JP2000338081A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JP2000338081A
JP2000338081A JP11149883A JP14988399A JP2000338081A JP 2000338081 A JP2000338081 A JP 2000338081A JP 11149883 A JP11149883 A JP 11149883A JP 14988399 A JP14988399 A JP 14988399A JP 2000338081 A JP2000338081 A JP 2000338081A
Authority
JP
Japan
Prior art keywords
film
gas sensor
electrode films
metal film
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11149883A
Other languages
Japanese (ja)
Inventor
Takahiro Umeda
孝裕 梅田
Masao Maki
正雄 牧
Takashi Niwa
孝 丹羽
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11149883A priority Critical patent/JP2000338081A/en
Publication of JP2000338081A publication Critical patent/JP2000338081A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a gas sensor capable of detecting an accurate concentration of a carbon monoxide even when a zero point correction is not executed for a measured potential difference. SOLUTION: The gas sensor comprises an insulator 4, a metal film 1, an insulating film 8, a solid electrolyte film 1, a heater film 5, a pair of electrode films 2a, 2b, and a catalyst 3 in such a manner that a sheet-like metal film 1 having good thermal conductivity is provided under the film 1. Thus, a heat can be uniformly transferred, and even when a zero point correction is not executed for the measured potential difference, a concentration of a carbon monoxide can be accurately obtained from the difference between the films 2a ad 2b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼機器や内燃機関
から排出される排ガス中に含まれる可燃性ガス、特に一
酸化炭素を検出するガスセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor for detecting combustible gas, particularly carbon monoxide, contained in exhaust gas discharged from combustion equipment or an internal combustion engine.

【0002】[0002]

【従来の技術】従来この種のガスセンサは、特開平10
−31003号公報などに記載されているようなものが
一般的であった。
2. Description of the Related Art Conventionally, this kind of gas sensor is disclosed in
Those described in JP-A-31003 are generally used.

【0003】このガスセンサは図10に示すように酸素
イオン導電性を有する固体電解質1の一方の面に形成し
た面積が等しい電極膜2aおよび2bと、電極膜2aの
表面に形成した触媒3と、固体電解質1の他方の面に、
絶縁体からなる基板4の表面にヒーター膜5を形成した
ヒーター6を備えていた。
As shown in FIG. 10, the gas sensor has electrode films 2a and 2b having the same area formed on one surface of a solid electrolyte 1 having oxygen ion conductivity, a catalyst 3 formed on the surface of the electrode film 2a, On the other surface of the solid electrolyte 1,
A heater 6 having a heater film 5 formed on the surface of a substrate 4 made of an insulator was provided.

【0004】上記構成のガスセンサを一酸化炭素などの
可燃性ガスが含まれない雰囲気に配置し、固体電解質1
をヒーター6により所定の動作温度に加熱すると、電極
膜2aおよび2bの面積は等しいので、それぞれに到達
する酸素の量は等しく、電極膜2aおよび2b間に電位
差は発生しない。なお、電極膜2aおよび2bの面積が
等しくない場合は、電極膜のどちらかの到達酸素量に係
数を掛け、補正することにより到達酸素量の数値を等し
くなるようにすればよい。このとき電極膜2aおよび2
b上では式(1)で示した電極反応が生じ、平衡を保っ
ている。
The gas sensor having the above-described structure is arranged in an atmosphere containing no flammable gas such as carbon monoxide, and the solid electrolyte 1
Is heated to a predetermined operating temperature by the heater 6, since the areas of the electrode films 2a and 2b are equal, the amount of oxygen reaching each is equal, and no potential difference occurs between the electrode films 2a and 2b. If the areas of the electrode films 2a and 2b are not equal, it is sufficient to multiply the attained oxygen amount of one of the electrode films by a coefficient and correct it so that the numerical values of the attained oxygen amount become equal. At this time, the electrode films 2a and 2
On b, the electrode reaction shown by the equation (1) occurs, and the equilibrium is maintained.

【0005】Oad+2e-←→O2-・・・(1) ここでOadは電極膜2aまたは2bの表面に吸着した酸
素原子を示す。
Shows the ← → O 2- ··· (1) where the oxygen atom O ad is adsorbed on the surface of the electrode film 2a or 2b - [0005] O ad + 2e.

【0006】次に、このガスセンサを可燃性ガスである
一酸化炭素が含まれる雰囲気に配置すると、触媒3の形
成されていない電極膜2b上では式(1)で示した電極
反応に加え、式(2)で示した電極反応が生じる。
Next, when this gas sensor is placed in an atmosphere containing flammable gas, carbon monoxide, on the electrode film 2b where the catalyst 3 is not formed, in addition to the electrode reaction shown in the equation (1), The electrode reaction shown in (2) occurs.

【0007】CO+Oad→CO2・・・・(2) 一方、触媒3の形成された電極膜2a上では、一酸化炭
素が触媒3の表面で二酸化炭素に酸化され、電極膜2a
の表面まで到達できない。したがって、式(1)で示した
電極反応のみが生じ、電極膜2aおよび2bの間で吸着
した酸素濃度に差が生じる。このとき酸素イオンが電極
膜2aから2bへと固体電解質1中を伝導し、電極膜2
aおよび2b間に電位差が発生する。
CO + O ad → CO 2 (2) On the other hand, on the electrode film 2 a on which the catalyst 3 is formed, carbon monoxide is oxidized to carbon dioxide on the surface of the catalyst 3, and the electrode film 2 a
Can not reach the surface of. Therefore, only the electrode reaction represented by the equation (1) occurs, and a difference occurs in the concentration of the adsorbed oxygen between the electrode films 2a and 2b. At this time, oxygen ions conduct in the solid electrolyte 1 from the electrode films 2a to 2b,
A potential difference occurs between a and 2b.

【0008】この電位差と一酸化炭素の濃度の関係はN
ernstの式に従い、電極膜2aおよび2b間の電位
差を測定することにより、被検出ガス中の一酸化炭素の
濃度を求めていた。
The relationship between this potential difference and the concentration of carbon monoxide is N
The concentration of carbon monoxide in the gas to be detected was determined by measuring the potential difference between the electrode films 2a and 2b according to the Ernst equation.

【0009】[0009]

【発明の解決しようとする課題】この種のガスセンサ
は、一酸化炭素の存在するときの電極膜2aおよび2b
間に生じる電位差から、一酸化炭素の存在しないときの
電位差(ゼロ点)を減算し、すなわちゼロ点補正を行
い、一酸化炭素の濃度を求める。しかしながら、一酸化
炭素の存在しないときの電位差が存在するときの電位差
に比べて無視できるほどに小さければ、すなわちゼロに
近い値であれば、ゼロ点補正を行うことなく、電極膜2
aおよび2b間の電位差から一酸化炭素の濃度を算出す
ることができる。
The gas sensor of this type has the electrode films 2a and 2b when carbon monoxide is present.
The potential difference (zero point) in the absence of carbon monoxide is subtracted from the potential difference between them, that is, the zero point is corrected to obtain the concentration of carbon monoxide. However, if the potential difference in the absence of carbon monoxide is negligibly smaller than the potential difference in the presence of carbon monoxide, that is, if the potential difference is close to zero, the electrode film 2 can be removed without performing zero point correction.
The concentration of carbon monoxide can be calculated from the potential difference between a and 2b.

【0010】したがって、一酸化炭素が存在しないとき
の電極膜2aおよび2b上で起こる電極反応の量を等し
くし、電極膜2aおよび2b間に生じる電位差をゼロに
近づけるために、電極膜2aおよび2bの面積を等しく
していた。
Therefore, in order to equalize the amount of electrode reaction occurring on electrode films 2a and 2b when carbon monoxide does not exist, and to reduce the potential difference between electrode films 2a and 2b to zero, electrode films 2a and 2b Had the same area.

【0011】しかしながら、ヒーター6の位置ずれや、
ヒーター膜5の膜厚あるいはパターン幅のばらつきなど
により、加熱に分布が生じた場合、電極膜2aおよび2
b間に温度差が発生し、電極膜2aおよび2b上で起こ
る電極反応のバランスが崩れる。そして、一酸化炭素が
存在しないとき、たとえ電極膜2aおよび2bの面積が
等しくても、電極膜2aおよび2b間に大きな電位差が
発生するため、測定した電位差についてゼロ点補正を行
わなければならないという課題があった。
However, the displacement of the heater 6 and
If distribution occurs in the heating due to variations in the thickness or pattern width of the heater film 5, the electrode films 2a and 2
A temperature difference occurs between the electrodes b, and the balance of the electrode reactions occurring on the electrode films 2a and 2b is lost. When carbon monoxide does not exist, a large potential difference occurs between the electrode films 2a and 2b even if the areas of the electrode films 2a and 2b are equal, so that the zero point correction must be performed on the measured potential difference. There were challenges.

