often used as an electrode, a catalyst, or a sensitizer that plays a central role in the sensor function, and it is deteriorated by a sulfur compound or a silicone compound to ensure durability. It's getting very difficult. Further, since hydrocarbons coexisting in exhaust gas of combustion equipment have a large molecular weight and a large molecule size, adsorption on the surface of platinum hinders the adsorption of carbon monoxide and adversely affects as a disturbing gas.

【0019】[0019]

【課題を解決するための手段】前記課題を解決するため
に、本発明のセンサは、加熱手段を備えており、同一基
板上に2対の櫛形電極を形成し、そのそれぞれの電極上
にN型半導体酸化物系焼結体膜を形成し、さらに一方の
N型半導体酸化物系焼結体膜上に多孔性の一酸化炭素お
よび水素酸化触媒膜、他方のN型半導体酸化物系焼結体
膜上に、一酸化炭素の酸化能力はないが水素酸化能力を
もつ多孔性水素選択酸化触媒膜を形成し用いるように構
成してある。
In order to solve the above-mentioned problems, the sensor of the present invention comprises heating means, two pairs of comb-shaped electrodes are formed on the same substrate, and N electrodes are formed on the respective electrodes. -Type semiconductor oxide-based sintered body film is formed, and a porous carbon monoxide and hydrogen oxidation catalyst film is further formed on one N-type semiconductor oxide-based sintered body film, and the other N-type semiconductor oxide-based sintered body is formed. A porous hydrogen selective oxidation catalyst film having no hydrogen monoxide oxidizing ability but carbon monoxide oxidizing ability is formed and used on the body membrane.

【0020】本センサを一般大気中、もしくは燃焼機器
の排ガス流路に配置した状態でのセンサの動作について
説明する。
The operation of the sensor in the general atmosphere or in the exhaust gas flow path of the combustion equipment will be described.

【0021】センサを動作させるための熱源は、センサ
が備えた加熱手段で達成される。必要に応じてサーミス
タなどの温度検知手段を併用して温度制御を実施しても
よい。加熱手段としては、電熱線または抵抗ヒータ膜な
ど各種手段が適用できる。抵抗ヒータ膜に用いる材料と
しては、白金など貴金属系が耐久性の点で望ましい。ま
た電熱線を用いる場合には、鉄−クロム系、ニッケル−
クロム系など用いることができる。
The heat source for operating the sensor is achieved by the heating means provided in the sensor. If necessary, temperature control may be performed by using a temperature detection means such as a thermistor together. As the heating means, various means such as a heating wire or a resistance heater film can be applied. As a material used for the resistance heater film, a noble metal such as platinum is preferable in terms of durability. When using a heating wire, iron-chromium, nickel-
A chrome-based material or the like can be used.

【0022】本発明は上記した第一の構成によって、一
酸化炭素を含有する燃焼排気ガスが来た場合、同一基板
上に形成された一方の電極側には多孔性の一酸化炭素お
よび水素酸化触媒膜が形成されており触媒膜で一酸化炭
素および水素などの還元ガスは全て酸化され、N型半導
体系焼結体膜上へは、還元ガスは到達しない。また他方
の電極側では、水素は酸化されるが一酸化炭素は酸化さ
れずにN型半導体系焼結体膜上に到達する。多孔性の一
酸化炭素および水素酸化触媒膜が形成された側のN型半
導体系酸化物焼結体膜は、温度、酸素、水蒸気などの環
境条件の変化により抵抗値が変化する。他方、多孔性水
素選択酸化触媒膜を形成した側では、上記環境条件の影
響に加えて、一酸化炭素の影響が加算される。この両方
の電極から得られる出力特性を用いて両者の差もしくは
比を出力として用いることで、一酸化炭素以外の環境条
件の影響がキャンセルされ、環境条件の変化に安定した
出力特性が得られる。一般にN型半導体酸化物系焼結体
膜においては、その表面にある吸着酸素が還元ガスと反
応することで減少し、そのポテンシャル障壁の高さと幅
が減少するため電子の移動が容易になり比抵抗が減少す
る。これらが温度特性、酸素分圧特性などをもつため妨
害となるわけであるが、本発明では、一酸化炭素出力の
みを取り出す構成により、出力の安定化を図っている。
実際に素子を構成する際に、両方の電極は厳密には、温
度もN型半導体酸化物系焼結体膜の膜厚なども異なるた
め微小の誤差を含む。この誤差影響を実用的に少なくす
るためには、センサの感度が高いことが必要である。
According to the first aspect of the present invention, when the combustion exhaust gas containing carbon monoxide comes in, porous carbon monoxide and hydrogen oxide are formed on one electrode side formed on the same substrate. Since the catalyst film is formed, the reducing gas such as carbon monoxide and hydrogen is all oxidized by the catalyst film, and the reducing gas does not reach the N-type semiconductor sintered body film. On the other electrode side, hydrogen is oxidized but carbon monoxide is not oxidized and reaches the N-type semiconductor sintered body film. The resistance value of the N-type semiconductor-based oxide sintered body film on the side where the porous carbon monoxide and hydrogen oxidation catalyst film is formed changes due to changes in environmental conditions such as temperature, oxygen and water vapor. On the other hand, on the side where the porous hydrogen selective oxidation catalyst film is formed, the influence of carbon monoxide is added in addition to the influence of the above environmental conditions. By using the output characteristics obtained from both of these electrodes and using the difference or ratio of the two as an output, the influence of environmental conditions other than carbon monoxide is canceled, and stable output characteristics can be obtained in response to changes in environmental conditions. In general, in an N-type semiconductor oxide-based sintered body film, the adsorbed oxygen on the surface of the film is reduced by reacting with a reducing gas, and the height and width of the potential barrier are reduced, which facilitates the transfer of electrons and increases the ratio. Resistance decreases. These have a temperature characteristic, an oxygen partial pressure characteristic, and the like, which is an obstacle, but in the present invention, the output is stabilized by the configuration in which only the carbon monoxide output is taken out.
Strictly speaking, when the device is constructed, both electrodes have minute errors because the temperature and the film thickness of the N-type semiconductor oxide-based sintered body film are different. In order to practically reduce the influence of this error, it is necessary that the sensitivity of the sensor is high.

【0023】本発明は、さらにガスセンサ機能素子部に
流入するガスを全てセラミック製ガス選択透過膜を通過
させて流入させる構成をとる。すなわち本発明のガスセ
ンサは、3〜100Åに細孔制御してなるセラミック製
ガス選択透過管を用いて、同一基板上に2対の櫛形電極
を形成し、そのそれぞれの電極上にN型半導体酸化物系
焼結体膜を形成し、さらに一方のN型半導体酸化物系焼
結体膜上に多孔性の一酸化炭素および水素酸化触媒膜、
他方のN型半導体酸化物系焼結体膜上に、一酸化炭素の
酸化能力はないが水素酸化能力をもつ多孔性水素選択酸
化触媒膜を形成した素子をセラミック製ガス選択透過管
内部に各電極からのリード線を取り出した状態にて収納
して封じ、さらにセラミック製ガス選択透過管の外部に
ヒータを配するように構成してある。
The present invention further has a structure in which all the gas flowing into the gas sensor functional element portion is caused to flow through the ceramic gas selective permeable membrane. That is, in the gas sensor of the present invention, two pairs of comb-shaped electrodes are formed on the same substrate by using a ceramic gas selective permeation tube whose pores are controlled to 3 to 100Å, and an N-type semiconductor oxide is formed on each of the electrodes. A sintered material film of a physical type is formed, and a porous carbon monoxide and hydrogen oxidation catalyst film is further formed on one of the sintered N type semiconductor oxide film,
An element in which a porous hydrogen selective oxidation catalyst film having no hydrogen monoxide oxidizing ability but carbon monoxide oxidizing ability was formed on the other N-type semiconductor oxide-based sintered body film was provided in each ceramic gas selective permeation tube. The lead wire from the electrode is taken out, housed and sealed, and a heater is arranged outside the ceramic gas selective permeation tube.

【0024】セラミックガス選択透過膜について以下に
説明する。セラミックガス選択透過膜は、すでに多孔性
セラミックまたは多孔性ガラスとして市販されているも
のを用いて作製する。多孔性セラミックまたは多孔性ガ
ラスはセラミックフィルターとして各種用途に利用され
ている。例えば、ビールの酵母の分離などに利用されて
いることはよく知られている。その孔径は0.05μm
から数μm程度である。このままでは、ガスの選択透過
性は得られないので、その細孔を埋めて細孔径を制御す
る必要がある。細孔径の制御方法としては、細孔の中に
ゾル−ゲル皮膜を形成して行う方法または、熱分解によ
り細孔内に皮膜を形成して細孔を制御するCVD法など
が知られている。従来公知の各種皮膜形成法が適用可能
である。この中で例えば、金属アルコキシドの分解反応
(ゾルゲル法)やCVD反応を利用して細孔径をガスの
分子拡散領域の孔径まで制御できる。これらの方法で孔
径は、2Åから数Å程度までの均一な細孔に制御でき
る。このような細孔のサイズは、ガス分子のサイズであ
り、細孔内のガスの移動は細孔表面の物質とガスとの相
互作用の影響も加わり現実には複雑な拡散特性をもつ
が、基本的にはガス透過速度は、クヌッセン拡散から分
子篩の拡散の領域になり、ガスの分子量の平方根に逆比
例し透過を規制するため分子のサイズの大きな分子の透
過を著しく阻害する特性をもつ。大きなサイズの分子
は、選択透過膜を通過することができない。
The ceramic gas selective permeable membrane will be described below. The ceramic gas selective permeable membrane is prepared by using a commercially available porous ceramic or porous glass. Porous ceramic or porous glass is used as a ceramic filter in various applications. For example, it is well known that it is used for separating yeast from beer. The pore size is 0.05 μm
To several μm. As it is, the selective permeability of gas cannot be obtained, so that it is necessary to fill the pores to control the pore diameter. As a method of controlling the pore diameter, a method of forming a sol-gel coating in the pores, or a CVD method of forming a coating in the pores by thermal decomposition to control the pores is known. . Various conventionally known film forming methods can be applied. Among them, for example, the pore diameter can be controlled to the pore diameter of the gas molecular diffusion region by utilizing the decomposition reaction of metal alkoxide (sol-gel method) or the CVD reaction. With these methods, the pore diameter can be controlled to be uniform pores of 2Å to several Å. The size of such pores is the size of gas molecules, and the movement of the gas in the pores has the effect of interaction between the substance on the surface of the pores and the gas, but actually has a complicated diffusion property. Basically, the gas permeation rate is in the region of Knudsen diffusion to molecular sieve diffusion, and is inversely proportional to the square root of the molecular weight of the gas and regulates permeation, so that it has the property of significantly impeding the permeation of molecules of large size. Large size molecules cannot pass through the permselective membrane.

