JP7389420B2 - Porous solid electrolyte gas sensor - Google Patents

Porous solid electrolyte gas sensor Download PDF

Info

Publication number
JP7389420B2
JP7389420B2 JP2020082394A JP2020082394A JP7389420B2 JP 7389420 B2 JP7389420 B2 JP 7389420B2 JP 2020082394 A JP2020082394 A JP 2020082394A JP 2020082394 A JP2020082394 A JP 2020082394A JP 7389420 B2 JP7389420 B2 JP 7389420B2
Authority
JP
Japan
Prior art keywords
electrodes
solid electrolyte
gas sensor
electrode
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020082394A
Other languages
Japanese (ja)
Other versions
JP2021177142A (en
Inventor
康博 清水
邦之 井澤
健生 兵頭
海 鎌田
太郎 上田
裕樹 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Nagasaki University NUC
Original Assignee
Figaro Engineering Inc
Nagasaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Nagasaki University NUC filed Critical Figaro Engineering Inc
Priority to JP2020082394A priority Critical patent/JP7389420B2/en
Publication of JP2021177142A publication Critical patent/JP2021177142A/en
Application granted granted Critical
Publication of JP7389420B2 publication Critical patent/JP7389420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

この発明は多孔質の固体電解質膜を用いるガスセンサに関する。 The present invention relates to a gas sensor using a porous solid electrolyte membrane.

起電力を応答出力とする通常の固体電解質型のガスセンサでは、固体電解質の緻密な焼結体を用いるので、製造工程が複雑になる。検知極と対極を同じ雰囲気に曝し、参照雰囲気を必要としない、混成電位型の検知機構でも、緻密な焼結体を用いることは変わらない。発明者らは、Naイオン導電体のNASICON焼結体を用い、常温作動が可能なCOセンサを提案したが(特許文献1,2、非特許文献1)、同様な問題がある。このため、ガスセンサの小型化、製造工程の単純化、MEMSホットプレートへの搭載によるインテリジェント化は困難であった。 A typical solid electrolyte gas sensor that uses electromotive force as a response output uses a dense sintered solid electrolyte, which complicates the manufacturing process. Even in a mixed potential type detection mechanism in which the detection electrode and counter electrode are exposed to the same atmosphere and no reference atmosphere is required, a dense sintered body is still used. The inventors have proposed a CO sensor that can operate at room temperature using a NASICON sintered body of Na + ion conductor (Patent Documents 1 and 2, Non-Patent Document 1), but there are similar problems. For this reason, it has been difficult to miniaturize gas sensors, simplify the manufacturing process, and make them more intelligent by mounting them on MEMS hot plates.

JP6425,309BJP6425,309B US9939,404BUS9939,404B

Electrochimica Acta 155 (2015) 8-15Electrochimica Acta 155 (2015) 8-15

この発明の課題は、多孔質の固体電解質膜を用いる新しい構造のガスセンサを提供することにより、ガスセンサの製造工程を簡単化し、ガスセンサの小型化を容易にすることにある。 An object of the present invention is to provide a gas sensor with a new structure using a porous solid electrolyte membrane, thereby simplifying the manufacturing process of the gas sensor and facilitating miniaturization of the gas sensor.

この発明の多孔質固体電解質ガスセンサは、
基板あるいはマイクロホットプレートのヒータを備えた膜等の支持体と、
共に支持体上に固定されかつ組成が互いに異なる一対の電極と、
一対の電極を覆うように支持体上に固定された多孔質の固体電解質膜、とを備え、
前記一対の電極間の起電力を出力とする。
The porous solid electrolyte gas sensor of this invention is
a support such as a substrate or a membrane equipped with a micro-hot plate heater;
a pair of electrodes both fixed on a support and having different compositions;
A porous solid electrolyte membrane fixed on a support so as to cover a pair of electrodes,
The electromotive force between the pair of electrodes is output.

この発明のガスセンサでは、起電力を出力とするので、極く僅かな電流が固体電解質中を流れれば良い。このため固体電解質粒子がネックなどで接触していれば十分で、多孔質の固体電解質膜でもガスを検出できる。固体電解質膜は好ましくは多孔質のアルカリ金属イオン導電体膜で、室温でCO,H2等のガスを検出できる。 Since the gas sensor of the present invention outputs electromotive force, only a very small amount of current needs to flow through the solid electrolyte. Therefore, it is sufficient that the solid electrolyte particles are in contact with each other at a neck or the like, and gas can be detected even with a porous solid electrolyte membrane. The solid electrolyte membrane is preferably a porous alkali metal ion conductor membrane that can detect gases such as CO and H2 at room temperature.