【0012】また、排ガス中には天然ガスの産地にもよ
るが、微量の不純物が含まれ、例えば、ガス燃焼機器の
排ガス中には2ppm以下の二酸化硫黄が含まれる。
Further, the exhaust gas contains a trace amount of impurities, depending on the place of production of natural gas. For example, the exhaust gas of gas combustion equipment contains 2 ppm or less of sulfur dioxide.

【0013】しかしながら、従来のガスセンサの構成に
おいて被検出ガス中に二酸化硫黄などの汚染物質が含ま
れた場合、二酸化硫黄が検出に必要な一酸化炭素や酸素
よりも電極膜2aおよび2bに含まれる白金などの貴金
属と強く吸着し、被毒劣化させるため、検出に必要な一
酸化炭素や酸素が電極膜2aおよび2bに吸着し難くな
り、正確な一酸化炭素の濃度を検出できないという課題
があった。
However, when the gas to be detected contains a pollutant such as sulfur dioxide in the structure of the conventional gas sensor, the sulfur dioxide is contained in the electrode films 2a and 2b more than carbon monoxide and oxygen required for detection. Since it strongly adsorbs to noble metals such as platinum and causes poisoning and deterioration, it becomes difficult for carbon monoxide and oxygen necessary for detection to adsorb to the electrode films 2a and 2b, and there is a problem that an accurate concentration of carbon monoxide cannot be detected. Was.

【0014】[0014]

【課題を解決するための手段】本発明は上記課題を解決
するために、基板と、金属膜と、絶縁膜と、ヒーター膜
と、固体電解質膜と、一対の電極膜と、触媒から構成し
た。
In order to solve the above problems, the present invention comprises a substrate, a metal film, an insulating film, a heater film, a solid electrolyte film, a pair of electrode films, and a catalyst. .

【0015】上記発明によれば、固体電解質膜の下に熱
伝導のよいシート状の金属膜を備えているので、ヒータ
ーで加熱された金属膜により固体電解質膜および一対の
電極膜に均一に熱を伝えることができ、加熱に分布が生
じず、電極膜間に温度差が発生しない。したがって、被
検出ガス中に一酸化炭素が存在しないとき電極膜上で起
こる電極反応の量が等しくなり、電極膜間の電位差はほ
ぼゼロになり、測定した電位差についてゼロ点補正を行
わなくても電極膜間の電位差から一酸化炭素の濃度を正
確に求めることができる。
According to the above invention, since the sheet-like metal film having good heat conductivity is provided under the solid electrolyte film, the heat is uniformly applied to the solid electrolyte film and the pair of electrode films by the metal film heated by the heater. , And no distribution occurs in the heating, and no temperature difference occurs between the electrode films. Therefore, when no carbon monoxide is present in the gas to be detected, the amount of electrode reaction occurring on the electrode film becomes equal, the potential difference between the electrode films becomes almost zero, and the zero point correction is not required for the measured potential difference. The concentration of carbon monoxide can be accurately obtained from the potential difference between the electrode films.

【0016】また、ヒーター膜と一対の電極膜は同一平
面に配置され、同時に形成することができるので、製造
工程が簡単になり、低コストのガスセンサを得ることが
できる。
Further, since the heater film and the pair of electrode films are arranged on the same plane and can be formed simultaneously, the manufacturing process is simplified, and a low-cost gas sensor can be obtained.

【0017】[0017]

【発明の実施の形態】本発明は、基板と、前記基板の表
面に形成したシート状の金属膜と、前記金属膜の表面に
形成した電気的絶縁性を有する絶縁膜と、前記絶縁膜の
表面に形成したヒーター膜と、前記金属膜の表面に形成
した酸素イオン導電性を有する固体電解質膜と、前記固
体電解質膜の表面に形成した一対の電極膜と、前記一対
の電極膜のうちどちらか一方の電極膜の表面に形成した
触媒からなるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate, a sheet-like metal film formed on the surface of the substrate, an insulating film having electrical insulation formed on the surface of the metal film, Any of the heater film formed on the surface, the solid electrolyte film having oxygen ion conductivity formed on the surface of the metal film, the pair of electrode films formed on the surface of the solid electrolyte film, and the pair of electrode films It consists of a catalyst formed on the surface of one of the electrode films.

【0018】そして、固体電解質膜の下に熱伝導のよい
シート状の金属膜を備え、ヒーターで加熱された金属膜
が固体電解質膜および一対の電極膜に均一に熱を伝え、
加熱に分布が生じず、電極膜間に温度差が発生しないの
で、被検出ガス中に一酸化炭素が存在しないとき電極膜
上で起こる電極反応の量が等しくなり、電極膜間の電位
差はほぼゼロになり、測定した電位差についてゼロ点補
正を行わなくても電極膜間の電位差から一酸化炭素の濃
度を正確に求めることができる。
A sheet-like metal film having good heat conductivity is provided below the solid electrolyte film, and the metal film heated by the heater uniformly transfers heat to the solid electrolyte film and the pair of electrode films.
Since there is no distribution in the heating and no temperature difference between the electrode films, the amount of electrode reaction occurring on the electrode film when carbon monoxide is not present in the gas to be detected becomes equal, and the potential difference between the electrode films becomes almost equal. It becomes zero, and the concentration of carbon monoxide can be accurately obtained from the potential difference between the electrode films without performing zero point correction on the measured potential difference.

【0019】そして、ヒーター膜と一対の電極膜は同一
平面に配置され、同時に形成することができるので、製
造工程が簡単になり、低コストのガスセンサを得ること
ができる。
Since the heater film and the pair of electrode films are arranged on the same plane and can be formed simultaneously, the manufacturing process is simplified, and a low-cost gas sensor can be obtained.

【0020】また、金属膜は、鉄、イリジウム、モリブ
デン、ニッケル、パラジウム、白金、ロジウム、タンタ
ル、タングステンのうち少なくとも一種以上を含むもの
である。
The metal film contains at least one of iron, iridium, molybdenum, nickel, palladium, platinum, rhodium, tantalum and tungsten.

【0021】そして、金属膜の熱伝導率が0.5(W/
(cm・K))以上であり、絶縁膜や固体電解質膜などの
それに比べて熱伝導性に優れ、線熱膨張率が(4〜1
3)×10-6(deg-1)であり、絶縁体や固体電解質膜
のそれと同じ程度であるので、剥離や割れを生じさせる
ことなく、固体電解質膜や電極膜を効率よく均一に加熱
することができる。
The thermal conductivity of the metal film is 0.5 (W /
(Cm · K)) or more, and is superior in thermal conductivity to those of insulating films and solid electrolyte films, and has a linear thermal expansion coefficient of (4-1).
3) Since it is about 10 -6 (deg -1 ), which is about the same as that of an insulator or a solid electrolyte membrane, the solid electrolyte membrane or the electrode membrane is efficiently and uniformly heated without causing peeling or cracking. be able to.

【0022】また、金属膜と固体電解質膜の間に絶縁膜
を形成したものである。
Further, an insulating film is formed between the metal film and the solid electrolyte film.

【0023】そして、絶縁膜が金属膜と固体電解質膜を
確実に絶縁し、リークイオン電流の発生を防止するの
で、一酸化炭素の濃度を正確に検出することができる。
Since the insulating film reliably insulates the metal film and the solid electrolyte film and prevents the generation of a leak ion current, the concentration of carbon monoxide can be accurately detected.

【0024】また、ヒーター膜と、一対の電極膜を覆う
ように形成した細孔径が20〜500Åのガス選択透過
体を備えたものである。
[0024] Further, it is provided with a heater film and a gas selective permeable member having a pore diameter of 20 to 500 ° formed so as to cover the pair of electrode films.

【0025】そして、被検出ガスはKnudsen拡散
によりガス選択透過体を通過し、検出に必要な一酸化炭
素や酸素はガス選択透過体を通って電極膜に到達するこ
とができるが、一酸化炭素や酸素に比べ分子サイズが大
きく吸着性を有する二酸化硫黄などの汚染物質はガス選
択透過体を透過できないので、電極膜が被毒し難くな
り、汚染物質に対して耐久性の高いガスセンサを得るこ
とができる。
The gas to be detected passes through the gas selective permeable body by Knudsen diffusion, and carbon monoxide and oxygen necessary for detection can reach the electrode membrane through the gas selective permeable body. Pollutants such as sulfur dioxide, which has a larger molecular size than oxygen and oxygen and has adsorptivity, cannot pass through the gas selective permeable body, making it difficult for the electrode membrane to be poisoned and obtaining a gas sensor with high durability against pollutants. Can be.

【0026】また、ガス選択透過体の表面に触媒を形成
したものである。
Further, a catalyst is formed on the surface of the gas selective permeable body.