【0025】本発明では、3〜100Åに、実用的には
5〜100Å、好ましくは3〜10Åに細孔制御したセ
ラミック製ガス選択透過管を用いて、基本的にガスセン
サを内部に収納したような状態でセンサを構成する。
In the present invention, a gas selective permeation tube made of ceramics whose pore size is controlled to 3 to 100 Å, practically 5 to 100 Å, and preferably 3 to 10 Å is used, and it seems that the gas sensor is basically housed inside. Configure the sensor in this state.

【0026】すなわち、一般大気中、もしくは燃焼機器
の排ガス中に含まれるガスは、最初に、細孔制御された
細孔へと拡散するが、細孔径より分子サイズの大きなガ
スたとえば、灯油蒸気やシリコーンオリゴマーなどは、
センサの内部へ透過できない。またSO2やNO2などの
反応性ガスは、分子量が大きいので細孔内を拡散し難
く、ガス検知部まで到達する量が減少する。酸素、一酸
化炭素、窒素などの低分子のガス分子はクヌッセン拡散
に近い状態でガス検知部に自由に到達できる。細孔径の
サイズが極めて重要で細孔径が100Åを越えるとガス
の選択透過性が得られない。逆に3Åより小さくなる
と、対象とするCO、O2などの分子が透過できなくな
る。また、実用的には5〜100Åがよい。これはガス
選択透膜を製造する際に比較的製造が容易である範囲と
なるためである。さらに、望ましくは、ガスの選択透過
性を発揮するためには、3〜10Åの細孔径にすること
が望ましい。この場合、ガスの拡散は分子篩の領域とな
り完全な選択透過性が得られる。10Å以上100Åま
での場合にも、クヌッセン拡散の領域になり、大きなサ
イズの分子は流入を規制される効果をもつため、電極ま
たは触媒の劣化を防止し、長寿命化の寄与が期待でき
る。
That is, the gas contained in the general atmosphere or in the exhaust gas of a combustion device first diffuses into the pores whose pores are controlled, but a gas having a larger molecular size than the pore diameter, such as kerosene vapor or Silicone oligomers, etc.
Cannot penetrate into the sensor. Further, since reactive gases such as SO 2 and NO 2 have a large molecular weight, it is difficult for them to diffuse in the pores, and the amount reaching the gas detection portion decreases. Low-molecular gas molecules such as oxygen, carbon monoxide, and nitrogen can freely reach the gas detection unit in a state similar to Knudsen diffusion. The size of the pore size is extremely important, and if the pore size exceeds 100Å, selective permeability of gas cannot be obtained. On the other hand, if it is smaller than 3Å, target molecules such as CO and O 2 cannot permeate. Moreover, 5-100Å is practically preferable. This is because the production is relatively easy when producing the gas selective permeable membrane. Furthermore, it is desirable that the pore size is 3 to 10 Å in order to exert the selective permeability of gas. In this case, the diffusion of gas is in the region of the molecular sieve, and complete selective permeability is obtained. Even in the case of 10 Å or more and 100 Å or more, it becomes a Knudsen diffusion region, and since the large-sized molecule has the effect of restricting the inflow, deterioration of the electrode or the catalyst can be prevented, and a long life can be expected to be contributed.

【0027】またセンサをガス選択透過管の中に収納す
ることで、センサの温度影響が小さくなる。すなわち、
裸で用いるセンサの場合、温度依存性は、センサ表面で
の吸着を始めとした酸化・還元反応など複雑な反応過程
を含むためこれらの反応過程は、温度に対して指数関数
的な特性を持つことから大きな温度係数を持つことにな
る。これに対して、ガス選択透過管の中に収納した場
合、周囲温度の影響を避けるため、温度を高い側で使う
と反応律速は、ガス透過管からの拡散支配型となり、拡
散定数の温度依存性は、温度に対して、1.7乗で変化
するため、結果的に温度特性が安定することにもなる。
Further, by housing the sensor in the gas selective permeation tube, the temperature effect of the sensor is reduced. That is,
In the case of a bare sensor, temperature dependence includes complicated reaction processes such as oxidation and reduction reactions such as adsorption on the sensor surface, and these reaction processes have exponential characteristics with respect to temperature. Therefore, it has a large temperature coefficient. On the other hand, when the gas is housed in a gas selective permeation tube, the reaction rate is controlled by diffusion from the gas permeation tube when the temperature is used on the higher side in order to avoid the influence of ambient temperature. Since the sex changes with the power of 1.7 with respect to the temperature, the temperature characteristics are eventually stabilized.

【0028】本発明のセンサは、センサへのガスの出入
口に相当する部分に、3〜100Åに細孔制御されたセ
ラミック製ガス選択透過管を用いるので、このガス選択
透過管のもつガス選択透過機能により、ガス検知機能に
関わるセンサ検出部にセンサ寿命に悪影響を及ぼすシリ
コーンや重質炭化水素さらにはSO2やNOxなどの被毒
性ガスは到達しないため、従来技術と比較して、圧倒的
に長寿命になる。
Since the sensor of the present invention uses a ceramic gas selective permeation tube whose pores are controlled to 3 to 100 Å in the portion corresponding to the gas inlet / outlet to the sensor, the gas selective permeation tube of this gas selective permeation tube has. Depending on the function, the sensor detection section related to the gas detection function does not reach silicone and heavy hydrocarbons, and poisonous gases such as SO 2 and NO x that adversely affect the sensor life. It will have a long life.

【0029】[0029]

【発明の実施の形態】本発明は、加熱手段を備えてなる
ガスセンサにおいて、同一基板上に2対の櫛形電極を形
成し、そのそれぞれの電極上にN型半導体酸化物系焼結
体膜を形成しさらに一方のN型半導体酸化物系焼結体膜
上に多孔性の一酸化炭素および水素酸化触媒膜、他方の
N型半導体酸化物系焼結体膜上に、一酸化炭素の酸化能
力はないが水素酸化能力をもつ多孔性水素選択酸化触媒
膜を形成して成る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a gas sensor provided with heating means, in which two pairs of comb-shaped electrodes are formed on the same substrate, and an N-type semiconductor oxide-based sintered body film is formed on each of the electrodes. A porous carbon monoxide and hydrogen oxidation catalyst film formed on one of the N-type semiconductor oxide-based sintered body films, and an oxidizing ability of carbon monoxide on the other N-type semiconductor oxide-based sintered body film. However, it is formed by forming a porous hydrogen selective oxidation catalyst film having a hydrogen oxidation ability.

【0030】N型半導体酸化物系焼結体膜は、一酸化炭
素を検出すると抵抗値が低下するが、燃焼排ガスに用い
る場合に一酸化炭素以外の各種要因により抵抗値が変化
する。その要因は物理的要因と化学的要因に分けられ
る。物理的には、温度、化学的には水素などの還元性ガ
スの影響である。本発明では、2つの抵抗検出部におい
て片方は一酸化炭素に加えてその他の要因が加算された
変化、他方は一酸化炭素は除去されそれ以外の要因が加
算された変化を示す。この両者の差または比をとること
で一酸化炭素以外の要因がキャンセルされて純粋に一酸
化炭素の影響が取り出せる。さらに、比毒などの劣化影
響を受けやすい電極およびN型半導体酸化物系膜が多孔
性触媒膜で保護されるため長寿命化が見込めることにな
る。触媒膜層は多孔質であれば膜厚を大きくとれ、その
方が触媒性能も有利になり、耐久性と両立する。
The resistance value of the N-type semiconductor oxide-based sintered body film decreases when carbon monoxide is detected, but when used in combustion exhaust gas, the resistance value changes due to various factors other than carbon monoxide. The factors are divided into physical factors and chemical factors. Physically, it is the effect of temperature and chemically reducing gas such as hydrogen. In the present invention, one of the two resistance detection units shows a change in which other factors are added in addition to carbon monoxide, and the other shows a change in which carbon monoxide is removed and other factors are added. By taking the difference or ratio between the two, factors other than carbon monoxide are canceled and the effect of carbon monoxide can be extracted purely. Furthermore, the electrode and the N-type semiconductor oxide-based film, which are easily affected by deterioration such as specific poison, are protected by the porous catalyst film, so that a long life can be expected. If the catalyst film layer is porous, the film thickness can be increased, and the catalyst performance becomes more advantageous and compatibility with durability is achieved.

【0031】第二の構成は、上記素子をガス選択透過管
の中に収納して用いることでセンサ機能部に拡散するガ
スを規制し制御するものである。すなわち、ガスの総量
が少なくなることまたセンサ機能部の被毒を受けやすい
高分子量のガスは、透過させないまたは透過し難くする
ことで長寿命化をはかるものである。またセンサの温度
支配を拡散支配型に移行させることで温度特性の安定化
を実現できる。
In the second configuration, the above element is housed in a gas selective permeation tube and used to regulate and control the gas diffused to the sensor function section. In other words, the total amount of gas is reduced, and the high molecular weight gas that is easily poisoned by the sensor function section is not permeated or is difficult to permeate, thereby extending the life. Further, the temperature characteristics of the sensor can be stabilized by shifting the temperature control of the sensor to the diffusion control type.

【0032】第三の構成は、加熱手段を備えており、同
一基板上に2対の櫛形電極を形成し、それぞれの電極上
に一酸化炭素の増感剤を含有して成るN型半導体酸化物
系焼結体膜を形成し、さらに一方の一酸化炭素検出の増
感剤を含有して成るN型半導体酸化物系焼結体膜上に多
孔性一酸化炭素および水素酸化触媒膜、他方の一酸化炭
素検出の増感剤を含有して成るN型半導体酸化物系焼結
体膜上に、一酸化炭素の酸化能力はないが水素酸化能力
をもつ多孔性選択水素酸化触媒膜を形成し用いるように
構成してある。
A third structure is provided with a heating means, and two pairs of comb-shaped electrodes are formed on the same substrate, and an N-type semiconductor oxide containing a carbon monoxide sensitizer is provided on each electrode. Porous carbon monoxide and hydrogen oxidation catalyst film on the other side of the N-type semiconductor oxide-based sintered body film, which is formed by further forming a sintered body film of a material and further containing a sensitizer for detecting carbon monoxide, A porous selective hydrogen oxidation catalyst film having carbon monoxide oxidizing ability but not hydrogen monoxide oxidizing ability is formed on an N-type semiconductor oxide based sintered body film containing a sensitizer for carbon monoxide detection. It is configured to be used.