一対の電極の少なくと一方に貴金属と金属酸化物とを含有させると、金属酸化物により電極間に起電力の差を生じさせることができる。特に、一方の電極にはCOとの接触により起電力が増加するように金属酸化物を混合し、他方の電極にはCOとの接触により起電力が減少するように別の種類の金属酸化物を含有させると、大きなガス応答が得られる。 When at least one of a pair of electrodes contains a noble metal and a metal oxide, a difference in electromotive force can be generated between the electrodes due to the metal oxide. In particular, one electrode is mixed with a metal oxide so that the electromotive force increases when it comes into contact with CO, and the other electrode is mixed with a metal oxide of another type so that the electromotive force decreases when it comes into contact with CO. By containing , a large gas response can be obtained.

好ましくは、MEMSマイクロホットプレートのヒータを備える膜を支持膜とする。この膜は基板に設けた空洞上に掛け渡されている。MEMSマイクロホットプレートを用いると他のセンサの集積化と駆動回路の集積化が容易である。またマイクロホットプレートのヒータを電極と固体電解質膜の焼成に用いることができる。
Preferably, a membrane provided with a heater of a MEMS micro hot plate is used as the supporting membrane. This membrane is spanned over a cavity provided in the substrate. Using a MEMS micro hot plate makes it easy to integrate other sensors and drive circuits. Further, a micro hot plate heater can be used for baking the electrode and solid electrolyte membrane.

実施例のガスセンサの断面図Cross-sectional view of the gas sensor of the example 実施例のガスセンサの平面図Plan view of the gas sensor of the example 実施例のガスセンサでの、アルミナ基板とNASICON膜断面の電子顕微鏡写真Electron micrograph of the cross section of the alumina substrate and NASICON film in the gas sensor of the example 実施例のガスセンサでの、NASICON膜断面の電子顕微鏡写真Electron micrograph of a cross section of the NASICON membrane in the gas sensor of the example 実施例のガスセンサでの、NASICON膜の破断面とPt(15Bi2O3)電極を示す電子顕微鏡写真Electron micrograph showing the fractured surface of the NASICON membrane and the Pt (15Bi 2 O 3 ) electrode in the gas sensor of the example 実施例のガスセンサでの、Pt(15Bi2O3)電極とその周囲を示す電子顕微鏡写真Electron micrograph showing the Pt (15Bi 2 O 3 ) electrode and its surroundings in the gas sensor of the example ディスク状のNASICON焼結体での、熱処理によるPt対極へのBi元素の拡散を示す図Diagram showing the diffusion of Bi element to the Pt counter electrode during heat treatment in a disk-shaped NASICON sintered body 800℃成膜のNASICON膜を用いたガスセンサの、300ppmCOへの応答を示す図Diagram showing the response of a gas sensor using a NASICON film deposited at 800℃ to 300ppmCO 1000℃成膜のNASICON膜を用いたガスセンサの、300ppmCOへの応答を示す図Diagram showing the response of a gas sensor using NASICON film deposited at 1000℃ to 300ppmCO 900℃成膜のNASICON膜を用いたガスセンサの、300ppmCOへの応答を示す図Diagram showing the response of a gas sensor using a NASICON film deposited at 900°C to 300ppmCO Pt(15CeO2)電極と単味のPt電極とを組み合わせたガスセンサの、室温での300ppmCOへの応答を示す特性図Characteristic diagram showing the response to 300 ppm CO at room temperature of a gas sensor that combines a Pt (15CeO 2 ) electrode and a plain Pt electrode. Pt(15Bi2O3)電極とPt(15CeO2)電極とを組み合わせたガスセンサの、室温での300ppmCOへの応答を示す特性図Characteristic diagram showing the response of a gas sensor that combines a Pt (15Bi 2 O 3 ) electrode and a Pt (15CeO 2 ) electrode to 300 ppm CO at room temperature. 図12のガスセンサの、-10℃での300ppmCOへの応答を示す特性図Characteristic diagram showing the response of the gas sensor in Figure 12 to 300 ppm CO at -10°C

以下に本発明を実施するための最適実施例を示す。 The best embodiments for carrying out the present invention are shown below.