【0027】そして、ガス選択透過体と電極膜を密着
し、ガス選択透過体と電極膜の間に空隙を持たないの
で、隙間から侵入する汚染物質を確実に遮断することが
でき、汚染物質に対して耐久性の高いガスセンサを得る
ことができる。
Further, since the gas selective permeable body and the electrode membrane are in close contact with each other and there is no gap between the gas selective permeable body and the electrode membrane, contaminants entering from the gap can be reliably shut off. On the other hand, a highly durable gas sensor can be obtained.

【0028】そして、ガス選択透過体の表面に触媒を形
成することにより、触媒の量を増加することができ、電
極膜間の電位差が増大し、触媒活性を長期間維持するの
で、感度がよくライフタイムの長いガスセンサを得るこ
とができる。
By forming a catalyst on the surface of the gas selective permeable member, the amount of the catalyst can be increased, the potential difference between the electrode films increases, and the catalyst activity is maintained for a long period of time. A gas sensor having a long lifetime can be obtained.

【0029】また、一対の電極膜間の電位差を検出する
電位差検出手段と、金属膜の抵抗を測定する抵抗検出手
段と、前記抵抗から固体電解質膜の温度を算出し、前記
電位差と前記温度から被検出ガスの濃度を算出する演算
手段を備えたものである。
Further, a potential difference detecting means for detecting a potential difference between the pair of electrode films, a resistance detecting means for measuring a resistance of the metal film, a temperature of the solid electrolyte membrane is calculated from the resistance, and the temperature is calculated from the potential difference and the temperature. It is provided with arithmetic means for calculating the concentration of the gas to be detected.

【0030】そして、金属膜の抵抗の温度特性から固体
電解質膜の温度を算出し、その温度における電極膜間の
電位差から一酸化炭素の濃度を算出するので、周囲の温
度が変化しても正確な一酸化炭素の濃度を求めることが
できる。
Then, the temperature of the solid electrolyte membrane is calculated from the temperature characteristics of the resistance of the metal film, and the concentration of carbon monoxide is calculated from the potential difference between the electrode films at that temperature. Carbon monoxide concentration can be determined.

【0031】また、金属膜の抵抗を一定に保持するよう
にヒーター膜に供給される電力を制御する制御手段を備
えたものである。
Further, there is provided control means for controlling the electric power supplied to the heater film so as to keep the resistance of the metal film constant.

【0032】そして、制御手段により固体電解質膜およ
び電極膜の温度を一定に保持することができるので、周
囲の温度によらず安定した電位差が得られ、信頼性の高
いガスセンサを得ることができる。
Since the temperature of the solid electrolyte membrane and the temperature of the electrode membrane can be kept constant by the control means, a stable potential difference can be obtained irrespective of the surrounding temperature, and a highly reliable gas sensor can be obtained.

【0033】また、基板を絶縁体で構成し、一対の電極
膜、金属膜およびヒーター膜のリード取り出し部を基板
の同一の表面に形成するものである。
Further, the substrate is made of an insulator, and a pair of electrode films, a metal film and a lead-out portion of a heater film are formed on the same surface of the substrate.

【0034】そして、それぞれのリード取り出し部が絶
縁体の同一の表面に形成されるので、リード線を容易に
接続することができ、作業効率を向上させることができ
る。
Further, since the respective lead take-out portions are formed on the same surface of the insulator, the lead wires can be easily connected, and the working efficiency can be improved.

【0035】[0035]

【実施例】以下、本発明の実施例について図面を用いて
説明する。なお従来例と同一符号のものは同一構造を有
し、一部説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. The components having the same reference numerals as those of the conventional example have the same structure, and a description thereof will be partially omitted.

【0036】(実施例1)図1および2は本発明の実施
例1におけるガスセンサの要部断面図および上面図であ
る。
(Embodiment 1) FIGS. 1 and 2 are a sectional view and a top view of a main part of a gas sensor according to Embodiment 1 of the present invention.

【0037】図1および2において4は基板としての電
気的絶縁性を有する絶縁体である。絶縁体4の表面に熱
伝導のよいシート状の金属膜7が形成されており、金属
膜7の表面の一方に電気的絶縁性を有する絶縁膜8が形
成されている。そして、絶縁膜8の表面にヒーター膜5
が形成されている。また、同じ金属膜7の絶縁膜8の形
成されていない表面の他方の部分に酸素イオン導電性の
固体電解質膜1が形成されている。また、固体電解質膜
1の表面に電極膜2aおよび2bが形成され、さらに電
極膜2aを覆うように一酸化炭素を酸化する触媒3が積
層されている。
In FIGS. 1 and 2, reference numeral 4 denotes an insulator having electrical insulation as a substrate. A sheet-like metal film 7 having good heat conductivity is formed on the surface of the insulator 4, and an insulating film 8 having electrical insulation is formed on one of the surfaces of the metal film 7. Then, the heater film 5 is formed on the surface of the insulating film 8.
Are formed. The oxygen ion-conductive solid electrolyte film 1 is formed on the other portion of the surface of the same metal film 7 where the insulating film 8 is not formed. Further, electrode films 2a and 2b are formed on the surface of the solid electrolyte membrane 1, and a catalyst 3 for oxidizing carbon monoxide is laminated so as to cover the electrode film 2a.

【0038】そして、図2に示したように電極膜2aお
よび2bのリード取り出し部2a’および2b’と、ヒ
ーター膜5のリード取り出し部5aおよび5bおよび金
属膜7のリード取り出し部7aおよび7bは絶縁体4の
同一の表面に形成されている。
As shown in FIG. 2, the lead extraction portions 2a 'and 2b' of the electrode films 2a and 2b, the lead extraction portions 5a and 5b of the heater film 5, and the lead extraction portions 7a and 7b of the metal film 7 are formed. It is formed on the same surface of the insulator 4.

【0039】そして、電極膜リード取り出し部2a’お
よび2b’の間に電極膜2aおよび2b間の電位差を検
出する電位差検出手段9、金属膜リード取り出し部7a
および7bの間に金属膜7の抵抗を検出する抵抗検出手
段10が接続されており、さらに抵抗検出手段10で検
出した抵抗から固体電解質膜1の温度を算出し、この温
度と電位差検出手段9で検出した電位差から被検出ガス
中の一酸化炭素の濃度を算出する演算手段11が備えら
れており、ヒーター膜リード取り出し部5aおよび5b
の間に抵抗検出手段10で検出した抵抗から固体電解質
膜1の温度が一定となるようにヒーターに供給される電
圧を制御する制御手段12が接続されている。
A potential difference detecting means 9 for detecting a potential difference between the electrode films 2a and 2b between the electrode film lead taking-out sections 2a 'and 2b', and a metal film lead taking-out section 7a
And 7b, a resistance detecting means 10 for detecting the resistance of the metal film 7 is connected. Further, the temperature of the solid electrolyte membrane 1 is calculated from the resistance detected by the resistance detecting means 10, and the temperature and the potential difference detecting means 9 are calculated. Calculating means 11 for calculating the concentration of carbon monoxide in the gas to be detected from the potential difference detected by the heater film lead extraction portions 5a and 5b.
The control means 12 for controlling the voltage supplied to the heater so that the temperature of the solid electrolyte membrane 1 becomes constant from the resistance detected by the resistance detection means 10 is connected.

【0040】上記構成によれば、固体電解質膜1の下に
熱伝導のよいシート状の金属膜7を備えているので、ヒ
ーター膜5で加熱された金属膜7により固体電解質膜1
および一対の電極膜2aおよび2bに均一に熱を伝える
ことができ、加熱に分布が生じず、電極膜2aおよび2
b間に温度差が発生しない。したがって、被検出ガス中
に一酸化炭素が存在しないとき電極膜2aおよび2b上
で起こる電極反応の量が等しくなり、電極膜2aおよび
2b間の電位差はほぼゼロになり、測定した電位差につ
いてゼロ点補正を行わなくても電極膜2aおよび2b間
の電位差から一酸化炭素の濃度を正確に求めることがで
きる。
According to the above configuration, since the sheet-like metal film 7 having good heat conductivity is provided under the solid electrolyte membrane 1, the solid electrolyte membrane 1 is heated by the metal film 7 heated by the heater film 5.
In addition, heat can be uniformly transmitted to the pair of electrode films 2a and 2b, and no distribution occurs in the heating.
No temperature difference occurs between b. Therefore, when carbon monoxide does not exist in the gas to be detected, the amount of electrode reaction occurring on the electrode films 2a and 2b becomes equal, and the potential difference between the electrode films 2a and 2b becomes almost zero. Even without correction, the concentration of carbon monoxide can be accurately determined from the potential difference between the electrode films 2a and 2b.