【0033】第四の構成は、加熱手段を備えており、同
一基板上に2対の櫛形電極を形成し、それぞれの電極上
に一酸化炭素の増感剤を含有して成るN型半導体酸化物
系焼結体膜を形成し、さらに一方の一酸化炭素検出の増
感剤を含有して成るN型半導体酸化物系焼結体膜上に、
Co,Mn,Cu,Fe,Cr,Niのの群から選定し
てなる一種以上の元素の酸化物および複合酸化物をセラ
ミック繊維中に混抄してなるセラミックペーパー膜を形
成し、他方の一酸化炭素検出の増感剤を含有して成るN
型半導体酸化物系焼結体膜上に、Zn,Sn,Inの群
から選定してなる一種以上の元素の酸化物および複合酸
化物をセラミック繊維中に混抄してなるセラミックペー
パー膜を形成して用いるように構成してある。すなわち
第五の構成は、多孔性と反応性に優れた多孔性触媒膜に
関するもので、同一基板上に2対の櫛形電極を形成し、
それぞれの電極上に一酸化炭素の増感剤を含有して成る
N型半導体酸化物系焼結体膜を形成し、さらに一方の一
酸化炭素検出の増感剤を含有して成るN型半導体酸化物
系焼結体膜上に、Co,Mn,Cu,Fe,Cr,Ni
の群から選定してなる一種以上の元素の酸化物および複
合酸化物をセラミック繊維中に混抄してなるセラミック
ペーパー膜を形成し、他方の一酸化炭素検出の増感剤を
含有して成るN型半導体酸化物系焼結体膜上に、Zn,
Sn,Inの群から選定してなる一種以上の元素の酸化
物および複合酸化物をセラミック繊維中に混抄してなる
セラミックペーパー膜を用いることによりN型半導体酸
化物系焼結体膜への検出すべきガスの速やかな拡散を妨
げることなく、触媒作用も高活性化できるものである。
この構成によって、触媒膜の厚みをとることができるの
でまた実際に、触媒膜は拡散性を損なわない範囲におい
て厚い方が有利になる。この構成の触媒膜により、SO
2やNO2などの被毒ガスが吸収除去されるので、N型半
導体酸化物系焼結体膜および櫛形電極が保護され耐久性
の向上も見込める。
A fourth structure is provided with a heating means, and two pairs of comb-shaped electrodes are formed on the same substrate, and an N-type semiconductor oxide containing a carbon monoxide sensitizer is formed on each electrode. On the N-type semiconductor oxide-based sintered body film formed by forming a material-based sintered body film and further containing a sensitizer for detecting carbon monoxide.
Forming a ceramic paper film by mixing oxides of one or more elements selected from the group of Co, Mn, Cu, Fe, Cr, Ni and composite oxides into ceramic fibers, and forming the other one of the oxidation N comprising a carbon-sensitizing sensitizer
A ceramic paper film formed by mixing oxides of one or more elements selected from the group of Zn, Sn, In and composite oxides into ceramic fibers is formed on the type-type semiconductor oxide-based sintered body film. It is configured to be used. That is, the fifth structure relates to a porous catalyst film having excellent porosity and reactivity, in which two pairs of comb electrodes are formed on the same substrate,
An N-type semiconductor formed by forming a carbon monoxide sensitizer film on each electrode and forming an N-type semiconductor oxide-based sintered body film, and further containing a carbon monoxide detection sensitizer film. Co, Mn, Cu, Fe, Cr, Ni on the oxide-based sintered body film
N containing a sensitizer for detecting carbon monoxide and forming a ceramic paper film by mixing an oxide of one or more elements selected from the group On the type semiconductor oxide-based sintered body film,
Detection of N-type semiconductor oxide-based sintered body film by using a ceramic paper film formed by mixing papers of oxides and composite oxides of one or more elements selected from the group of Sn and In The catalytic action can be highly activated without hindering the rapid diffusion of the gas to be used.
With this configuration, the thickness of the catalyst film can be increased, and actually, it is advantageous that the catalyst film is thick as long as the diffusion property is not impaired. With the catalyst film of this structure, SO
Since the poisoning gas such as 2 and NO 2 is absorbed and removed, the N-type semiconductor oxide-based sintered body film and the comb-shaped electrode are protected, and the durability can be expected to be improved.

【0034】触媒膜として、焼結膜などを用いた場合に
は、酸化能力は高くても反応ガスの拡散を妨害し、著し
く応答性を損なうのに対して、触媒能力とガスの拡散性
すなわちセンサの応答性をバランス良く両立させること
ができる。
When a sintered film or the like is used as the catalyst film, it hinders the diffusion of the reaction gas even if it has a high oxidizing ability and significantly impairs the responsiveness, while the catalyst ability and the gas diffusibility, that is, the sensor. It is possible to achieve a good balance of both responsiveness.

【0035】第五の構成は、基板の片面に2対の櫛形電
極膜を形成し、2対のそれぞれの櫛形電極膜上にN型半
導体酸化物系焼結体膜を積層し、その片方のN型半導体
酸化物系焼結体膜上に多孔性の一酸化炭素および水素酸
化触媒膜、他方のN型半導体酸化物系焼結体膜上に、一
酸化炭素の酸化能力はないが水素酸化能力をもつ多孔性
水素選択酸化触媒膜を形成し、さらに基板の裏面にヒー
タ膜を形成して用いるように構成してある。第六の構成
は、センサの温度安定性および加熱の温度エネルギーの
低減化に関し、センサと同一基板上にヒータ膜も同時に
形成したものでセンサの特性を安定化させる。とくに温
度追随性に優れるため、通常の半導体式素子で行う高温
加熱と低温加熱を周期的に繰り返し、高温加熱時にN型
半導体酸化物系焼結体の酸化膜を安定に形成して高比抵
抗状態にした後、より感度の高い低温加熱時の比抵抗を
出力として取り込むことにより素子の安定化と高感度化
を図る利用法も可能ならしめるものである。
In the fifth structure, two pairs of comb-shaped electrode films are formed on one surface of the substrate, an N-type semiconductor oxide-based sintered body film is laminated on each of the two pairs of comb-shaped electrode films, and one of the two films is laminated. A porous carbon monoxide and hydrogen oxidation catalyst film is formed on the N-type semiconductor oxide-based sintered body film, and hydrogen oxidation is performed on the other N-type semiconductor oxide-based sintered body film, although the carbon monoxide has no oxidizing ability. A porous hydrogen selective oxidation catalyst film having an ability is formed, and a heater film is further formed on the back surface of the substrate for use. The sixth configuration relates to the temperature stability of the sensor and the reduction of heating temperature energy, and the heater film is also formed on the same substrate as the sensor at the same time to stabilize the characteristics of the sensor. In particular, because of its excellent temperature following property, high-temperature heating and low-temperature heating, which are performed by ordinary semiconductor elements, are periodically repeated, and the oxide film of the N-type semiconductor oxide-based sintered body is stably formed at the time of high-temperature heating to achieve a high specific resistance. It is also possible to use the device for stabilizing the device and increasing the sensitivity by taking in the specific resistance at the time of heating at a low temperature, which has a higher sensitivity, as an output after the state.

【0036】第六の構成は、略円筒状基板の外表面上に
一対の櫛形電極膜を形成し、2組の櫛形電極膜上にN型
半導体酸化物系焼結体膜を積層し、その片方のN型半導
体酸化物系焼結体膜上に多孔性の一酸化炭素および水素
酸化触媒膜、他方のN型半導体酸化物系焼結体膜上に、
一酸化炭素の酸化能力はないが水素酸化能力をもつ多孔
性水素選択酸化触媒膜を形成し、円筒内部にヒータ線を
配して用いるように構成してある。
In the sixth structure, a pair of comb-shaped electrode films are formed on the outer surface of a substantially cylindrical substrate, and an N-type semiconductor oxide-based sintered body film is laminated on the two sets of comb-shaped electrode films. On one of the N-type semiconductor oxide-based sintered body films, a porous carbon monoxide and hydrogen oxidation catalyst film, and on the other N-type semiconductor oxide-based sintered body film,
A porous hydrogen selective oxidation catalyst film having hydrogen monoxide oxidizing ability but not carbon monoxide oxidizing ability is formed, and a heater wire is arranged inside the cylinder for use.