ガスセンサの構造
図1~図13に実施例を示す。図1,図2はガスセンサ2の構造を示し、3はSi等の基板で、4はエッチングにより基板3に設けた空洞であり、空洞4の上部をダイアフラム状の支持膜6が覆っている。支持膜6は空洞4をダイアフラム状に覆うのではなく、空洞4上を架橋していても良い。支持膜6は1層あるいは多層の絶縁膜から成り、実施例では多層の絶縁膜の間に膜状のPtヒータ8を備えている。Si基板3~ヒータ8は、MEMSマイクロホットプレートを構成する。
Embodiments of the structure of the gas sensor are shown in FIGS. 1 to 13. 1 and 2 show the structure of a gas sensor 2, where 3 is a substrate made of Si or the like, 4 is a cavity provided in the substrate 3 by etching, and the upper part of the cavity 4 is covered with a diaphragm-shaped support film 6. The support membrane 6 may bridge the cavity 4 instead of covering the cavity 4 in the form of a diaphragm. The support film 6 is composed of a single layer or a multilayer insulating film, and in the embodiment, a film-like Pt heater 8 is provided between the multilayer insulating films. The Si substrate 3 to heater 8 constitute a MEMS micro hot plate.

支持膜6上に一対の電極10,11が成膜され、一方は検知極、他方は対極で、組成が異なる。電極10,11の膜厚は実施例では10μmとしたが、任意である。また電極10,11を覆うように、支持膜6上に多孔質NASICON膜12(以下単に、NASICON膜12と言う)が成膜されている。電極10,11の端部にパッド15,16が接続され、ヒータ8の両端にパッド17,18が接続され、パッド15~18に図示しないリード線をボンディングする。このようにして、電極10/11間の起電力を、ガスセンサ2の出力とする。なおパッド15~18等を、導電性のスルーホール等を介して、基板3の底面の配線へ接続してもよい。またヒータ8は電極10,11の一方を兼用してもよい。 A pair of electrodes 10 and 11 are formed on the support film 6, one is a sensing electrode and the other is a counter electrode, and have different compositions. The film thickness of the electrodes 10 and 11 was set to 10 μm in the example, but it is arbitrary. Further, a porous NASICON film 12 (hereinafter simply referred to as NASICON film 12) is formed on the support film 6 so as to cover the electrodes 10 and 11. Pads 15 and 16 are connected to the ends of the electrodes 10 and 11, pads 17 and 18 are connected to both ends of the heater 8, and lead wires (not shown) are bonded to the pads 15 to 18. In this way, the electromotive force between the electrodes 10/11 is used as the output of the gas sensor 2. Note that the pads 15 to 18, etc. may be connected to wiring on the bottom surface of the substrate 3 via conductive through holes or the like. Further, the heater 8 may also serve as one of the electrodes 10 and 11.

NASICON膜12は多孔質の厚膜で、膜厚は例えば10μm~5mm程度で、膜厚0.1~0.3mm程度の膜を用いたが、膜厚3mmでもガスセンサとして動作した。NASICON以外のアルカリ金属イオン導電体を用いてもよく、例えばNaイオン導電体とリチウムイオン導電体のLISICONは類似のアルカリ金属イオン導電体で、共に室温でのCO検出に用いることができる。さらに室温で導電性のあるイオン導電体であれば、アルカリ金属イオン導電体以外の多孔質固体電解質膜を用いても良い。 The NASICON membrane 12 is a porous thick film, for example, with a thickness of about 10 μm to 5 mm, and a film with a thickness of about 0.1 to 0.3 mm was used, but even a film with a thickness of 3 mm worked as a gas sensor. Alkali metal ion conductors other than NASICON may be used; for example, the Na ion conductor and the lithium ion conductor LISICON are similar alkali metal ion conductors and both can be used for CO detection at room temperature. Furthermore, a porous solid electrolyte membrane other than an alkali metal ion conductor may be used as long as it is an ion conductor that is conductive at room temperature.

検知極と対極とで電極組成を変えることにより、CO,H2,アンモニア,硫化水素,アルコール,ケトン,炭化水素等のガスと、電極との反応が変化する。この結果、ガスへの応答が例えば起電力として発生する。電極は例えば一方がPt,Au,Rh,Pd等の貴金属で、他方がペロブスカイト等の金属酸化物でも良い。 By changing the electrode composition between the sensing electrode and the counter electrode, the reaction between the electrode and gases such as CO, H2, ammonia, hydrogen sulfide, alcohol, ketones, and hydrocarbons changes. As a result, a response to the gas occurs, for example as an electromotive force. For example, one electrode may be made of a noble metal such as Pt, Au, Rh, Pd, etc., and the other electrode may be made of a metal oxide such as perovskite.