【0041】また、ヒーター膜8と電極膜2aおよび2
bは同一平面上に配置され、同時に形成することができ
るので、製造工程が簡単になり、低コストのガスセンサ
を得ることができる。 また、金属膜7の抵抗の温度特
性から固体電解質膜1の温度を算出し、その温度におけ
る電極膜2aおよび2b間の電位差から一酸化炭素の濃
度を算出するので、周囲の温度が変化しても正確な一酸
化炭素の濃度を求めることができる。
The heater film 8 and the electrode films 2a and 2a
Since b is arranged on the same plane and can be formed simultaneously, the manufacturing process is simplified, and a low-cost gas sensor can be obtained. Further, the temperature of the solid electrolyte membrane 1 is calculated from the temperature characteristics of the resistance of the metal film 7, and the concentration of carbon monoxide is calculated from the potential difference between the electrode films 2a and 2b at that temperature. Can also obtain an accurate concentration of carbon monoxide.

【0042】さらに、制御手段12により固体電解質膜
1および電極膜2aおよび2bの温度を一定に保持する
ことができるので、周囲の温度によらず安定した電位差
が得られ、信頼性の高いガスセンサを得ることができ
る。
Further, since the temperature of the solid electrolyte membrane 1 and the electrode membranes 2a and 2b can be kept constant by the control means 12, a stable potential difference can be obtained irrespective of the surrounding temperature, and a highly reliable gas sensor can be obtained. Obtainable.

【0043】また、電極膜2aおよび2bのリード取り
出し部2a’および2b’と、ヒーター膜5のリード取
り出し部5aおよび5bおよび金属膜7のリード取り出
し部7aおよび7bが絶縁体4の同一の表面に形成され
るので、リード線を容易に接続することができ、作業効
率を向上させることができる。
The lead extraction portions 2a 'and 2b' of the electrode films 2a and 2b, the lead extraction portions 5a and 5b of the heater film 5, and the lead extraction portions 7a and 7b of the metal film 7 are on the same surface of the insulator 4. Therefore, the lead wires can be easily connected, and the working efficiency can be improved.

【0044】次に、ガスセンサの製造方法について具体
的に説明する。
Next, a method for manufacturing the gas sensor will be specifically described.

【0045】まず、表面を研磨したアルミナ基板を絶縁
体4として用い、有機溶剤で超音波脱脂した後、白金か
ら成るシート状の金属膜7をスパッタリングにより形成
した。白金の熱伝導率は0.69(W/(cm・K))で
あり、絶縁体4や絶縁膜8の酸化アルミニウムの熱伝導
率0.30(W/(cm・K))よりも大きく、熱伝導に
優れている。また白金の線熱膨張率は8.9×10
-6(deg-1)であり、絶縁体4や絶縁膜8の酸化アルミ
ニウムおよび固体電解質膜1の安定化ジルコニアの線熱
膨張率(それぞれ約5×10-6(deg-1)および約10
×10-6(deg-1))と同じ程度であるので、剥離や割
れを生じさせることなく、固体電解質膜1や電極膜2a
および2bを効率よく均一に加熱することができる。
First, an alumina substrate whose surface was polished was used as an insulator 4, and after ultrasonic degreasing with an organic solvent, a sheet-like metal film 7 made of platinum was formed by sputtering. The thermal conductivity of platinum is 0.69 (W / (cm · K)), which is larger than the thermal conductivity of aluminum oxide of the insulator 4 and the insulating film 8 of 0.30 (W / (cm · K)). Excellent in heat conduction. The linear thermal expansion coefficient of platinum is 8.9 × 10
-6 (deg -1 ), and the linear thermal expansion coefficients of the aluminum oxide of the insulator 4 and the insulating film 8 and the stabilized zirconia of the solid electrolyte membrane 1 (about 5 × 10 -6 (deg -1 ) and about 10
× 10 -6 (deg -1 )), so that the solid electrolyte membrane 1 and the electrode membrane 2a do not peel or crack.
And 2b can be efficiently and uniformly heated.

【0046】また、金属膜7は白金以外に熱伝導率が
0.5(W/(cm・K))以上で、線熱膨張率が(4〜
13)×10-6(deg-1)である鉄、イリジウム、モリ
ブデン、ニッケル、パラジウム、ロジウム、タンタル、
タングステン、もしくはこれら金属の合金でも同様の効
果を得ることができる。また、金属膜7の両端の抵抗を
測るためのリード取り出し部7aおよび7bを絶縁体4
の表面に形成した。
In addition to the platinum, the metal film 7 has a thermal conductivity of 0.5 (W / (cm · K)) or more and a linear thermal expansion coefficient of (4 to
13) Iron, iridium, molybdenum, nickel, palladium, rhodium, tantalum, which is × 10 -6 (deg -1 )
Similar effects can be obtained with tungsten or an alloy of these metals. Also, lead take-out portions 7a and 7b for measuring the resistance at both ends of the metal film 7 are provided on the insulator 4
Formed on the surface.

【0047】次に、金属膜7のリード取り出し部7aお
よび7bを覆わないように、金属膜7とヒーター膜5を
互いに電気的に絶縁するために、酸化アルミニウムから
成る絶縁膜8をスパッタリングにより形成した。絶縁膜
8はスパッタリング以外に印刷・塗布、真空蒸着、めっ
きなどでも同様に形成することができる。
Next, an insulating film 8 made of aluminum oxide is formed by sputtering to electrically insulate the metal film 7 and the heater film 5 from each other so as not to cover the lead extraction portions 7a and 7b of the metal film 7. did. The insulating film 8 can be similarly formed by printing / coating, vacuum evaporation, plating, or the like in addition to sputtering.

【0048】次に、同じ金属膜7の表面にイットリアを
8モル%添加した安定化ジルコニアから成る固体電解質
膜1をスパッタリングにより形成し、スパッタリング
後、高温で焼結し、酸素イオン伝導性の得られる固体電
解質膜1を形成した。
Next, a solid electrolyte membrane 1 made of stabilized zirconia to which 8% by mole of yttria is added is formed on the surface of the same metal film 7 by sputtering, and after sputtering, sintered at a high temperature to obtain oxygen ion conductivity. The resulting solid electrolyte membrane 1 was formed.

【0049】次に、絶縁膜8および固体電解質膜1の表
面にそれぞれヒーター膜5および面積が等しい一対の電
極膜2a、2bを同時にスクリーン印刷法により白金を
用いて形成した。ヒーター膜5および電極膜2a、2b
は印刷以外にスパッタリングや真空蒸着などでも同様に
形成することができ、ヒーター膜5を形成した後、フォ
トリソグラフィやエッチングなどの技術を用い、細密な
ヒーターパターンを形成することができる。また、電極
膜2aおよび2b間の電位差を測るリード取り出し部2
a’、2b’およびヒーター膜5に電圧を供給するリー
ド取り出し部5a、5bを金属膜7リード取り出し部7
a、7bと同じ絶縁体4の表面に形成した。
Next, a heater film 5 and a pair of electrode films 2a and 2b having the same area were simultaneously formed on the surfaces of the insulating film 8 and the solid electrolyte film 1 using platinum by screen printing. Heater film 5 and electrode films 2a, 2b
Can be similarly formed by sputtering or vacuum deposition other than printing, and after forming the heater film 5, a fine heater pattern can be formed by using a technique such as photolithography or etching. Further, a lead extraction unit 2 for measuring a potential difference between the electrode films 2a and 2b.
a ′, 2b ′ and a lead extraction part 5 a, 5 b for supplying a voltage to the heater film 5 are replaced with a metal film 7 lead extraction part 7.
It was formed on the same surface of the insulator 4 as a and 7b.

【0050】次に、一方の電極膜2a上に一酸化炭素を
酸化する白金とパラジウムを主成分とする触媒3を塗布
し、焼成した。なお、基板が絶縁体でなく、導電性を有
する時は、夫々のリード取り出し部で短絡を起こさない
ようにリード洗を儲けなければならないのは勿論であ
る。
Next, a catalyst 3 mainly composed of platinum and palladium for oxidizing carbon monoxide was applied onto one electrode film 2a and fired. When the substrate is not an insulator and has conductivity, it is a matter of course that the lead must be washed so as not to cause a short circuit at each lead extraction portion.

【0051】上記のようにして作成したガスセンサをエ
ージングするため、一酸化炭素が3,000ppm、酸素
が20%および二酸化硫黄が20ppm含まれる雰囲気に
暴露し、雰囲気の温度を500℃に保持し、ヒーター膜
リード取り出し部5aおよび5b間に使用時に流す電流
よりも大きい電流を流し、約24時間放置した。各種ガ
スの濃度は実際の燃焼排ガスよりもかなり過酷な条件で
あり、あらかじめ高濃度の一酸化炭素、酸素および二酸
化硫黄が含まれる雰囲気に暴露し、熱処理することによ
り、初期安定性に優れ、耐久性の高いガスセンサを得る
ことができる。
To age the gas sensor produced as described above, the gas sensor was exposed to an atmosphere containing 3,000 ppm of carbon monoxide, 20% of oxygen and 20 ppm of sulfur dioxide, and the temperature of the atmosphere was maintained at 500 ° C. A current larger than the current flowing during use was passed between the heater film lead take-out portions 5a and 5b and left for about 24 hours. The concentrations of various gases are considerably harsher than those of actual combustion exhaust gas, and they are exposed to an atmosphere containing high concentrations of carbon monoxide, oxygen and sulfur dioxide in advance and heat-treated, resulting in excellent initial stability and durability. A highly sensitive gas sensor can be obtained.