【0037】また基板の片面に2対の櫛形電極膜を形成
し、2対のそれぞれの櫛形電極膜上にN型半導体酸化物
系焼結体膜を積層し、その片方のN型半導体酸化物系焼
結体膜上に多孔性の一酸化炭素および水素酸化触媒膜、
他方のN型半導体酸化物系焼結体膜上に、一酸化炭素の
酸化能力はないが水素酸化能力をもつ多孔性水素選択酸
化触媒膜を形成し、さらに基板の裏面にヒータ膜を形成
した素子を、3〜100Åに細孔制御してなるセラミッ
ク製ガス選択透過管内部に各電極からのリード線および
ヒータ線を取り出した状態で収納して封じるように構成
してある。また略円筒状基板の外表面上に一対の櫛形電
極膜を形成し、2組の櫛形電極膜上にN型半導体酸化物
系焼結体膜を積層し、その片方のN型半導体酸化物系焼
結体膜上に多孔性の一酸化炭素および水素酸化触媒膜、
他方のN型半導体酸化物系焼結体膜上に、一酸化炭素の
酸化能力はないが水素酸化能力をもつ多孔性水素選択酸
化触媒膜を形成し、円筒内部にヒータ線を配した素子
を、3〜100Åに細孔制御してなるセラミック製ガス
選択透過管内部に各電極からのリード線およびヒータ線
を取り出した状態で収納して封じるように構成してあ
る。第七の構成にすることで素子の温度の安定化と小型
化を見込めるものである。略円筒状基板の内部にヒータ
線を配しているので、平板の場合と比較すると温度は径
方向に対して安定し易い利点がある。また耐久性の更な
る改善の目的で収納するガス選択透過管への収納性も良
い利点がある。
Further, two pairs of comb-shaped electrode films are formed on one surface of the substrate, and an N-type semiconductor oxide-based sintered body film is laminated on each of the two pairs of comb-shaped electrode films. Porous carbon monoxide and hydrogen oxidation catalyst film on the sintered sintered body film,
On the other N-type semiconductor oxide-based sintered body film, a porous hydrogen selective oxidation catalyst film having no hydrogen monoxide oxidizing ability but carbon monoxide oxidizing ability was formed, and further a heater film was formed on the back surface of the substrate. The element is configured to be housed and sealed in a state in which lead wires and heater wires from each electrode are taken out inside a ceramic gas selective permeation tube having fine pores controlled to 3 to 100 Å. Further, a pair of comb-shaped electrode films is formed on the outer surface of the substantially cylindrical substrate, and an N-type semiconductor oxide-based sintered body film is laminated on the two sets of comb-shaped electrode films. Porous carbon monoxide and hydrogen oxidation catalyst film on the sintered film,
On the other N-type semiconductor oxide-based sintered body film, a porous hydrogen selective oxidation catalyst film which does not have the oxidizing ability of carbon monoxide but has a hydrogen oxidizing ability is formed, and an element having a heater wire inside the cylinder is formed. The ceramic gas selective permeation tube having pores controlled to 3 to 100 Å is constructed so that the lead wire and the heater wire from each electrode are taken out and housed and sealed. The seventh structure is expected to stabilize the temperature of the device and reduce the size of the device. Since the heater wire is arranged inside the substantially cylindrical substrate, there is an advantage that the temperature is easily stabilized in the radial direction as compared with the case of a flat plate. There is also an advantage that the gas selective permeation tube, which is housed for the purpose of further improving durability, can be housed.

【0038】第七の構成は、前記基板として多孔質基板
を用いるように構成してある。第八の構成は、前記N型
半導体膜として、多孔質膜を用いるように構成してあ
る。
In the seventh structure, a porous substrate is used as the substrate. The eighth configuration is configured to use a porous film as the N-type semiconductor film.

【0039】第七、第八の構成はいずれも、N型半導体
酸化物系焼結体膜の一酸化炭素に対する感度が高くなる
ものであり、一層安定した出力特性が得られることにな
る。
In both the seventh and eighth configurations, the sensitivity of the N-type semiconductor oxide-based sintered body film to carbon monoxide is high, and more stable output characteristics can be obtained.

【0040】以下、本発明の実施例について図面を用い
て説明する。 (実施例1)図1は本発明の一実施例の半導体式ガスセ
ンサの断面図である。図1において、1がセラミック基
板である。図1では電極膜などをセラミック基板の表裏
面に形成しているが、これは同一基板上であれば、特に
平板でなくても良い。セラミック基板の材質は、アルミ
ナなどの一般的に基板として用いられるものの適用が可
能である。基板1の上にある2が櫛形電極で、金、パラ
ジウム、白金などの導電性金属の皮膜で、ペーストを用
いて所定のパターンをスクリーン印刷にて形成または所
定のパターンでのマスキング治具を用いての真空蒸着、
スパッタリングなどの薄膜を形成しても良い。また転写
して形成しても良い。3が前記櫛形の上に形成したN型
半導体酸化物系焼結体膜である。酸化錫、酸化亜鉛、酸
化インジウムなどのN型半導体酸化物を主成分としてア
ルミニウム、シリコン、マグネシウム、ストロンチウ
ム、バリウム、タンタル、ニオブ、チタン、ランタン、
セリウムなどの典型元素、アルカリ土類金属、希土類元
素の酸化物を単独もしくは複合して添加物として用いて
も良い。これらの皮膜は、主として厚膜法すなわちペー
ストを塗布もしくは印刷したのち焼成または乾燥によっ
て形成される。またプラズマ溶射、スパッタリング、レ
ーザーアブレーションなどの乾式法、薄膜法でも形成す
ることができる。例えば、厚膜法の場合は、上記金属酸
化物粉末などをガラスなどの結合材とカルボキシメチル
セルロースなどのペースト特性を調整する高分子添加剤
を溶剤とともに自動乳鉢や三本ロールミルなどの分散機
を用いて、ペースト化し、スクリーン印刷法で印刷、乾
燥、焼成して作製する。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view of a semiconductor gas sensor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a ceramic substrate. In FIG. 1, the electrode films and the like are formed on the front and back surfaces of the ceramic substrate, but they need not be flat plates as long as they are on the same substrate. As a material of the ceramic substrate, a material generally used as a substrate such as alumina can be applied. Reference numeral 2 on the substrate 1 is a comb-shaped electrode, which is a film of a conductive metal such as gold, palladium, or platinum, and a paste is used to form a predetermined pattern by screen printing or a masking jig with a predetermined pattern is used. Vacuum deposition,
A thin film such as sputtering may be formed. It may also be formed by transfer. 3 is an N-type semiconductor oxide-based sintered body film formed on the comb shape. Aluminum, silicon, magnesium, strontium, barium, tantalum, niobium, titanium, lanthanum containing N-type semiconductor oxides such as tin oxide, zinc oxide, and indium oxide as main components,
Oxides of typical elements such as cerium, alkaline earth metals, and rare earth elements may be used alone or in combination as an additive. These films are formed mainly by a thick film method, that is, by applying or printing a paste and then baking or drying. It can also be formed by a dry method such as plasma spraying, sputtering, laser ablation, or a thin film method. For example, in the case of a thick film method, a binder such as glass for the above metal oxide powder and a polymer additive for adjusting paste characteristics such as carboxymethyl cellulose are used together with a solvent in a disperser such as an automatic mortar or a triple roll mill. Then, it is made into a paste, printed by a screen printing method, dried, and baked to prepare.

【0041】4が多孔性一酸化炭素および水素酸化触媒
膜で、白金、ロジウム、パラジウムなどの貴金属をアル
ミナなどの多孔質担体に担持した触媒、または、鉄、ニ
ッケル、コバルト、ニッケル、クロムなどの遷移金属化
合物を反応主体とする酸化物またはペロブスカイト化合
物などの複合酸化物を主体とする触媒を用いて、塗布焼
成する方法など前記N型半導体酸化物系焼結体皮膜と同
様の方法により形成される。この多孔性一酸化炭素およ
び水素酸化触媒膜は、ガスの拡散性と併せて一酸化炭素
さらには、水素を完全に酸化する特性を持つ。アルミニ
ウム、マンガン、銅、金を除く上記酸化触媒では、一酸
化炭素以上に強い水素酸化能力を持つためである。すな
わち、下層のN型半導体酸化物系焼結体膜に各種ガスを
拡散させるが、その間に一酸化炭素、水素などは完全に
酸化する。5が、一酸化炭素の酸化能力はないが水素酸
化能力を持つ多孔性水素酸化触媒で、一酸化炭素の吸着
能力を持たないマグネシウム、銀、亜鉛、カドミウム、
錫、インジウムなどの酸化物もしくは複合酸化物を主体
とする触媒を用いて、塗布焼成する方法など前記と同様
の方法により形成される。この皮膜はガスの拡散性と併
せて水素の酸化能力を持つ。すなわち一酸化炭素など
は、下層のN型半導体酸化物系焼結体膜層に到達するが
水素のみ完全に酸化し、下層に到達させない。6は当ガ
スセンサが備えた加熱手段で各種ヒータなどの適用が可
能である。一酸化炭素を含有する燃焼排気ガス中に本素
子を配置した際、一酸化炭素および水素酸化触媒膜が形
成された側と一酸化炭素の酸化能力はないが水素酸化能
力をもつ触媒膜が形成された側とのおいて、N型半導体
膜による素子の抵抗値変化は、一酸化炭素酸化触媒側で
は、一酸化炭素以外の抵抗値変化要因により抵抗値が変
化するのに対して、他方は一酸化炭素とそれ以外の抵抗
値変化要因が合わさった変化を示す。これにより両者の
抵抗の差または抵抗比を採ることで一酸化炭素以外の抵
抗値変化の要因がキャンセルされる。信号の取り出し方
としては、両者の抵抗値をブリッジ回路を組んで偏差電
圧を取り出すようにすることができる。これにより、純
粋に近い一酸化炭素の抵抗値変化を検出することができ
る。
Reference numeral 4 denotes a porous carbon monoxide and hydrogen oxidation catalyst film, which is a catalyst in which a precious metal such as platinum, rhodium or palladium is supported on a porous carrier such as alumina, or iron, nickel, cobalt, nickel, chromium or the like. It is formed by the same method as the N-type semiconductor oxide-based sintered body coating, such as a method of coating and baking, using a catalyst mainly composed of an oxide mainly composed of a transition metal compound or a complex oxide such as a perovskite compound. It This porous carbon monoxide and hydrogen oxidation catalyst film has a property of completely oxidizing carbon monoxide and further hydrogen together with gas diffusibility. This is because the above-mentioned oxidation catalysts other than aluminum, manganese, copper, and gold have a stronger hydrogen oxidation ability than carbon monoxide. That is, various gases are diffused into the lower N-type semiconductor oxide-based sintered body film, but carbon monoxide, hydrogen, etc. are completely oxidized during that time. 5 is a porous hydrogen oxidation catalyst that does not have the ability to oxidize carbon monoxide but has the ability to oxidize hydrogen, and magnesium, silver, zinc, cadmium, which does not have the ability to adsorb carbon monoxide,
It is formed by a method similar to the above, such as a method of coating and baking, using a catalyst mainly composed of an oxide such as tin or indium or a complex oxide. This film has the ability to oxidize hydrogen as well as the diffusivity of gas. That is, carbon monoxide and the like reach the lower N-type semiconductor oxide-based sintered body film layer, but only hydrogen is completely oxidized and does not reach the lower layer. Reference numeral 6 denotes a heating means provided in the gas sensor, to which various heaters and the like can be applied. When this element is placed in the combustion exhaust gas containing carbon monoxide, the side where the carbon monoxide and hydrogen oxidation catalyst film is formed and the catalyst film that does not have the oxidation ability of carbon monoxide but has the hydrogen oxidation ability is formed. The resistance value change of the element due to the N-type semiconductor film is such that the resistance value changes on the carbon monoxide oxidation catalyst side due to the resistance value change factor other than carbon monoxide, while the other This shows the combined change of carbon monoxide and other factors that change the resistance value. As a result, by taking the difference or resistance ratio between the two, the factors of resistance value change other than carbon monoxide are canceled. As a method of extracting the signal, a deviation voltage can be extracted by forming a bridge circuit between the resistance values of the both. This makes it possible to detect a change in the resistance value of carbon monoxide that is nearly pure.