検知極と対極を何れも貴金属を主成分とする電極(貴金属が例えば70wt%以上)とし、何れか一方に金属酸化物を混合(例えば30wt%以下で0.01wt%以上で、好ましくは30wt%以下で0.1wt%以上)すると、電極間に性質の差が生じ、ガスを検出できる。CO等の還元性ガスに対して正の起電力応答が生じるようにする金属酸化物には、Bi2O3,Cr2O3等があり、負の起電力応答が生じるようにする金属酸化物には、CeO2,V2O5,WO3,Ta2O3,In2O3等がある。なおこのことは特許文献2で公表済みである。好ましくは、一方の電極には正の起電力応答が生じる金属酸化物を少なくとも一種類混合し、他方の電極には負の起電力応答が生じる金属酸化物を少なくとも一種類混合する。 Both the sensing electrode and the counter electrode are electrodes whose main component is a noble metal (e.g., 70 wt% or more of the noble metal), and one of them is mixed with a metal oxide (e.g., 30 wt% or less, 0.01 wt% or more, preferably 30 wt% or less). (0.1wt% or more), a difference in properties occurs between the electrodes, and the gas can be detected. Metal oxides that cause a positive electromotive force response to reducing gases such as CO include Bi 2 O 3 and Cr 2 O 3 , and metal oxides that cause a negative electromotive force response. Examples include CeO 2 , V 2 O 5 , WO 3 , Ta 2 O 3 , In 2 O 3 , etc. Note that this has already been published in Patent Document 2. Preferably, one electrode is mixed with at least one type of metal oxide that causes a positive electromotive force response, and the other electrode is mixed with at least one type of metal oxide that causes a negative electromotive force response.

ヒータ8は電極10,11とNASICON膜12の焼成に用い、実施例のガスセンサ2は室温で動作するので、ガス検出時にヒータ8を動作させる必要はない。ただし-40℃等の低温で動作させる場合、あるいは炭化水素、VOC等を検出する場合、ヒータ8を動作させても良い。MEMSマイクロホットプレートを用いるのは、ガスセンサ2上で電極10,11とNASICON膜12を焼成するためである。また温度センサ、湿度センサ等の他のセンサと集積化でき、またガスセンサの付帯回路と集積化できるためである。実施例では、MEMSガスセンサではなく、アルミナ基板上に電極10,11とNASICON膜12を設けた際のデータを示す。 The heater 8 is used to bake the electrodes 10, 11 and the NASICON film 12, and since the gas sensor 2 of the embodiment operates at room temperature, there is no need to operate the heater 8 when detecting gas. However, when operating at a low temperature such as -40°C, or when detecting hydrocarbons, VOCs, etc., the heater 8 may be operated. The reason why the MEMS micro hot plate is used is to bake the electrodes 10 and 11 and the NASICON film 12 on the gas sensor 2. This is also because it can be integrated with other sensors such as a temperature sensor and humidity sensor, and also with ancillary circuits of a gas sensor. In the example, data is shown when electrodes 10 and 11 and a NASICON film 12 are provided on an alumina substrate instead of a MEMS gas sensor.

ガスセンサの製造例とNASICON膜の構造
NASICON(Na3Zr2Si2PO12)粉末を調製し、グリセリンでペースト化した。電極材料ペーストとして、貴金属ペーストと金属酸化物粉末を混合し、あるいは単味の貴金属ペーストを用いた。アルミナ基板上に検知極と対極のペーストを塗布し、NASICONペーストをその上部から塗布し、乾燥した。乾燥後に基板を例えば空気中で焼成し、電極の焼成と、多孔質NASICON膜の成膜(焼成)を同時に行った。電極の焼成と多孔質NASICON膜の成膜は別々に行っても良い。焼成雰囲気等は任意で、多孔質のNASICON膜を成膜できればよい。
Manufacturing example of gas sensor and structure of NASICON membrane
NASICON (Na 3 Zr 2 Si 2 PO 12 ) powder was prepared and made into a paste with glycerin. As the electrode material paste, a mixture of noble metal paste and metal oxide powder, or a plain noble metal paste was used. Pastes for the sensing electrode and counter electrode were applied onto an alumina substrate, and NASICON paste was applied from above and dried. After drying, the substrate was fired, for example, in air, and the electrodes were fired and the porous NASICON film was formed (fired) at the same time. The firing of the electrode and the formation of the porous NASICON film may be performed separately. The firing atmosphere and the like are arbitrary, as long as a porous NASICON film can be formed.