【0052】また、同時に固体電解質膜1を加熱するヒ
ーター膜5にあらかじめ使用時より大きい電流を流して
通電処理するので、初期安定性に優れ、耐久性の高いガ
スセンサを得ることができる。
At the same time, since a current larger than that at the time of use is passed through the heater film 5 for heating the solid electrolyte membrane 1 in advance and the current is applied, a gas sensor having excellent initial stability and high durability can be obtained.

【0053】以上のようにして得られたガスセンサの基
本特性を調べるため、ガスセンサを被検出ガス中に配置
し、ヒーター膜リード取り出し部5aおよび5b間に電
圧を供給し、ガスセンサが約450℃になるように加熱
した。この温度は、固体電解質膜1の酸素イオン導電性
が得られる動作温度であり、かつ触媒3の一酸化炭素を
酸化するのに十分な触媒活性が得られる温度である。こ
のときの被検出ガスの流量は約185cm/minであっ
た。
In order to examine the basic characteristics of the gas sensor obtained as described above, the gas sensor is arranged in the gas to be detected, and a voltage is supplied between the heater film lead outlets 5a and 5b. And heated. This temperature is an operating temperature at which oxygen ion conductivity of the solid electrolyte membrane 1 is obtained and a temperature at which sufficient catalytic activity to oxidize carbon monoxide of the catalyst 3 is obtained. At this time, the flow rate of the detected gas was about 185 cm / min.

【0054】そして、電極膜リード取り出し部2a’お
よび2b’間に電位差検出手段9を接続し、電極膜2a
および2b間に発生する電位差を測定した。
Then, a potential difference detecting means 9 is connected between the electrode film lead take-out portions 2a 'and 2b', and the electrode film 2a
And the potential difference generated between 2b was measured.

【0055】図3に酸素濃度を20%一定に保ち、一酸
化炭素の濃度を0→1,000→0ppmと変化させたと
きの電極膜2aおよび2b間に発生する電位差の変化を
示す。図3より一酸化炭素の濃度が0ppmのとき電極膜
2aおよび2b間の電位差はほぼ0mVであった。これ
は電極膜2aおよび2bの面積が等しいだけでなく、金
属膜7により電極膜2aおよび2bが均一に加熱され、
電極膜2aおよび2b間に温度差が発生しないので、各
電極膜上で起こる電極反応の量が等しくなるからであ
る。また、一酸化炭素の濃度が1,000ppmのとき電
位差は約8mVであり、90%応答時間は約90秒であ
った。
FIG. 3 shows a change in the potential difference generated between the electrode films 2a and 2b when the oxygen concentration is kept constant at 20% and the concentration of carbon monoxide is changed from 0 → 1,000 → 0 ppm. From FIG. 3, when the concentration of carbon monoxide was 0 ppm, the potential difference between the electrode films 2a and 2b was almost 0 mV. This is because not only the areas of the electrode films 2a and 2b are equal but also the metal films 7 heat the electrode films 2a and 2b uniformly,
This is because there is no temperature difference between the electrode films 2a and 2b, and the amount of electrode reaction occurring on each electrode film becomes equal. When the concentration of carbon monoxide was 1,000 ppm, the potential difference was about 8 mV, and the 90% response time was about 90 seconds.

【0056】次に、一酸化炭素の濃度特性を図4に示
す。図4より電位差は一酸化炭素の濃度の対数に比例し
ており、Nernstの式に従っていることが判った。
FIG. 4 shows the concentration characteristics of carbon monoxide. FIG. 4 shows that the potential difference is proportional to the logarithm of the concentration of carbon monoxide, and follows the Nernst equation.

【0057】したがって、実施例1のガスセンサの構成
により、ゼロ点補正を必要としない応答性のよいガスセ
ンサを得ることができることが判った。
Therefore, it was found that the gas sensor according to the first embodiment can provide a highly responsive gas sensor that does not require zero point correction.

【0058】また、このガスセンサを燃焼機器あるいは
内燃機関などに搭載し、排気ガス中の一酸化炭素の濃度
を監視すれば、一酸化炭素の発生量が許容値を越えたと
き強制的に燃焼を停止させたり、一酸化炭素の許容濃度
範囲内で燃焼効率が最大となるように制御することがで
き、燃焼機器あるいは内燃機関などの安全性を向上させ
るだけでなく、省エネをも図ることができる。
If this gas sensor is mounted on a combustion device or an internal combustion engine, and the concentration of carbon monoxide in the exhaust gas is monitored, combustion is forcibly performed when the amount of carbon monoxide exceeds an allowable value. It can be stopped or controlled to maximize the combustion efficiency within the allowable concentration range of carbon monoxide, which not only improves the safety of combustion equipment or internal combustion engines, but also saves energy. .

【0059】次に金属膜リード取り出し部7aおよび7
b間に接続した抵抗検出手段10により測定した金属膜
7の抵抗の温度特性を図5に示す。図5から金属膜7の
抵抗を測定すれば、固体電解質膜1や電極膜2aおよび
2bの動作温度を検出することができ、演算手段11に
よりそのときの温度と電位差から一酸化炭素の濃度を算
出するので、周囲の温度が変化しても正確な一酸化炭素
の濃度を求めることができる。
Next, metal film lead take-out portions 7a and 7
FIG. 5 shows the temperature characteristics of the resistance of the metal film 7 measured by the resistance detecting means 10 connected between the terminals b. By measuring the resistance of the metal film 7 from FIG. 5, the operating temperatures of the solid electrolyte membrane 1 and the electrode films 2a and 2b can be detected, and the arithmetic means 11 determines the concentration of carbon monoxide from the temperature and the potential difference at that time. Since the calculation is performed, an accurate concentration of carbon monoxide can be obtained even when the ambient temperature changes.

【0060】さらに制御手段12により固体電解質膜1
および電極膜2aおよび2bの温度が一定となるよう
に、ヒーター膜リード取り出し部5aおよび5b間に供
給する電圧を制御するので、周囲の温度によらず安定し
た電位差が得られ、信頼性の高いガスセンサを得ること
ができる。
The control means 12 further controls the solid electrolyte membrane 1
In addition, since the voltage supplied between the heater film lead take-out portions 5a and 5b is controlled so that the temperatures of the electrode films 2a and 2b become constant, a stable potential difference is obtained irrespective of the ambient temperature and high reliability is obtained. A gas sensor can be obtained.

【0061】(実施例2)図6に実施例2のガスセンサ
の要部断面図を示す。図6において実施例1のガスセン
サと異なる点は、金属膜7と固体電解質膜1の間にも絶
縁膜8を形成したところである。それ以外で同一符号の
ものは実施例1と同じ構成であり、説明を省略する。
(Embodiment 2) FIG. 6 is a sectional view showing a main part of a gas sensor according to Embodiment 2. FIG. 6 differs from the gas sensor of the first embodiment in that an insulating film 8 is also formed between the metal film 7 and the solid electrolyte film 1. Otherwise, components having the same reference numerals have the same configuration as in the first embodiment, and a description thereof will be omitted.

【0062】実施例1と同様に絶縁体4の表面に金属膜
7を形成した後、金属膜7とヒーター膜5および固体電
解質膜1が互いに電気的に絶縁するために酸化アルミニ
ウムから成る絶縁膜8をスパッタリングにより形成し
た。そして、絶縁膜8の表面に固体電解質膜1を形成
し、絶縁膜8の固体電解質膜1の形成されていない部分
および固体電解質膜1の表面にスクリーン印刷法によ
り、それぞれヒーター膜5および一対の電極膜2a、2
bを同時に形成した。そして、実施例1と同様に電極膜
2aの表面に触媒3を形成した。
After a metal film 7 is formed on the surface of the insulator 4 in the same manner as in the first embodiment, an insulating film made of aluminum oxide is used to electrically insulate the metal film 7, the heater film 5 and the solid electrolyte film 1 from each other. 8 was formed by sputtering. Then, the solid electrolyte membrane 1 is formed on the surface of the insulating film 8, and the heater film 5 and the pair of the heater film 5 are formed on the portion of the insulating film 8 where the solid electrolyte membrane 1 is not formed and the surface of the solid electrolyte membrane 1 by screen printing. Electrode films 2a, 2
b was formed at the same time. Then, as in Example 1, the catalyst 3 was formed on the surface of the electrode film 2a.