【0042】(実施例2)図2に本発明の他の実施例の
断面図を示す。図2は、図1の素子をガス選択透過管7
の中に収納したものである。また加熱手段6は、本実施
例では、ガス選択透過管7の外側にヒータ線を巻いた構
成を持つ。ヒータは電熱線を巻く構成の代わりに、ガス
選択透過管の外側に抵抗膜をメッキまたは印刷によりパ
ターン形成しても良い。図2におけるその他の記号は、
図1と同様である。ガス選択透過管7は、その細孔のサ
イズが3〜100Åに、実用的には5〜100Å、好ま
しくは3〜10Åに細孔制御してなるチューブ状のセラ
ミック製ガス選択透過膜である。セラミック製ガス選択
透過膜の材質としては、アルミナやコージェライトなど
を用いることができる。本センサの動作について説明す
る。本ガスセンサは、6のヒータによって、全体が15
0〜400℃となるように加熱される。一酸化炭素含有
空気と接触した場合、ガス分子は素子内部に7のセラミ
ック製ガス選択透過管のみを通して流入する。それから
先の動作は図1の場合と同様なので省略する。
(Embodiment 2) FIG. 2 shows a sectional view of another embodiment of the present invention. FIG. 2 shows the element of FIG.
It is stored inside. Further, the heating means 6 has a structure in which a heater wire is wound outside the gas selective permeation tube 7 in this embodiment. The heater may be formed by patterning a resistance film on the outside of the gas selective permeation tube by plating or printing instead of winding the heating wire. The other symbols in FIG. 2 are
It is similar to FIG. The gas selective permeation tube 7 is a tubular ceramic gas selective permeation membrane in which the pore size is controlled to 3 to 100Å, practically 5 to 100Å, and preferably 3 to 10Å. Alumina, cordierite, or the like can be used as the material of the gas selective permeable membrane made of ceramics. The operation of this sensor will be described. This gas sensor has a total of 15 heaters with 6 heaters.
It is heated to 0 to 400 ° C. When brought into contact with carbon monoxide-containing air, gas molecules flow into the element through the ceramic gas selective permeation tube 7 only. The operation after that is the same as that in the case of FIG.

【0043】以下で、3〜100Åの、実用的には5〜
100Å、好ましくは3〜10Åの細孔を有するセラミ
ック製ガス選択透過膜の作製法の中で有力な方法である
ゾルゲル法による多孔質膜の細孔径の制御方法について
説明する。基本製法は、精密濾過膜として一般に市販さ
れている1ミクロンレベルの細孔を持つセラミック多孔
体を基材として用いて、この細孔を閉じて作製するもの
である。
In the following, 3 to 100 Å, practically 5 to
A method of controlling the pore size of the porous membrane by the sol-gel method, which is a powerful method among the methods for producing a ceramic gas selective permeable membrane having pores of 100 liter, preferably 3 to 10 liter, will be described. In the basic production method, a ceramic porous body having a pore of 1 micron level, which is generally commercially available as a microfiltration membrane, is used as a base material, and the pores are closed.

【0044】アルミニウムイソプロボキシドやテトラエ
トキシシランなどの金属アルコキシドを加水分解後、塩
酸等の触媒条件下で縮重合させてゾル溶液を作成する。
このゾル溶液を貫通する孔をもつ親水性の多孔性セラミ
ックと接触させると、毛管力により水が吸引され、多孔
性セラミックまたはガラスの細孔内でゾルの濃縮さらに
はゲル化が起こる。必要により、ゾル溶液を多孔性セラ
ミックを用いて濾過する方法も採用できる。この現象を
利用して、細孔径の制御が可能になる。多孔性セラミッ
クの細孔を金属アルコキシドから得たゾル水溶液とを接
触させると、具体的には多孔質セラミックをソル溶液中
に短時間浸せきさせた後乾燥させると、細孔内でゲル化
が起こり、細孔が閉じる。多孔性セラミックまたはガラ
スの細孔表面の濡れ性、ゾルの濃度、浸せき時間を調整
することで2〜数Åレベルの均一な細孔径制御ができ
る。
After hydrolyzing a metal alkoxide such as aluminum isopropoxide or tetraethoxysilane, it is subjected to polycondensation under a catalytic condition such as hydrochloric acid to prepare a sol solution.
When this sol solution is brought into contact with a hydrophilic porous ceramic having pores penetrating the sol solution, water is sucked by the capillary force, and the sol is concentrated or gelated in the pores of the porous ceramic or glass. If necessary, a method of filtering the sol solution using a porous ceramic can also be adopted. By utilizing this phenomenon, the pore diameter can be controlled. When the pores of the porous ceramic are brought into contact with the sol aqueous solution obtained from the metal alkoxide, specifically, when the porous ceramic is dipped in the sol solution for a short time and then dried, gelation occurs in the pores. , The pores close. By adjusting the wettability of the surface of the pores of the porous ceramic or glass, the concentration of the sol, and the immersion time, uniform pore diameter control of 2 to several Å level can be achieved.

【0045】ゾル−ゲル法以外にCVD法で、流通系で
化合物を熱分解させながら多孔体の細孔内に酸化物を形
成成長させることで細孔制御を行っても良い。この方法
は円筒状のセラミックガス選択透過管を作製する方法と
して優れている。
In addition to the sol-gel method, the CVD method may be used to control the pores by thermally growing the compound in the flow system while forming and growing an oxide in the pores of the porous body. This method is excellent as a method for producing a cylindrical ceramic gas selective permeation tube.

【0046】このようにして作製した細孔は、高分子量
のガスは通過させない。また孔の内部に生成しているゲ
ル皮膜との相互作用により、ガス透過性に選択性がで
る。すなわち、ガス分子とゲル分子との分子間力は永久
双曲子間の相互作用による配向力および永久双曲子と誘
起双曲子間の誘起力およびファンデルワールス相互作用
に基づく分散力による。
High-molecular-weight gas does not pass through the pores thus produced. In addition, the interaction with the gel film formed inside the pores increases the gas permeability. That is, the intermolecular force between the gas molecule and the gel molecule is due to the orientation force due to the interaction between the permanent dipoles, the inductive force between the permanent dipole and the induced dipole, and the dispersion force based on the Van der Waals interaction.

【0047】(実施例3)図3に、基板として多孔性セ
ラミック基板10を用いた場合の実施例の断面の概念図
を示す。多孔性セラミック基板10を用いることで、そ
の上に形成される膜はいずれも多孔質になり、一酸化炭
素の検出感度を増大できる。多孔性セラミック基板は、
有機物微粒子をセラミック原料中に混ぜて焼成させる焼
結法により作製される。この方法で得られる、膜の細孔
径は細かくても0.1μm程度である。気孔率は、基板
強度を考慮して30%程度が望ましい。この多孔性基板
を用いた場合、ガスは基板を自由に透過して拡散するこ
とができる。
(Embodiment 3) FIG. 3 shows a conceptual diagram of a cross section of an embodiment in which a porous ceramic substrate 10 is used as a substrate. By using the porous ceramic substrate 10, all the films formed on the substrate become porous, and the detection sensitivity of carbon monoxide can be increased. The porous ceramic substrate is
It is produced by a sintering method in which organic fine particles are mixed in a ceramic raw material and fired. The fine pore diameter of the membrane obtained by this method is about 0.1 μm even if it is fine. The porosity is preferably about 30% in consideration of the substrate strength. When using this porous substrate, the gas can freely permeate and diffuse through the substrate.

【0048】(実施例4)図4に、多孔性N型半導体酸
化物系焼結体11を用いた場合の他の実施例の断面の概
念図を示す。多孔性N型半導体酸化物系焼結体11の作
製法は、例えば、厚膜法の場合は、上記金属酸化物粉末
などをガラスなどの結合材とカルボキシメチルセルロー
スなどのペースト特性を調整する高分子添加剤を溶剤と
ともに自動乳鉢や三本ロールミルなどの分散機を用い
て、ペースト化する際に添加物としてシリカゲルなどの
多孔性微粉末を添加する方法や樟脳などの揮発性微粉末
または、微結晶セルロースなどの熱分解性微粉末を添加
する方法などを用いてペースト化したものを、スクリー
ン印刷法で印刷、乾燥、焼成して作製することができ
る。このようにして作製した多孔性N型半導体酸化物系
焼結体は、前記多孔性基板と同様に検出すべき一酸化炭
素ガスの反応性が高く、高感度となる。
(Embodiment 4) FIG. 4 shows a conceptual diagram of a cross section of another embodiment in which the porous N-type semiconductor oxide-based sintered body 11 is used. The method for producing the porous N-type semiconductor oxide-based sintered body 11 is, for example, in the case of a thick film method, a polymer for adjusting the paste characteristics such as the above-mentioned metal oxide powder or the like with a binder such as glass and carboxymethyl cellulose. Using an automatic mortar or three-roll mill disperser with additives, a method of adding porous fine powder such as silica gel as an additive when forming a paste, or volatile fine powder such as camphor, or fine crystals. It can be produced by printing, drying and firing by a screen printing method, which is made into a paste by a method of adding a thermally decomposable fine powder such as cellulose. The porous N-type semiconductor oxide-based sintered body produced in this manner has high reactivity with the carbon monoxide gas to be detected as in the case of the porous substrate, and has high sensitivity.