電極組成はPtペーストと金属酸化物の重量比で示し、Ptペースト中のPt濃度は80~90wt%であった。例えばPt(15Bi2O3)はPtペーストが85wt%、Bi2O3が15wt%であることを示し、焼成後の電極組成としては、Ptが82~84wt%、Bi2O3が18~16wt%となる。 The electrode composition was expressed as the weight ratio of Pt paste and metal oxide, and the Pt concentration in the Pt paste was 80 to 90 wt%. For example, Pt (15Bi 2 O 3 ) indicates that Pt paste is 85wt% and Bi 2 O 3 is 15wt%, and the electrode composition after firing is 82 to 84 wt% of Pt and 18 to 16 wt% of Bi2O3. Become.

図3は下部に見えるアルミナ基板上のNASICON膜を示し、図4はNASICON膜を拡大して示す。焼成条件は900℃×30分間である。 Figure 3 shows the NASICON film on the alumina substrate visible at the bottom, and Figure 4 shows an enlarged view of the NASICON film. The firing conditions were 900°C x 30 minutes.

図5は、Pt(15Bi2O3)電極とNASICON膜の破断面を示し、図5の下部にアルミナ基板が見える。図6は、Pt(15Bi2O3)電極とその周囲を拡大して示す。焼成条件は900℃×30分間である。 Figure 5 shows the fractured surface of the Pt (15Bi 2 O 3 ) electrode and NASICON membrane, and the alumina substrate can be seen at the bottom of Figure 5. FIG. 6 shows an enlarged view of the Pt (15Bi 2 O 3 ) electrode and its surroundings. The firing conditions were 900°C x 30 minutes.

電極中の金属酸化物の移動
従来例のガスセンサとして、ディスク状のNASICON焼結体(空気中1100℃で4時間焼結)に、検知極(Pt(15Bi2O3))と対極(Pt)のペーストを塗布し、空気中700℃、800℃、900℃の各温度で、30分ずつ熱処理した。熱処理後の検知極と対極の組成をXPS(X-ray
photoelectron spectroscopy)により分析した。対極でのBiのピークを図7に示す。熱処理により検知極のBi濃度が低下し、800℃あるいは900℃で処理すると対極にBiが観察され、900℃では対極に高濃度のBiが観察された。電極に添加する金属酸化物の内で、Bi2O3,V2O5,WOは比較的融点が低い、あるいは昇華しやすい材料である。そして図7は、電極に混合した金属酸化物は焼成により移動し得ることを示している。
Migration of metal oxides in electrodes A conventional gas sensor consists of a disk-shaped NASICON sintered body (sintered in air at 1100℃ for 4 hours), a sensing electrode (Pt (15Bi 2 O 3 )) and a counter electrode (Pt). The paste was applied and heat treated in air at temperatures of 700°C, 800°C, and 900°C for 30 minutes each. The composition of the sensing electrode and counter electrode after heat treatment was analyzed using XPS (X-ray
analyzed by photoelectron spectroscopy). Figure 7 shows the peak of Bi at the opposite electrode. The Bi concentration of the sensing electrode decreased with heat treatment, and when treated at 800°C or 900°C, Bi was observed on the counter electrode, and at 900°C, a high concentration of Bi was observed on the counter electrode. Among the metal oxides added to the electrode, Bi 2 O 3 , V 2 O 5 , and WO 3 are materials that have a relatively low melting point or are easily sublimed. And FIG. 7 shows that the metal oxide mixed in the electrode can be moved by firing.

焼成温度の影響
検知極をPt(15Bi2O3)、対極をPtとし、NASICON膜の焼成条件を、空気中800℃×30分(図8)、空気中1000℃×30分(図9)、及び空気中900℃×30分(図10)に変化させた。室温の乾燥雰囲気での、300ppmCOへの応答を示す。なお実施例では、特に断らない限り乾燥雰囲気でのガス応答を示す。温度は周囲温度を示し、ガスセンサは加熱せずに周囲の温度で動作させた。実施例では、ガスへの応答は電極間の起電力の変化である。焼成温度が800℃(図8)では起電力は不安定で、焼成温度が1000℃(図9)では小さなCO応答しか得られなかったが、焼成温度が900℃(図10)では大きなCO応答が得られた。これらのことは、NASICON膜の焼成温度は900℃付近が好ましいことを示している。以下では、焼成条件を空気中900℃×30分間に統一した。
Effect of firing temperature The sensing electrode was Pt (15Bi2O3) and the counter electrode was Pt, and the firing conditions for the NASICON film were 800℃ x 30 minutes in air (Figure 8), 1000℃ x 30 minutes in air (Figure 9), and air. The temperature was changed to 900°C for 30 minutes (Figure 10). The response to 300 ppm CO in a dry atmosphere at room temperature is shown. In the Examples, gas responses in a dry atmosphere are shown unless otherwise specified. Temperature indicates ambient temperature, and the gas sensor was operated at ambient temperature without heating. In embodiments, the response to the gas is a change in electromotive force between the electrodes. At a firing temperature of 800°C (Fig. 8), the electromotive force was unstable, and at a firing temperature of 1000°C (Fig. 9), only a small CO response was obtained, but at a firing temperature of 900°C (Fig. 10), a large CO response was obtained. was gotten. These facts indicate that the firing temperature of the NASICON film is preferably around 900°C. In the following, the firing conditions were unified to 900°C in air for 30 minutes.