【0063】金属膜7と固体電解質膜1が接触した場
合、金属膜7と固体電解質膜1と気相の三相界面で金属
膜7が電極として働き、金属膜7上で電極反応が生じる
可能性がある。しかし、実施例2のガスセンサによれ
ば、絶縁膜8が金属膜7と固体電解質膜1を確実に絶縁
し、リークイオン電流の発生を防止するので、一酸化炭
素の濃度を正確に検出することができる。
When the metal film 7 and the solid electrolyte film 1 come into contact with each other, the metal film 7 functions as an electrode at the three-phase interface between the metal film 7 and the solid electrolyte film 1 and the gas phase, and an electrode reaction may occur on the metal film 7. There is. However, according to the gas sensor of the second embodiment, since the insulating film 8 reliably insulates the metal film 7 and the solid electrolyte film 1 and prevents the generation of a leak ion current, it is possible to accurately detect the concentration of carbon monoxide. Can be.

【0064】また、金属膜7と固体電解質膜1の間に絶
縁膜8を形成することにより電極膜2aおよび2b間の
電位差が変化したり、金属膜7の抵抗の温度特性が変化
するようなことはなく、実施例1と同様に正確な一酸化
炭素の濃度を検出することを確認した。
By forming the insulating film 8 between the metal film 7 and the solid electrolyte film 1, the potential difference between the electrode films 2a and 2b may change, or the temperature characteristic of the resistance of the metal film 7 may change. It was confirmed that an accurate concentration of carbon monoxide was detected in the same manner as in Example 1.

【0065】(実施例3)図7に実施例3のガスセンサ
の要部断面図を示す。図7において実施例2のガスセン
サと異なる点は、電極膜2a、2bと、触媒3およびヒ
ーター膜5を覆うように形成した細孔径が20〜500
Åのガス選択透過体13を備えたところである。それ以
外で同一符号のものは実施例2と同じ構成であり、説明
を省略する。
(Embodiment 3) FIG. 7 is a sectional view of a main part of a gas sensor according to Embodiment 3. 7 is different from the gas sensor of the second embodiment in that the pore diameter formed to cover the electrode films 2a and 2b, the catalyst 3 and the heater film 5 is 20 to 500.
The gas selective permeator 13 is provided. Otherwise, components having the same reference numerals have the same configuration as in the second embodiment, and a description thereof will be omitted.

【0066】実施例2と同様に絶縁体4の表面に金属膜
7、絶縁膜8、固体電解質膜1、ヒーター膜5、電極膜
2a、2bおよび触媒3を順に形成した後、ヒーター膜
5と、電極膜2a、2bおよび触媒3を覆うようにガス
選択透過体13を配置し、接合材14を介し絶縁体4に
積層した。
In the same manner as in Example 2, a metal film 7, an insulating film 8, a solid electrolyte film 1, a heater film 5, electrode films 2a and 2b, and a catalyst 3 are sequentially formed on the surface of an insulator 4. The gas selective permeable member 13 was disposed so as to cover the electrode films 2 a and 2 b and the catalyst 3, and was laminated on the insulator 4 via the bonding material 14.

【0067】次に、ガス選択透過体13の製造方法につ
いて具体的に説明する。
Next, a method of manufacturing the gas selective permeable body 13 will be specifically described.

【0068】ガス選択透体14として平均細孔径が約1
μm以下の多孔性セラミック基板を使用し、このままで
はガスの選択透過性は得られないので、細孔内にゾル−
ゲル法により薄膜を形成し、細孔制御を行った。具体的
には、多孔性セラミック基板をゾルコート液に浸漬し、
一定速度で引き上げた後、乾燥し、焼成した。このとき
細孔内でゲル化が起こり、細孔表面に均一な被膜が形成
され、浸漬時間および浸漬回数を調節することにより、
細孔径が(20〜500)Åのガス選択透過体13を得
た。
The gas selective permeable material 14 has an average pore diameter of about 1
A porous ceramic substrate having a diameter of less than μm is used, and gas permeability cannot be obtained as it is.
A thin film was formed by a gel method, and pore control was performed. Specifically, a porous ceramic substrate is immersed in a sol coating solution,
After being pulled up at a constant speed, it was dried and fired. At this time, gelation occurs in the pores, a uniform coating is formed on the pore surface, and by adjusting the immersion time and the number of immersions,
A gas selective permeable body 13 having a pore diameter of (20 to 500) Å was obtained.

【0069】ところで、排ガス中には分子サイズの大き
い二酸化硫黄などの汚染物質が多く含まれる。実施例3
のガスセンサによれば汚染物質のうち粒径が500Å以
上より大きな分子はガス選択透過体13を透過すること
ができない。また細孔径が(20〜500)Åのガス選
択透過体13においてガスは基本的にKnudsen拡
散により細孔内部表面を吸着しながら拡散する。このと
きガスの透過係数比は分子量と絶対温度の積の平方根に
反比例するので、二酸化硫黄など分子量が大きく、吸着
性のあるガスは酸素や一酸化炭素などのガスに比べて細
孔内を透過し難くなる。したがって、電極膜2aおよび
2bに到達する汚染物質が減少し、電極膜2aおよび2
bが被毒し難くなる。
By the way, the exhaust gas contains many pollutants such as sulfur dioxide having a large molecular size. Example 3
According to the gas sensor described above, molecules having a particle size larger than 500 ° among the contaminants cannot pass through the gas selective permeable body 13. Further, in the gas selective permeator 13 having a pore diameter of (20 to 500) Å, the gas basically diffuses while adsorbing the inner surface of the pores by Knudsen diffusion. At this time, the gas permeability coefficient ratio is inversely proportional to the square root of the product of the molecular weight and the absolute temperature, so that a gas with a large molecular weight such as sulfur dioxide and an adsorbent gas permeates the pores compared to a gas such as oxygen or carbon monoxide. It becomes difficult to do. Therefore, contaminants reaching the electrode films 2a and 2b are reduced, and the electrode films 2a and 2b are reduced.
b becomes hard to poison.

【0070】次に、このガスセンサの二酸化硫黄に対す
る耐久性を調べた。1,000ppmの一酸化炭素と空気
の混合ガス中に100ppmの二酸化硫黄を添加したとき
の電極膜2aおよび2b間に生じる電位差の変化を図8
に示した。図8より二酸化硫黄の添加の有無に関わら
ず、電位差はほぼ一定であり、二酸化硫黄による影響は
見られなかった。実際の排ガス中に含まれる二酸化硫黄
の濃度は2ppm以下であり、これに対して約50倍の濃
度の二酸化硫黄による加速耐久試験において安定した電
位差が得られていることから実施例3のガスセンサは汚
染物質に対する耐久性が極めて安定していることが判っ
た。
Next, the durability of the gas sensor against sulfur dioxide was examined. FIG. 8 shows a change in potential difference between the electrode films 2a and 2b when 100 ppm of sulfur dioxide is added to a mixed gas of 1,000 ppm of carbon monoxide and air.
It was shown to. From FIG. 8, the potential difference was almost constant regardless of the presence or absence of sulfur dioxide, and no effect due to sulfur dioxide was observed. The actual concentration of sulfur dioxide contained in the exhaust gas was 2 ppm or less, and a stable potential difference was obtained in an accelerated endurance test with a sulfur dioxide concentration of about 50 times that of the sulfur dioxide. It was found that the durability against contaminants was extremely stable.

【0071】(実施例4)図9に実施例4のガスセンサ
の要部断面図を示す。図9において実施例3のガスセン
サと異なる点は、ガス選択透過体13の表面に触媒3を
形成したところである。それ以外で同一符号のものは実
施例3と同じ構成であり、説明を省略する。
(Embodiment 4) FIG. 9 is a sectional view of a main part of a gas sensor according to Embodiment 4. FIG. 9 differs from the gas sensor of the third embodiment in that the catalyst 3 is formed on the surface of the gas selective permeable member 13. The other components having the same reference numerals have the same configurations as those of the third embodiment, and a description thereof will be omitted.

【0072】実施例3と同様に絶縁体4の表面に金属膜
7、絶縁膜8、固体電解質膜1、ヒーター膜5、電極膜
2aおよび2bを順に形成した後、ヒーター膜5および
電極膜2a、2bを覆うようにガス選択透過体13を配
置し、接合材14を介し絶縁体4に積層し、ガス選択透
過体13の表面に電極膜2aを覆うように触媒3を積層
した。
After forming a metal film 7, an insulating film 8, a solid electrolyte film 1, a heater film 5, and electrode films 2a and 2b on the surface of the insulator 4 in the same manner as in Example 3, the heater film 5 and the electrode film 2a are formed. 2b, the gas selective permeable member 13 was disposed so as to cover the electrode film 2a, and the catalyst 3 was laminated on the surface of the gas selective permeable member 13 so as to cover the electrode film 2a.