【0049】(実施例5)図5に一酸化炭素の増感剤1
3を含有してなるN型半導体酸化物系焼結体層について
の要部断面の概念図を示す。増感剤13は、N型半導体
酸化物12とともに焼結体中に分散して用いる。増感剤
13の添加は、先のペーストに予め混合して用いるかま
たはN型半導体酸化物系焼結体を形成した後、担持して
添加することもできる。増感剤の働きは、一酸化炭素を
一度増感剤の表面に吸着して、N型半導体酸化物へとス
ピルオーバーさせて増感する作用のものとN型半導体酸
化物のバンド構造に作用し、導電性を増す作用のものが
あるが、本発明ではどちらの方式のものを用いても良
い。本発明に用い得る増感剤としては、金、白金、パラ
ジウム、ロジウムなどの貴金属または、鉄、マンガン、
銅、ニッケル、コバルト、クロムの元素の群から選定し
た一種以上の酸化物またはこれらの元素を活性中心とす
る複合酸化物が挙げられる。通常後者の酸化物は、P型
半導体酸化物特性を持つため、配合量が増大するとN型
半導体酸化物の特性をキャンセルする働きがあるため、
多くとも10%の配合量に留める必要がある。
Example 5 FIG. 5 shows carbon monoxide sensitizer 1
The conceptual diagram of the principal part cross section about the N-type semiconductor oxide type sintered compact layer containing 3 is shown. The sensitizer 13 is used by being dispersed in the sintered body together with the N-type semiconductor oxide 12. The sensitizer 13 may be added by mixing it in the above paste in advance or by carrying it after forming an N-type semiconductor oxide-based sintered body. The function of the sensitizer is that carbon monoxide is once adsorbed on the surface of the sensitizer and spills over to the N-type semiconductor oxide to sensitize it, and acts on the band structure of the N-type semiconductor oxide. Although it has a function of increasing conductivity, either method may be used in the present invention. The sensitizer that can be used in the present invention, gold, platinum, palladium, noble metals such as rhodium, or iron, manganese,
Examples thereof include one or more oxides selected from the group of elements of copper, nickel, cobalt, and chromium, or composite oxides having these elements as active centers. Usually, the latter oxide has a P-type semiconductor oxide property, and therefore has the function of canceling the N-type semiconductor oxide property when the blending amount increases,
It is necessary to keep the compounding amount at most 10%.

【0050】(実施例6)図6に本発明の触媒膜に関す
る一実施例の要部断面図を示す。14が触媒膜で、触媒
膜14はセラミック繊維16中に触媒粒子15を含有し
た構成をもつ。本触媒膜は、セラミック繊維をバインダ
ーおよび触媒粒子15とともに水溶液中に懸濁させ分散
させた状態から抄紙し、圧縮、乾燥して作製する。触媒
粒子15はセラミックペーパーの中に高活性な状態で存
在することから触媒膜として用いた際、通気性すなわち
ガスの透過性が極めて良好であり、触媒も高活性な状態
で用いることができる。
(Embodiment 6) FIG. 6 is a sectional view showing the principal part of an embodiment relating to the catalyst membrane of the present invention. Reference numeral 14 is a catalyst film, and the catalyst film 14 has a structure in which catalyst particles 15 are contained in a ceramic fiber 16. This catalyst membrane is produced by suspending and dispersing ceramic fibers in an aqueous solution together with a binder and catalyst particles 15 and then making paper from the suspended state, compressing and drying. Since the catalyst particles 15 are present in the ceramic paper in a highly active state, when used as a catalyst film, the gas permeability is extremely good, that is, gas permeability, and the catalyst can also be used in a highly active state.

【0051】ここで用いる触媒としては、片側の一酸化
炭素の完全酸化触媒としては、コバルト、マンガン、
鉄、銅、ニッケル、クロムの群から選定してなる一種以
上の元素の酸化物および複合酸化物が高活性で安価であ
る。当然、貴金属系の担持触媒を用いても良い。他方、
水素の選択酸化触媒としては、亜鉛、錫、インジウムの
群から選定した元素の酸化物および複合酸化物が優れた
選択性を持つので望ましい。
The catalyst used here is a complete oxidation catalyst for carbon monoxide on one side, and cobalt, manganese,
Oxides and complex oxides of one or more elements selected from the group of iron, copper, nickel, and chromium are highly active and inexpensive. Of course, a noble metal-based supported catalyst may be used. On the other hand,
As a selective oxidation catalyst of hydrogen, oxides and complex oxides of elements selected from the group of zinc, tin, and indium are preferable because they have excellent selectivity.

【0052】(実施例7)図7に本発明の他の実施例の
断面図を示す。図7では、基板1の片面側に2組のセン
サ系を持ち、裏面側にヒータ膜6を形成してある。図7
において、記号はすべて図1と同一である。ヒータ膜を
基板上に形成しているので、素子の動作に必要な加熱が
効率良く行えるため消費電力が少なくて良い。特に、セ
ンサの出力特性を高温と低温と2点で動作させる方式を
採用する際には、応答性の面で有利になる特徴がある。
(Embodiment 7) FIG. 7 shows a sectional view of another embodiment of the present invention. In FIG. 7, two sets of sensor systems are provided on one side of the substrate 1, and the heater film 6 is formed on the back side. Figure 7
In, all symbols are the same as in FIG. Since the heater film is formed on the substrate, the heating required for the operation of the device can be efficiently performed, so that the power consumption can be small. In particular, when a method of operating the output characteristics of the sensor at two points, that is, high temperature and low temperature, is adopted, it is advantageous in terms of responsiveness.

【0053】(実施例8)図8に本発明の他の実施例の
断面図を示す。図8において、Aはその断面図であり、
Bは基材である略円筒状基板17の要部断面図である。
他の記号はすべて前述の通りである。加熱手段6は、ヒ
ータ線を示す。円筒状基板への電極膜等の作製は、転写
法などの適用が望ましい。プラズマ溶射その他の乾式法
でも皮膜形成は可能である。図8の構成は、ガス選択透
過管内に本素子を収納するのに効率が良く、小型な素子
が形成できる利点がある。
(Embodiment 8) FIG. 8 shows a sectional view of another embodiment of the present invention. In FIG. 8, A is a sectional view thereof,
B is a cross-sectional view of an essential part of a substantially cylindrical substrate 17 which is a base material.
All other symbols are as described above. The heating means 6 is a heater wire. It is desirable to apply a transfer method or the like for producing the electrode film or the like on the cylindrical substrate. The film can be formed by plasma spraying or other dry method. The configuration of FIG. 8 has the advantage that the present element is efficiently stored in the gas selective permeation tube and a small element can be formed.

【0054】以下にガス選択透過管について説明する。
ガス選択透過管は、一般に焼結法により作製された精密
濾過用の目的に用いられているものをセラミックフィル
ターをベースとして、これを加工して作製する。焼結法
により作製されるセラミックフィルターは、細孔径が
0.1ミクロンが限界であるので、これをガス選択透過
の目的に利用できるようにするためには、この細孔を塞
ぐ処理が必要である。本発明では、市販のアルミナ精密
濾過管(2.2/1.8mmφ)を用いて、これをアル
ミニウムポリマーを用いて塞いで、ガス選択透過管とし
た。アルミニウムポリマーはゾル−ゲル法により作製し
た。すなわちアルミニウムイソプロポキシドを80℃に
て24時間加水分解したのち、塩酸触媒下で煮沸下で4
8時間重合反応させて作製した。ガス選択透過管の処理
は、先のポリマー溶液中にアルミナ精密濾過膜を約10
秒間浸せきしたのち約8時間室温で乾燥させた後に50
K/hで773Kまで焼成して作製した方法では細孔径
は、約800Åと大きかった。次に、アルミナポリマー
を用いて、約3分間、濾過膜で濾過させた後、約8時間
室温で乾燥させた後に50K/hで773Kまで焼成す
る操作を何回か繰り返して細孔径制御を行った。ベーマ
イト膜はγアルミナに変化していた。分画分子量の評価
および走査型電子顕微鏡で直接確認したところ約4回の
処理で細孔径は約50Åであった。このようにして、セ
ラミック製ガス選択透過管を作製した。このようにして
作製した。35cmの長さで処理し、必要なサイズにダ
イヤモンドカッターで切断してセンサに用いた。
The gas selective permeation tube will be described below.
The gas permselective tube is manufactured by processing a ceramic filter as a base, which is generally used for the purpose of precision filtration and manufactured by a sintering method. Since the ceramic filter produced by the sintering method has a pore size limit of 0.1 micron, it is necessary to treat the pores in order to use it for the purpose of selective gas permeation. is there. In the present invention, a commercially available alumina microfiltration tube (2.2 / 1.8 mmφ) was used, and this was closed with an aluminum polymer to form a gas selective permeation tube. The aluminum polymer was prepared by the sol-gel method. That is, aluminum isopropoxide was hydrolyzed at 80 ° C. for 24 hours, and then hydrolyzed with hydrochloric acid catalyst in 4
It was prepared by polymerizing for 8 hours. The gas selective permeation tube was treated with about 10 alumina microfiltration membranes in the polymer solution.
Soak for 50 seconds and dry at room temperature for about 8 hours, then 50
In the method produced by firing to 773K at K / h, the pore size was as large as about 800Å. Next, the pore diameter was controlled by repeating the operation of filtering the alumina polymer with a filtration membrane for about 3 minutes, followed by drying at room temperature for about 8 hours and then firing at 50K / h to 773K several times. It was The boehmite film had changed to γ-alumina. Evaluation of the molecular weight cutoff and direct confirmation with a scanning electron microscope revealed that the pore diameter was about 50 ° after about four treatments. In this way, a ceramic gas selective permeation tube was produced. It was produced in this way. It was treated with a length of 35 cm, cut into a required size with a diamond cutter, and used as a sensor.

【0055】またセンサは、1.2/0.8mmφ×4
mmのアルミナ管上に櫛形電極を形成し、下記の方法で
作製したペーストを電極上に約10μmnの膜厚で塗布
したのち、100℃で10分乾燥し、さらに400℃で
1時間焼成して作製した。ペーストはIn23粉末を1
00重量部に対して、25重量部のCuFe24粉末お
よび0.03重量部の微粒子状Auを自動乳鉢で溶剤、
ガラス、カルボキシメチルセルロースとともに約1時間
分散させた後、三本ロールで2回分散調合して作製し
た。
The sensor is 1.2 / 0.8 mmφ × 4
A comb-shaped electrode was formed on an alumina tube of mm, and the paste prepared by the following method was applied on the electrode to a film thickness of about 10 μmn, dried at 100 ° C. for 10 minutes, and further baked at 400 ° C. for 1 hour. It was made. The paste is In 2 O 3 powder 1
25 parts by weight of CuFe 2 O 4 powder and 0.03 parts by weight of particulate Au are used as a solvent in an automatic mortar with respect to 00 parts by weight,
After being dispersed together with glass and carboxymethyl cellulose for about 1 hour, it was prepared by dispersing and mixing twice with a three-roll mill.