ガス応答
図10~図12は300ppmCOへのガスセンサの応答を示す。前記の図10はPt(15Bi2O3)極と単味のPt極を組み合わせた際の結果を示し、図11はPt(15CeO2)極と単味のPt極を組み合わせた際の結果を、図12はPt(15Bi2O3)極とPt(15CeO2)極を組み合わせた際の結果を示す。測定温度は室温で、バックグラウンドは乾燥空気とした。COへの起電力応答が得られ、Pt(15Bi2O3)極とPt(15CeO2)極を組み合わせることにより応答が増加した(図12)。なお加湿空気をバックグラウンドとしても、CO応答が得られる。
Gas Response Figures 10-12 show the response of the gas sensor to 300 ppm CO. Figure 10 above shows the results when a Pt (15Bi 2 O 3 ) pole and a plain Pt pole are combined, and Figure 11 shows the results when a Pt (15CeO 2 ) pole and a plain Pt pole are combined. , FIG. 12 shows the results when Pt(15Bi 2 O 3 ) and Pt(15CeO 2 ) poles are combined. The measurement temperature was room temperature, and the background was dry air. An electromotive force response to CO was obtained, and the response was increased by combining the Pt(15Bi 2 O 3 ) and Pt(15CeO 2 ) poles (FIG. 12). Note that CO responses can be obtained even with humidified air as a background.

低温での応答
図13は、300ppmCOに対する、-10℃での応答を示す。電極はPt(15Bi2O3)極とPt(15CeO2)極の組み合わせで、-10℃でもCOへの応答が得られた。
Response at low temperature Figure 13 shows the response at -10°C to 300 ppm CO. The electrodes were a combination of Pt (15Bi 2 O 3 ) and Pt (15CeO 2 ) electrodes, and a response to CO was obtained even at -10°C.

ガスの検出モデル
ガスの検出モデルを、発明者は以下のように推定している。多孔質のNASICON膜を用いるため、NASICON膜と電極との界面までガスは拡散し、ここにNASICONと電極とガスの3相界面が発生する。三相界面では、空気中で酸素とNaイオンとの間に、(1)式の平衡反応が生じる。
2Na+1/2O2+2e→ Na2O (1)
Gas Detection Model The inventor estimates the gas detection model as follows. Because a porous NASICON membrane is used, gas diffuses to the interface between the NASICON membrane and the electrode, where a three-phase interface between NASICON, the electrode, and the gas occurs. At the three-phase interface, the equilibrium reaction of equation (1) occurs between oxygen and Na ions in the air.
2Na + +1/2O 2 +2e - → Na 2 O (1)

ここで雰囲気にCOが加わると、(2)式の平衡反応が加わり、電極電位は(1)式の反応と(2)式の反応がバランスする点で定まる。このため起電力はCO等のガスに依存する。
CO+Na2O → 2Na+2e+CO2 (2)
When CO is added to the atmosphere, the equilibrium reaction of equation (2) is added, and the electrode potential is determined at the point where the reactions of equation (1) and (2) are balanced. Therefore, the electromotive force depends on gas such as CO.
CO + Na 2 O → 2Na + +2e - +CO 2 (2)

電極に金属酸化物を混合すると、(3)式で示す、金属酸化物の非化学量論的酸化還元反応が加わる。式中δは微少量を、Mは金属元素を表す。(3)式の平衡は、還元を受け難いCeO2等では式の左側にかたより、還元されやすいBi2O3, Cr2O3等では式の右側にかたよる。このため単味のPt電極との間に起電力の差が生じ、しかも起電力の差は雰囲気中のガスに依存すると考えられる。
MOx+2δNa+2δe → MOx-δ+δNa2O (3)
When a metal oxide is mixed into the electrode, a non-stoichiometric redox reaction of the metal oxide is added, as shown in equation (3). In the formula, δ represents a minute amount, and M represents a metal element. The equilibrium in equation (3) shifts to the left side of the equation for substances such as CeO2, which are difficult to reduce, and shifts to the right side of the equation for substances that are easily reduced, such as Bi2O3 and Cr2O3. For this reason, a difference in electromotive force occurs between the electrode and a single Pt electrode, and it is thought that the difference in electromotive force depends on the gas in the atmosphere.
MO x +2δNa + +2δe - → MO x-δ +δNa 2 O (3)