【0073】次に触媒3の製造方法について説明する。
触媒を担持する担体としてステンレスからなる繊維をシ
ート状にしたものを用い、この繊維にアルミナゾルやコ
ロイダルシリカなどの無機系結合材を担持した後、白金
やパラジウムなどの貴金属から成る一酸化炭素を酸化す
る酸化触媒を担持し、焼成した。
Next, a method for producing the catalyst 3 will be described.
A stainless steel fiber sheet is used as a carrier to support the catalyst.An inorganic binder such as alumina sol or colloidal silica is supported on the fiber, and then carbon monoxide consisting of a noble metal such as platinum or palladium is oxidized. The oxidized catalyst was carried and calcined.

【0074】実施例4のガスセンサによれば、ガス選択
透過体13と電極膜2aおよび2bを密着し、ガス選択
透過体13と電極膜2aおよび2bの間に空隙を持たな
いので、隙間から侵入する汚染物質を確実に遮断するこ
とができ、汚染物質に対して耐久性の高いガスセンサを
得ることができる。
According to the gas sensor of the fourth embodiment, the gas selective permeable member 13 and the electrode films 2a and 2b are in close contact with each other, and there is no gap between the gas selective permeable member 13 and the electrode films 2a and 2b. Therefore, a gas sensor having high durability against pollutants can be obtained.

【0075】そして、ガス選択透過体13の表面に触媒
3を形成することにより、触媒3の量を増加させること
ができ、電極膜2aおよび2b間の電位差が増大し、触
媒活性を長期間維持することができるので、感度がよく
ライフタイムの長いガスセンサを得ることができる。
By forming the catalyst 3 on the surface of the gas selective permeable member 13, the amount of the catalyst 3 can be increased, the potential difference between the electrode films 2a and 2b increases, and the catalyst activity is maintained for a long time. Therefore, a gas sensor having high sensitivity and a long lifetime can be obtained.

【0076】[0076]

【発明の効果】以上の説明から明らかなように本発明の
ガスセンサによれば、以下の効果が得られる。
As is clear from the above description, the gas sensor according to the present invention has the following effects.

【0077】(1)固体電解質膜の下に熱伝導のよいシ
ート状の金属膜を備え、ヒーターで加熱された金属膜が
固体電解質膜および一対の電極膜に均一に熱を伝え、加
熱に分布が生じず、電極膜間に温度差が発生しないの
で、被検出ガス中に一酸化炭素が存在しないとき電極膜
上で起こる電極反応の量が等しくなり、電極膜間の電位
差をほぼゼロにすることができ、測定した電位差につい
て温度補正を行わなくても電極膜間の電位差から一酸化
炭素の濃度を正確に求めることができる。
(1) A sheet-like metal film having good heat conductivity is provided under the solid electrolyte film, and the metal film heated by the heater uniformly transmits heat to the solid electrolyte film and the pair of electrode films, and is distributed to the heating. Does not occur, and no temperature difference occurs between the electrode films, so that when carbon monoxide is not present in the gas to be detected, the amount of electrode reaction occurring on the electrode films is equal, and the potential difference between the electrode films is almost zero. The concentration of carbon monoxide can be accurately obtained from the potential difference between the electrode films without performing temperature correction on the measured potential difference.

【0078】(2)ヒーター膜と一対の電極膜は同一平
面に配置され、同時に形成することができるので、製造
工程が簡単になり、低コストのガスセンサを得ることが
できる。
(2) Since the heater film and the pair of electrode films are arranged on the same plane and can be formed simultaneously, the manufacturing process is simplified, and a low-cost gas sensor can be obtained.

【0079】(3)金属膜の熱伝導率が0.5(W/
(cm・K))以上であり、絶縁膜や固体電解質膜などの
それに比べて熱伝導性に優れ、線熱膨張率が(4〜1
3)×10-6(deg-1)であり、絶縁体や固体電解質膜
のそれと同じ程度であるので、剥離や割れを生じさせる
ことなく、固体電解質膜や電極膜を効率よく均一に加熱
することができる。
(3) The thermal conductivity of the metal film is 0.5 (W /
(Cm · K)) or more, and is superior in thermal conductivity to those of insulating films and solid electrolyte films, and has a linear thermal expansion coefficient of (4-1).
3) Since it is about 10 -6 (deg -1 ), which is about the same as that of an insulator or a solid electrolyte membrane, the solid electrolyte membrane or the electrode membrane is efficiently and uniformly heated without causing peeling or cracking. be able to.

【0080】(4)絶縁膜が金属膜と固体電解質膜を確
実に絶縁し、リークイオン電流の発生を防止するので、
一酸化炭素の濃度を正確に検出することができる。
(4) Since the insulating film reliably insulates the metal film and the solid electrolyte film and prevents the generation of a leak ion current,
The concentration of carbon monoxide can be accurately detected.

【0081】(5)被検出ガスはKnudsen拡散に
よりガス選択透過体を通過し、検出に必要な一酸化炭素
や酸素はガス選択透過体を通って電極膜に到達すること
ができるが、一酸化炭素や酸素に比べ分子サイズが大き
く吸着性を有する二酸化硫黄などの汚染物質はガス選択
透過体を透過できないので、電極膜が被毒し難くなり、
汚染物質に対して耐久性の高いガスセンサを得ることが
できる。
(5) The gas to be detected passes through the gas selective permeable body by Knudsen diffusion, and carbon monoxide and oxygen necessary for detection can reach the electrode film through the gas selective permeable body. Contaminants such as sulfur dioxide, which has a larger molecular size than carbon and oxygen and has adsorptive properties, cannot pass through the gas selective permeable body, making it difficult for the electrode membrane to be poisoned.
A gas sensor having high durability against contaminants can be obtained.

【0082】(6)ガス選択透過体と電極膜を密着し、
ガス選択透過体と電極膜の間に空隙を持たないので、隙
間から侵入する汚染物質を確実に遮断することができ、
汚染物質に対して耐久性の高いガスセンサを得ることが
できる。
(6) The gas selective permeable member and the electrode film are brought into close contact with each other,
Since there is no gap between the gas selective permeable body and the electrode membrane, contaminants entering through the gap can be reliably shut off,
A gas sensor having high durability against contaminants can be obtained.

【0083】(7)ガス選択透過体の表面に触媒を形成
することにより、触媒の量を増加させることができ、電
極膜間の電位差が増大し、触媒活性を長期間維持するこ
とができるので、感度がよくライフタイムの長いガスセ
ンサを得ることができる。
(7) By forming a catalyst on the surface of the gas selective permeable member, the amount of the catalyst can be increased, the potential difference between the electrode films increases, and the catalyst activity can be maintained for a long time. Thus, a gas sensor having high sensitivity and a long lifetime can be obtained.

【0084】(8)金属膜の抵抗の温度特性から固体電
解質膜の温度を算出し、その温度における電極膜間の電
位差から一酸化炭素の濃度を算出するので、周囲の温度
が変化しても正確な一酸化炭素の濃度を求めることがで
きる。
(8) The temperature of the solid electrolyte membrane is calculated from the temperature characteristics of the resistance of the metal film, and the concentration of carbon monoxide is calculated from the potential difference between the electrode films at that temperature. An accurate concentration of carbon monoxide can be determined.

【0085】(9)制御手段により固体電解質膜および
電極膜の温度を一定に保持することができるので、周囲
の温度によらず安定した電位差が得られ、信頼性の高い
ガスセンサを得ることができる。
(9) Since the temperatures of the solid electrolyte membrane and the electrode membrane can be kept constant by the control means, a stable potential difference can be obtained irrespective of the surrounding temperature, and a highly reliable gas sensor can be obtained. .

【0086】(10)基板として電気絶縁体を用いた場
合はそれぞれのリード取り出し部が絶縁体の同一の表面
に形成できるので、リード線を容易に接続することがで
き、作業効率を向上させることができる。
(10) When an electrical insulator is used as the substrate, each lead-out portion can be formed on the same surface of the insulator, so that lead wires can be easily connected and work efficiency can be improved. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1におけるガスセンサの要部断
面図
FIG. 1 is a sectional view of a main part of a gas sensor according to a first embodiment of the present invention.

【図2】同ガスセンサの上面図FIG. 2 is a top view of the gas sensor.

【図3】同ガスセンサの応答性を示す図FIG. 3 is a diagram showing the responsiveness of the gas sensor.

【図4】同ガスセンサの一酸化炭素濃度特性を示す図FIG. 4 is a diagram showing carbon monoxide concentration characteristics of the gas sensor.