【0056】図9に本素子を用いて、流通型の反応試験
装置で、一酸化炭素および水素をその配合比を変えて流
した時のセンサの一酸化炭素と抵抗値特性との関係を示
す。図9より、本系は極めて、水素妨害の影響を受けに
くい素子であることが分かる。
FIG. 9 shows the relationship between the carbon monoxide and the resistance value characteristics of the sensor when carbon monoxide and hydrogen were flowed in a flow-type reaction test device using this element while changing the compounding ratio thereof. . It can be seen from FIG. 9 that this system is an element that is extremely unlikely to be affected by hydrogen interference.

【0057】図10に800Åのガス選択透過管の内部
にセンサを収納した場合の一酸化炭素と抵抗値との関係
を、また図11に50Åの内部に上記で作製したセンサ
を収納した場合の一酸化炭素と抵抗値との関係を示す。
FIG. 10 shows the relationship between carbon monoxide and the resistance value when the sensor is housed inside the 800 Å gas selective permeation tube, and FIG. 11 shows the relationship between the sensor prepared above inside the 50 Å. The relationship between carbon monoxide and resistance is shown.

【0058】図10および図11より、ガス選択透過管
の中にセンサを収納することによって、センサの温度影
響が低減化されることが分かる。これは、センサの温度
特性が温度係数の小さな拡散支配型となったためである
と考えられる。この例のようにガス選択透過膜の中に収
納することで温度影響が小さくなる。
It can be seen from FIGS. 10 and 11 that the temperature effect of the sensor is reduced by housing the sensor in the gas selective permeation tube. It is considered that this is because the temperature characteristic of the sensor is a diffusion dominant type with a small temperature coefficient. By storing the gas in the gas selective permeable membrane as in this example, the influence of temperature is reduced.

【0059】次に耐久性の影響を確認するため燃焼機器
の排ガス通路にセンサを配置して、排ガスには加速促進
試験の目的でSO2を約100ppmさらに有機低分子
シリコーンを50ppm添加して、センサの経時変化を
調べた。従来技術に相当する裸のセンサでは、半導体方
式の場合で約50時間で劣化したのに対し、本発明の構
成のセンサでは、3000時間経過しても特性変化は認
められず安定であることを確認し、さらに継続評価中で
ある。
Next, in order to confirm the influence of durability, a sensor is arranged in the exhaust gas passage of the combustion equipment, and SO 2 is added to the exhaust gas in an amount of about 100 ppm and an organic low-molecular-weight silicone is added to the exhaust gas for the purpose of an accelerated acceleration test. The change with time of the sensor was examined. The bare sensor equivalent to the prior art deteriorated in about 50 hours in the case of the semiconductor method, whereas the sensor of the present invention is stable with no characteristic change observed after 3000 hours. It has been confirmed and is under continuous evaluation.

【0060】[0060]

【発明の効果】以上のように本発明のガスセンサによれ
ば、次の効果が得られる。
As described above, according to the gas sensor of the present invention, the following effects can be obtained.

【0061】(1)一酸化炭素の検出に関し、温度変化
をはじめ燃焼特性の変動により生じる環境変動に対して
2本のセンサで純粋に一酸化炭素に基づく出力信号を取
り出す工夫をしているため、安定性が高く燃焼機器等に
設置するのに好適である。
(1) Regarding the detection of carbon monoxide, since two sensors are used to extract an output signal purely based on carbon monoxide with respect to environmental changes caused by changes in combustion characteristics such as temperature changes. It is highly stable and suitable for installation in combustion equipment.

【0062】(2)化学センサの実用面で従来から最大
の課題とされていた耐久性に関して、厚みを厚く設定す
ることが可能な触媒層で妨害ガスを吸収できることと妨
害ガスのセンサへの到達を規制するガス選択透過管を用
いてこの中にセンサを収納するため、飛躍的な長寿命化
が見込まれ、極めて高信頼性のセンサシステムが構築で
きる。
(2) Regarding the durability, which has hitherto been the biggest problem in practical use of the chemical sensor, the catalyst layer capable of setting a large thickness can absorb the interference gas and reach the sensor. Since the sensor is housed in this by using a gas selective permeation tube that regulates, the life of the sensor is expected to be dramatically increased, and an extremely highly reliable sensor system can be constructed.

【0063】(3)センサ製造の面でも、量産性に優れ
た厚膜印刷法などの適用が可能であり、原理的にも小型
化が可能な構成のため小型化、省電力化が可能であり、
コスト的な面でも安価で、極めて実用的なセンサが得ら
れる。
(3) In terms of sensor manufacturing, it is possible to apply a thick film printing method or the like, which is excellent in mass productivity, and in principle it is possible to reduce the size and power consumption. Yes,
In terms of cost, it is inexpensive and a highly practical sensor can be obtained.

【0064】第七、第八の構成はいずれも、N型半導体
酸化物系焼結体膜の一酸化炭素に対する感度が高くする
ものであり、一層安定した出力特性が得られることにな
る。
In both the seventh and eighth configurations, the sensitivity of the N-type semiconductor oxide based sintered body film to carbon monoxide is increased, and more stable output characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わるガスセンサを示
す断面図
FIG. 1 is a sectional view showing a gas sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係わるガスセンサの断
面図
FIG. 2 is a sectional view of a gas sensor according to a second embodiment of the present invention.

【図3】本発明の第3の実施例に係わるガスセンサの断
面図
FIG. 3 is a sectional view of a gas sensor according to a third embodiment of the present invention.

【図4】本発明の第4の実施例に係わるガスセンサの製
造工程を示す断面図
FIG. 4 is a sectional view showing a manufacturing process of a gas sensor according to a fourth embodiment of the invention.

【図5】本発明の第5の実施例に係わるガスセンサの要
部断面図
FIG. 5 is a sectional view of a main part of a gas sensor according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例に係わるガスセンサの要
部断面図
FIG. 6 is a sectional view of an essential part of a gas sensor according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施例に係わるガスセンサの断
面図
FIG. 7 is a sectional view of a gas sensor according to a seventh embodiment of the present invention.

【図8】(A)本発明の第8の実施例に係わるガスセン
サの断面図 (B)本発明の第8の実施例に係わるガスセンサの要部
断面図
FIG. 8A is a sectional view of a gas sensor according to an eighth embodiment of the present invention. FIG. 8B is a sectional view of essential parts of a gas sensor according to the eighth embodiment of the present invention.

【図9】本発明の第2の実施例に係わるガスセンサの特
性を示すグラフ
FIG. 9 is a graph showing characteristics of the gas sensor according to the second embodiment of the present invention.

【図10】本発明の第3の実施例に係わるガスセンサの
特性を示すグラフ
FIG. 10 is a graph showing the characteristics of the gas sensor according to the third embodiment of the present invention.

【図11】本発明の第4の実施例に係わるガスセンサの
特性を示すグラフ
FIG. 11 is a graph showing the characteristics of the gas sensor according to the fourth embodiment of the present invention.

【図12】従来例のガスセンサの断面図FIG. 12 is a sectional view of a conventional gas sensor.

【符号の説明】[Explanation of symbols]

1 基板 2 一対の櫛形電極膜 3 N型半導体酸化物系焼結体膜 4 多孔性一酸化炭素および水素酸化触媒膜 5 多孔性水素選択酸化触媒膜 6 加熱手段 7 ガス選択透過管 9 リード線 10 多孔質基板(多孔性セラミック基板) 11 多孔性N型半導体酸化物系焼結体 12 N型半導体酸化物 DESCRIPTION OF SYMBOLS 1 Substrate 2 Pair of comb-shaped electrode films 3 N-type semiconductor oxide-based sintered body film 4 Porous carbon monoxide and hydrogen oxidation catalyst film 5 Porous hydrogen selective oxidation catalyst film 6 Heating means 7 Gas selective permeation tube 9 Lead wire 10 Porous substrate (porous ceramic substrate) 11 Porous N-type semiconductor oxide-based sintered body 12 N-type semiconductor oxide