作用効果
実施例の作用効果を示す。
1) 膜状の固体電解質を用いるため、ガスセンサの小型化と集積化が容易である(図1,図2)。このことは、起電力を出力とし、固体電解質に必要な電気伝導度が低いため、可能になっている。
2) 特にMEMSマイクロホットプレートのヒータ付きの絶縁膜を支持膜とすると、他のセンサと集積化したり、制御回路を集積化することが容易になる。またホットプレートのヒータを電極と多孔質固体電解質膜の成膜に用いることができる。
3) 多孔質の固体電解質膜内をガスが拡散し、固体電解質と支持膜の間に電極を設けても、ガスを検出できる(図10~図12)。
4) 固体電解質膜としてアルカリイオン導電体を用い、ヒータによる加熱無しセンサを動作させると、CO、H2、アンモニア、硫化水素、エタノール、アセトン等の反応性が高いガスを検出する際に、アルカリイオン導電体中でガスが酸化されない。
5) 低温でも、ヒータを作動させずにCOを検出できる(図13)。
6) 電極に混合する金属酸化物は熱処理により移動する(図7)。電極を支持体(基板あるいは実施例の支持膜)と固体電解質膜の間に設けると、電極中の金属酸化物の移動を少なくできる。
7) 多孔質の固体電解質膜が雰囲気中の被毒成分をトラップするため、電極は被毒を受け難い。
Effects The effects of the examples are shown.
1) Since a membrane-like solid electrolyte is used, the gas sensor can be easily miniaturized and integrated (Figures 1 and 2). This is possible because the output is electromotive force and the solid electrolyte has low electrical conductivity.
2) In particular, if the insulating film with the heater of the MEMS micro-hot plate is used as the supporting film, it will be easy to integrate it with other sensors and control circuits. Further, a hot plate heater can be used for forming the electrode and the porous solid electrolyte membrane.
3) Gas diffuses within the porous solid electrolyte membrane, and gas can be detected even if an electrode is provided between the solid electrolyte and the support membrane (Figures 10 to 12).
4) When an alkali ion conductor is used as the solid electrolyte membrane and the sensor is operated without heating, the alkali ion Gases are not oxidized in the conductor.
5) CO can be detected even at low temperatures without activating the heater (Figure 13).
6) The metal oxide mixed into the electrode moves through heat treatment (Figure 7). When the electrode is provided between the support (the substrate or the support membrane in the example) and the solid electrolyte membrane, the movement of metal oxides in the electrode can be reduced.
7) The porous solid electrolyte membrane traps poisonous components in the atmosphere, making the electrodes less susceptible to poisoning.

2 ガスセンサ
3 Si基板
4 空洞
6 支持膜
8 ヒータ
10,11 電極
12 多孔質NASICON膜
15~18 パッド
2 Gas sensor 3 Si substrate 4 Cavity 6 Support membrane 8 Heater 10, 11 Electrode 12 Porous NASICON membrane 15 to 18 Pad

Claims (4)