【図5】同ガスセンサの金属膜の抵抗の温度特性を示す
FIG. 5 is a diagram showing temperature characteristics of resistance of a metal film of the gas sensor.

【図6】本発明の実施例2におけるガスセンサの要部断
面図
FIG. 6 is a sectional view of a main part of a gas sensor according to a second embodiment of the present invention.

【図7】本発明の実施例3におけるガスセンサの要部断
面図
FIG. 7 is a sectional view of a main part of a gas sensor according to a third embodiment of the present invention.

【図8】同ガスセンサの二酸化硫黄耐久性を示す図FIG. 8 is a view showing sulfur dioxide durability of the gas sensor.

【図9】本発明の実施例4におけるガスセンサの要部断
面図
FIG. 9 is a sectional view of a main part of a gas sensor according to a fourth embodiment of the present invention.

【図10】従来のガスセンサの組立構成図FIG. 10 is an assembly configuration diagram of a conventional gas sensor.

【符号の説明】[Explanation of symbols]

1 固体電解質膜 2a、2b 電極膜 3 触媒 4 絶縁体(基板) 5 ヒーター膜 7 金属膜 8 絶縁膜 9 電位差検出手段 10 抵抗検出手段 11 演算手段 12 制御手段 13 ガス選択透過体 DESCRIPTION OF SYMBOLS 1 Solid electrolyte membrane 2a, 2b Electrode film 3 Catalyst 4 Insulator (substrate) 5 Heater film 7 Metal film 8 Insulating film 9 Potential difference detecting means 10 Resistance detecting means 11 Computing means 12 Control means 13 Gas selective permeable body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鶴田 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G004 BB04 BE03 BE11 BE22 BE30 BJ03 BL08 BM04 BM07 BM10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Niwa 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kunihiro Tsuruta 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial F Terms (reference) 2G004 BB04 BE03 BE11 BE22 BE30 BJ03 BL08 BM04 BM07 BM10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板と、前記基板の表面に形成したシート
状の金属膜と、前記金属膜の表面の一方に形成した電気
的絶縁性を有する絶縁膜と、前記絶縁膜の前記表面の一
方に形成したヒーター膜と、前記金属膜の前記表面の他
方に形成した酸素イオン導電性を有する固体電解質膜
と、前記固体電解質膜の前記表面に形成した一対の電極
膜と、前記一対の電極膜のうちどちらか一方の電極膜の
表面に形成した触媒からなるガスセンサ。
1. A substrate, a sheet-like metal film formed on a surface of the substrate, an insulating film having electrical insulation formed on one of the surfaces of the metal film, and one of the surfaces of the insulating film. A solid electrolyte film having oxygen ion conductivity formed on the other of the surfaces of the metal film, a pair of electrode films formed on the surface of the solid electrolyte film, and the pair of electrode films A gas sensor comprising a catalyst formed on the surface of one of the electrode films.
【請求項2】金属膜は、鉄、イリジウム、モリブデン、
ニッケル、パラジウム、白金、ロジウム、タンタル、タ
ングステンのうち少なくとも一種以上を含む請求項1記
載のガスセンサ。
2. The metal film is made of iron, iridium, molybdenum,
2. The gas sensor according to claim 1, comprising at least one of nickel, palladium, platinum, rhodium, tantalum, and tungsten.
【請求項3】金属膜と固体電解質膜の間に絶縁膜を形成
した請求項1記載のガスセンサ。
3. The gas sensor according to claim 1, wherein an insulating film is formed between the metal film and the solid electrolyte film.
【請求項4】ヒーター膜と、一対の電極膜を覆うように
形成した細孔径が20〜500Åのガス選択透過体を備
えた請求項1記載のガスセンサ。
4. The gas sensor according to claim 1, further comprising a heater film and a gas selective permeable member having a pore diameter of 20 to 500 ° formed so as to cover the pair of electrode films.
【請求項5】ガス選択透過体の表面に触媒を形成した請
求項1および4記載のガスセンサ。
5. The gas sensor according to claim 1, wherein a catalyst is formed on the surface of the gas selective permeable body.
【請求項6】一対の電極膜間の電位差を検出する電位差
検出手段と、金属膜の抵抗を測定する抵抗検出手段と、
前記抵抗から固体電解質膜の温度を算出し、前記電位差
と前記温度から被検出ガスの濃度を算出する演算手段を
備えた請求項1記載のガスセンサ。
6. A potential difference detecting means for detecting a potential difference between a pair of electrode films, a resistance detecting means for measuring a resistance of a metal film,
The gas sensor according to claim 1, further comprising a calculating unit configured to calculate a temperature of the solid electrolyte membrane from the resistance and calculate a concentration of the gas to be detected from the potential difference and the temperature.
【請求項7】金属膜の抵抗を一定に保持するようにヒー
ター膜に供給される電力を制御する制御手段を備えた請
求項1および6記載のガスセンサ。
7. The gas sensor according to claim 1, further comprising control means for controlling electric power supplied to the heater film so as to keep the resistance of the metal film constant.
【請求項8】基板を絶縁体で構成し、一対の電極膜、金
属膜およびヒーター膜のリード取り出し部を前記基板の
同一の表面に形成する請求項1記載のガスセンサ。
8. The gas sensor according to claim 1, wherein the substrate is formed of an insulator, and a pair of electrode films, a metal film, and a lead-out portion of the heater film are formed on the same surface of the substrate.
JP11149883A 1999-05-28 1999-05-28 Gas sensor Withdrawn JP2000338081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11149883A JP2000338081A (en) 1999-05-28 1999-05-28 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11149883A JP2000338081A (en) 1999-05-28 1999-05-28 Gas sensor

Publications (1)

Publication Number Publication Date
JP2000338081A true JP2000338081A (en) 2000-12-08

Family

ID=15484732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11149883A Withdrawn JP2000338081A (en) 1999-05-28 1999-05-28 Gas sensor

Country Status (1)

Country Link
JP (1) JP2000338081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046734A1 (en) * 2000-12-07 2002-06-13 Matsushita Electric Industrial Co., Ltd. Gas sensor and detection method and device for gas.concentration
JP2009133808A (en) * 2007-11-08 2009-06-18 Ngk Spark Plug Co Ltd Gas sensor and gas sensor controller
CN108732212A (en) * 2018-05-23 2018-11-02 重庆海士测控技术有限公司 A kind of manufacturing method, sensor and its application of manifold effect detection integrated gas sensors manufacturing method
CN115087864A (en) * 2020-03-09 2022-09-20 株式会社日立高新技术 Electrolyte concentration measuring device
JP7389420B2 (en) 2020-05-08 2023-11-30 国立大学法人 長崎大学 Porous solid electrolyte gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046734A1 (en) * 2000-12-07 2002-06-13 Matsushita Electric Industrial Co., Ltd. Gas sensor and detection method and device for gas.concentration
JP2009133808A (en) * 2007-11-08 2009-06-18 Ngk Spark Plug Co Ltd Gas sensor and gas sensor controller
CN108732212A (en) * 2018-05-23 2018-11-02 重庆海士测控技术有限公司 A kind of manufacturing method, sensor and its application of manifold effect detection integrated gas sensors manufacturing method
CN108732212B (en) * 2018-05-23 2020-12-15 哈尔滨工程大学 Manufacturing method of multi-effect detection integrated gas sensor, sensor and application of sensor
CN115087864A (en) * 2020-03-09 2022-09-20 株式会社日立高新技术 Electrolyte concentration measuring device
JP7389420B2 (en) 2020-05-08 2023-11-30 国立大学法人 長崎大学 Porous solid electrolyte gas sensor

Similar Documents

Publication Publication Date Title
EP0853762B1 (en) Gas sensor and manufacturing process thereof
JP2636883B2 (en) NOx concentration measuring device
JP3128114B2 (en) Nitrogen oxide detector
US20030205078A1 (en) Gas-detecting element and gas-detecting device comprising same
JPS58124943A (en) Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor
CA2436238A1 (en) Gas sensor and detection method and device for gas.concentration
WO2020031909A1 (en) Mems type semiconductor gas detection element
JP2000338081A (en) Gas sensor
JP2006133039A (en) Nitrogen oxide sensor
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JPH10115597A (en) Gas sensor
JP2002310983A (en) Carbon monoxide gas sensor
JP2003156470A (en) Gas sensor element and detection method of gas concentration
JP2001004589A (en) Gas sensor
JP2001041924A (en) Gas sensor
JPS6366448A (en) Gas detector
JPH0875691A (en) Gas sensor
JP4615788B2 (en) Cleaning method for variable resistance gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP3511747B2 (en) Gas sensor
JP2001033425A (en) Hydrogen gas sensor
JP2002071630A (en) Gas sensor
JP4356177B2 (en) Manufacturing method of gas sensor
JP2000111519A (en) Gas sensor
JP2002333426A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613