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】加熱手段を備えてなるガスセンサにおい
て、同一基板上に2対の櫛形電極を形成し、そのそれぞ
れの電極上にN型半導体酸化物系焼結体膜を形成し、さ
らに一方のN型半導体酸化物系焼結体膜上に多孔性の一
酸化炭素および水素酸化触媒膜、他方のN型半導体酸化
物系焼結体膜上に、一酸化炭素の酸化能力はないが水素
酸化能力をもつ多孔性水素選択酸化触媒膜を形成して成
るガスセンサ。
1. A gas sensor comprising a heating means, wherein two pairs of comb-shaped electrodes are formed on the same substrate, and an N-type semiconductor oxide-based sintered body film is formed on each of the electrodes. A porous carbon monoxide and hydrogen oxidation catalyst film is formed on the N-type semiconductor oxide-based sintered body film, and hydrogen oxidation is performed on the other N-type semiconductor oxide-based sintered body film, although the carbon monoxide has no oxidizing ability. A gas sensor formed by forming a porous hydrogen selective oxidation catalyst film having the ability.
【請求項2】ガスセンサを、3〜100Åに細孔制御を
して成るセラミック製ガス選択透過管内に各電極からの
リード線を取り出した状態にて収納して封じ、さらに加
熱手段としてセラミック製ガス選択透過管の外部にヒー
タを配して成る請求項1記載のガスセンサ。
2. A gas sensor is housed and sealed in a ceramic gas selective permeation tube having fine pores controlled to 3 to 100 Å with lead wires from each electrode taken out, and a ceramic gas as a heating means. The gas sensor according to claim 1, wherein a heater is arranged outside the selective permeation tube.
【請求項3】加熱手段を備えてなるガスセンサにおい
て、同一基板上に2対の櫛形電極を形成し、それぞれの
電極上に一酸化炭素の増感剤を含有して成るN型半導体
酸化物系焼結体膜を形成し、さらに一方の一酸化炭素検
出の増感剤を含有して成るN型半導体酸化物系焼結体膜
上に多孔性一酸化炭素および水素酸化触媒膜、他方の一
酸化炭素検出の増感剤を含有して成るN型半導体酸化物
系焼結体膜上に、一酸化炭素の酸化能力はないが水素酸
化能力をもつ多孔性選択水素酸化触媒膜を形成して成る
ガスセンサ。
3. A gas sensor comprising heating means, wherein two pairs of comb-shaped electrodes are formed on the same substrate and a carbon monoxide sensitizer is contained on each electrode. A porous carbon monoxide and hydrogen oxidation catalyst film is formed on the N-type semiconductor oxide-based sintered film, which is formed by forming a sintered film and further containing a sensitizer for detecting carbon monoxide, and the other one. Forming a porous selective hydrogen oxidation catalyst film having hydrogen oxidization ability, but not carbon monoxide oxidization ability, on an N-type semiconductor oxide based sintered body film containing a sensitizer for carbon oxide detection. Consisting of a gas sensor.
【請求項4】加熱手段を備えてなるガスセンサにおい
て、同一基板上に2対の櫛形電極を形成し、それぞれの
電極上に一酸化炭素の増感剤を含有して成るN型半導体
酸化物系焼結体膜を形成し、さらに一方の一酸化炭素検
出の増感剤を含有して成るN型半導体酸化物系焼結体膜
上に、Co,Mn,Cu,Fe,Cr,Niの群から選
定してなる一種以上の元素の酸化物および複合酸化物を
セラミック繊維中に混抄してなるセラミックペーパー膜
を形成し、他方の一酸化炭素検出の増感剤を含有して成
るN型半導体酸化物系焼結体膜上に、Zn,Sn,In
の群から選定してなる一種以上の元素の酸化物および複
合酸化物をセラミック繊維中に混抄してなるセラミック
ペーパー膜を形成してなるガスセンサ。
4. A gas sensor comprising heating means, wherein two pairs of comb electrodes are formed on the same substrate and a carbon monoxide sensitizer is contained on each electrode. A group of Co, Mn, Cu, Fe, Cr, and Ni was formed on the N-type semiconductor oxide-based sintered body film formed by forming a sintered body film and further containing a sensitizer for detecting carbon monoxide. An N-type semiconductor that forms a ceramic paper film by mixing an oxide of one or more elements selected from the above and a composite oxide in a ceramic fiber, and contains a sensitizer for detecting the other carbon monoxide Zn, Sn, In on the oxide-based sintered body film
A gas sensor formed by forming a ceramic paper film by mixing an oxide of one or more elements and a composite oxide selected from the group 1) into a ceramic fiber.
【請求項5】N型半導体酸化物として、In23を主成
分とする酸化物を用い、増感剤としてCuFe24およ
びAuを用いた請求項3または4記載のガスセンサ。
5. The gas sensor according to claim 3, wherein an oxide containing In 2 O 3 as a main component is used as the N-type semiconductor oxide, and CuFe 2 O 4 and Au are used as the sensitizer.
【請求項6】基板の片面に2対の櫛形電極膜を形成し、
2対のそれぞれの櫛形電極膜上にN型半導体酸化物系焼
結体膜を積層し、その片方のN型半導体酸化物系焼結体
膜上に多孔性の一酸化炭素および水素酸化触媒膜、他方
のN型半導体酸化物系焼結体膜上に、一酸化炭素の酸化
能力はないが水素酸化能力をもつ多孔性水素選択酸化触
媒膜を形成し、さらに基板の裏面にヒータ膜を形成して
なるガスセンサ。
6. A pair of comb-shaped electrode films is formed on one surface of a substrate,
An N-type semiconductor oxide-based sintered body film is laminated on each of two pairs of comb-shaped electrode films, and a porous carbon monoxide and hydrogen oxidation catalyst film is formed on one of the N-type semiconductor oxide-based sintered body films. , On the other N-type semiconductor oxide-based sintered body film, a porous hydrogen selective oxidation catalyst film having hydrogen monoxide oxidizing ability but not carbon monoxide oxidizing ability is formed, and a heater film is further formed on the back surface of the substrate. A gas sensor.
【請求項7】ガスセンサを、3〜100Åに細孔制御を
して成るセラミック製ガス選択透過管内に収納して各電
極からのリード線およびヒータ線を取り出した構成にて
封じて成る請求項3ないし6のいづれか1項に記載のガ
スセンサ。
7. The gas sensor is housed in a ceramic gas selective permeation tube having a fine pore controlled to 3 to 100 Å, and the lead wire and heater wire from each electrode are taken out and sealed. 7. The gas sensor according to any one of 1 to 6.
【請求項8】略円筒状基板の外表面上に一対の櫛形電極
膜を形成し、2組の櫛形電極膜上にN型半導体酸化物系
焼結体膜を積層し、その片方のN型半導体酸化物系焼結
体膜上に多孔性の一酸化炭素および水素酸化触媒膜、他
方のN型半導体酸化物系焼結体膜上に、一酸化炭素の酸
化能力はないが水素酸化能力をもつ多孔性水素選択酸化
触媒膜を形成し、円筒内部にヒータ線を配してなるガス
センサ。
8. A pair of comb-shaped electrode films are formed on the outer surface of a substantially cylindrical substrate, and an N-type semiconductor oxide-based sintered body film is laminated on two sets of comb-shaped electrode films, one of which is N-type. A porous carbon monoxide and hydrogen oxidation catalyst film is formed on the semiconductor oxide-based sintered body film, and a hydrogen oxidation capacity is formed on the other N-type semiconductor oxide-based sintered body film, though the carbon monoxide has no oxidizing ability. A gas sensor that has a porous hydrogen selective oxidation catalyst film with a heater wire inside the cylinder.
【請求項9】ガスセンサを、3〜100Åに細孔制御を
して成るセラミック製ガス選択透過管内に収納して各電
極からのリード線およびヒータ線を取り出した構成にて
封じて成る請求項8記載のガスセンサ。
9. A gas sensor is housed in a ceramic gas selective permeation tube having a fine pore controlled to 3 to 100 Å, and the lead wire and heater wire from each electrode are taken out and sealed. The gas sensor described.
【請求項10】基板が多孔質である請求項1ないし9の
いづれか1項に記載のガスセンサ。
10. The gas sensor according to claim 1, wherein the substrate is porous.
【請求項11】N型半導体膜が多孔質である請求項1な
いし9のいづれか1項に記載のガスセンサ。
11. The gas sensor according to claim 1, wherein the N-type semiconductor film is porous.
JP7853396A 1996-04-01 1996-04-01 Gas sensor Pending JPH09269307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853396A JPH09269307A (en) 1996-04-01 1996-04-01 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853396A JPH09269307A (en) 1996-04-01 1996-04-01 Gas sensor

Publications (1)

Publication Number Publication Date
JPH09269307A true JPH09269307A (en) 1997-10-14

Family

ID=13664559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853396A Pending JPH09269307A (en) 1996-04-01 1996-04-01 Gas sensor

Country Status (1)

Country Link
JP (1) JPH09269307A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108882A (en) * 1997-10-08 1999-04-23 Matsushita Electric Ind Co Ltd Gas sensor and its manufacture
JPH11183427A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Gas sensor
JP2003247974A (en) * 2001-12-18 2003-09-05 Denso Corp Gas detector device
JP2004163192A (en) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology Combustible gas sensor
JP2007017426A (en) * 2005-06-06 2007-01-25 National Institute Of Advanced Industrial & Technology Gas sensor for detecting concentration in carbon monoxide and hydrocarbon in atmosphere
KR101131702B1 (en) * 2009-02-27 2012-04-03 포항공과대학교 산학협력단 Gas sensor material, gas sensor having the same and method of manufacturing the gas sensor material
CN105842288A (en) * 2016-03-22 2016-08-10 苏州捷德瑞精密机械有限公司 Porous gas sensitive nanomaterial and preparation method thereof
WO2017064865A1 (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Gas-sensitive body, gas sensor and composition for gas-sensitive body of gas sensor
JP2017075823A (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Composition for gas-sensitive medium of gas sensor
JP2017075824A (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Gas sensor
JP2019045297A (en) * 2017-09-01 2019-03-22 日本特殊陶業株式会社 Gas sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108882A (en) * 1997-10-08 1999-04-23 Matsushita Electric Ind Co Ltd Gas sensor and its manufacture
JPH11183427A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Gas sensor
JP2003247974A (en) * 2001-12-18 2003-09-05 Denso Corp Gas detector device
JP2004163192A (en) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology Combustible gas sensor
JP2007017426A (en) * 2005-06-06 2007-01-25 National Institute Of Advanced Industrial & Technology Gas sensor for detecting concentration in carbon monoxide and hydrocarbon in atmosphere
KR101131702B1 (en) * 2009-02-27 2012-04-03 포항공과대학교 산학협력단 Gas sensor material, gas sensor having the same and method of manufacturing the gas sensor material
WO2017064865A1 (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Gas-sensitive body, gas sensor and composition for gas-sensitive body of gas sensor
JP2017075823A (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Composition for gas-sensitive medium of gas sensor
JP2017075824A (en) * 2015-10-14 2017-04-20 株式会社日本触媒 Gas sensor
CN105842288A (en) * 2016-03-22 2016-08-10 苏州捷德瑞精密机械有限公司 Porous gas sensitive nanomaterial and preparation method thereof
JP2019045297A (en) * 2017-09-01 2019-03-22 日本特殊陶業株式会社 Gas sensor

Similar Documents

Publication Publication Date Title
KR100355318B1 (en) Gas sensor and its manufacturing process
KR20030055341A (en) Gas sensor and detection method and device for gas concentration
JP2008500540A (en) NOx gas sensor method and apparatus
JPH09269307A (en) Gas sensor
JP3736020B2 (en) Gas sensor
JP3885357B2 (en) Gas sensor
JP3841513B2 (en) Hydrocarbon sensor
JPH10115597A (en) Gas sensor
JP2002310983A (en) Carbon monoxide gas sensor
JP2000028562A (en) Gas sensor
JP2001033425A (en) Hydrogen gas sensor
JP2003156470A (en) Gas sensor element and detection method of gas concentration
JP3713819B2 (en) Gas sensor
JP3511747B2 (en) Gas sensor
JP3777749B2 (en) Gas sensor
JPH0875698A (en) Gas sensor
JPS6136175B2 (en)
JP3435836B2 (en) Gas sensor and manufacturing method thereof
JP2000088790A (en) Oxygen and carbon monoxide composite sensor
JP3931406B2 (en) Gas sensor
JP2000221163A (en) Gas sensor element
JP2013015398A (en) Selective hydrogen oxidation catalyst and gas sensor element
JP2000338081A (en) Gas sensor
JP2000111519A (en) Gas sensor
JP2000241378A (en) Gas sensor