支持体と、
共に支持体上に固定されかつ組成が互いに異なる一対の電極と、
前記一対の電極を覆うように前記支持体上に固定された多孔質の固体電解質膜、とを備え、
前記一対の電極間の起電力を出力とするように構成され
前記固体電解質膜は多孔質のアルカリ金属イオン導電体膜であり、
前記の一対の電極の少なくとも一方が貴金属と金属酸化物とを含有する、多孔質固体電解質ガスセンサ。
a support and
a pair of electrodes both fixed on a support and having different compositions;
a porous solid electrolyte membrane fixed on the support so as to cover the pair of electrodes,
configured to output an electromotive force between the pair of electrodes ,
The solid electrolyte membrane is a porous alkali metal ion conductor membrane,
A porous solid electrolyte gas sensor , wherein at least one of the pair of electrodes contains a noble metal and a metal oxide .
前記の一対の電極は共に貴金属と金属酸化物とを含有し、かつ一対の電極間で金属酸化物の種類が異なり、
一対の電極の一方はCOとの接触により起電力が増加し、一対の電極の他方はCOとの接触により起電力が減少することを特徴とする、請求項1の多孔質固体電解質ガスセンサ。
The pair of electrodes both contain a noble metal and a metal oxide, and the types of metal oxides are different between the pair of electrodes,
2. The porous solid electrolyte gas sensor according to claim 1 , wherein one of the pair of electrodes has an increased electromotive force upon contact with CO, and the other of the pair of electrodes has an electromotive force that has decreased upon contact with CO.
前記支持体は基板に設けられた空洞上を掛け渡す支持膜であり、かつ支持膜はヒータを備えていることを特徴とする、請求項1または2の多孔質固体電解質ガスセンサ。 3. The porous solid electrolyte gas sensor according to claim 1 , wherein the support is a support film that spans over a cavity provided in the substrate, and the support film is equipped with a heater. 前記固体電解質膜および前記一対の電極は、いずれも雰囲気との間でガスの移動を許容するように構成されていることを特徴とする、請求項1~3のいずれかの多孔質固体電解質ガスセンサ The porous solid electrolyte gas sensor according to any one of claims 1 to 3, wherein the solid electrolyte membrane and the pair of electrodes are both configured to allow gas movement between them and the atmosphere. .
JP2020082394A 2020-05-08 2020-05-08 Porous solid electrolyte gas sensor Active JP7389420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082394A JP7389420B2 (en) 2020-05-08 2020-05-08 Porous solid electrolyte gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082394A JP7389420B2 (en) 2020-05-08 2020-05-08 Porous solid electrolyte gas sensor

Publications (2)

Publication Number Publication Date
JP2021177142A JP2021177142A (en) 2021-11-11
JP7389420B2 true JP7389420B2 (en) 2023-11-30

Family

ID=78409395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082394A Active JP7389420B2 (en) 2020-05-08 2020-05-08 Porous solid electrolyte gas sensor

Country Status (1)

Country Link
JP (1) JP7389420B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338081A (en) 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Gas sensor
JP2001004589A (en) 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Gas sensor
JP2009128184A (en) 2007-11-22 2009-06-11 Figaro Eng Inc Co2 sensor
JP2011232291A (en) 2010-04-30 2011-11-17 Tdk Corp Gas sensor
US20170227489A1 (en) 2016-02-05 2017-08-10 Nagasaki University CO Sensor Having Electromotive Force Response

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791473B2 (en) * 1988-02-12 1998-08-27 フィガロ技研株式会社 Gas detection method and device
JPH0785071B2 (en) * 1990-10-31 1995-09-13 矢崎総業株式会社 Carbon dioxide detection sensor and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338081A (en) 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Gas sensor
JP2001004589A (en) 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Gas sensor
JP2009128184A (en) 2007-11-22 2009-06-11 Figaro Eng Inc Co2 sensor
JP2011232291A (en) 2010-04-30 2011-11-17 Tdk Corp Gas sensor
US20170227489A1 (en) 2016-02-05 2017-08-10 Nagasaki University CO Sensor Having Electromotive Force Response

Also Published As

Publication number Publication date
JP2021177142A (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
JP2851292B2 (en) Method of manufacturing NTC temperature sensor for measurement gas and NTC temperature sensing element with NTC temperature sensor for measurement gas
JPH0996622A (en) Gas sensor and its manufacture
JPH11201942A (en) Nitrogen oxide sensor
Ménil et al. Screen-printed thick-films: from materials to functional devices
JP3122413B2 (en) Gas sensor
JPH112621A (en) Manufacturing method of nox sensor and nox sensor
JP4168035B2 (en) Platinum resistor temperature sensor
JP7389420B2 (en) Porous solid electrolyte gas sensor
JPH1172476A (en) Nitrogen oxide gas sensor
JP3589384B2 (en) Carbon monoxide sensor and its aging method
JP2598771B2 (en) Composite gas sensor
JP4627671B2 (en) CO2 sensor
JP3511747B2 (en) Gas sensor
JP2805811B2 (en) Combustion control sensor
JP4465677B2 (en) Hydrogen gas detector
RU2360237C1 (en) Solid-state gas sensor (versions)
JP3195757B2 (en) Nitrogen oxide sensor
JP2003254924A (en) Nitrogen oxide sensor
JP2004170230A (en) Co2 sensor and its manufacturing method
JP2000338081A (en) Gas sensor
US20230358704A1 (en) Method for manufacturing an electrochemical gas sensor
KR101436358B1 (en) NOx gas sensor
JPH10239272A (en) Gas detection element
JP2001235442A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R150 Certificate of patent or registration of utility model

Ref document number: 7389420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150