JPH09263826A - Manufacture of alloy excellent in intergranular corrosion resistance - Google Patents
Manufacture of alloy excellent in intergranular corrosion resistanceInfo
- Publication number
- JPH09263826A JPH09263826A JP7675496A JP7675496A JPH09263826A JP H09263826 A JPH09263826 A JP H09263826A JP 7675496 A JP7675496 A JP 7675496A JP 7675496 A JP7675496 A JP 7675496A JP H09263826 A JPH09263826 A JP H09263826A
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- corrosion resistance
- intergranular corrosion
- alloy
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐粒界腐食性に優
れた合金の製造方法に関し、特に硝酸をはじめとする各
種単一酸や混合酸およびその他、結晶粒界のクロム炭化
物析出に起因する粒界近傍のクロム欠乏層により粒界腐
食を引き起こす環境下において、優れた耐粒界腐食性を
示す合金の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy having excellent intergranular corrosion resistance, and particularly to various single acids such as nitric acid and mixed acids, as well as chromium carbide precipitation at grain boundaries. The present invention relates to a method for producing an alloy exhibiting excellent intergranular corrosion resistance in an environment that causes intergranular corrosion due to a chromium deficient layer near the intergranular boundaries.
【0002】[0002]
【従来の技術】従来、SUS310SやNCF800、
NCF600に代表されるようなCrやNi含有量の高
い合金は、優れた耐蝕性を持ち、あらゆる腐食環境下で
使用されているが、これらの合金、特にNi含有量の高
い合金は常温付近および固溶化温度域におけるCの固溶
度が低くクロム炭化物(Cr23C6 )の析出も速いた
め、C含有量を低くしても固溶化処理後も粒界炭化物が
析出しやすく、粒界近傍に形成されるクロム欠乏層によ
り、耐粒界腐食性が劣化する。これを解決するための多
くの文献等(例えば、ステンレス鋼便覧など)に示され
ているように、一般的には以下の二つの方法が用いられ
ている。2. Description of the Related Art Conventionally, SUS310S and NCF800,
Alloys having a high Cr or Ni content, such as NCF600, have excellent corrosion resistance and are used in all corrosive environments. Since the solid solubility of C in the solution temperature range is low and the precipitation of chromium carbide (Cr 23 C 6 ) is fast, grain boundary carbides are likely to precipitate even after the solution treatment even if the C content is low, and the vicinity of grain boundaries The intergranular corrosion resistance deteriorates due to the chromium-deficient layer formed on the surface. As shown in many documents (for example, the Stainless Steel Handbook) for solving this, the following two methods are generally used.
【0003】一つは、固溶化処理時に高温に長時間保持
しマトリックス中へのCの固溶度を上げることでCを十
分に固溶した後、冷却時に固溶したCが再度クロム炭化
物として析出しないように、即時に大量の水等で通常S
US304やSUS316で行われるよりも速い冷却速
度で冷却することでクロム炭化物の析出を抑制する方法
である。[0003] One is to sufficiently dissolve C by increasing the solid solubility of C in the matrix by holding it at a high temperature for a long time during the solution treatment, and then the C dissolved in cooling is converted into chromium carbide again. Immediately use a large amount of water, etc.
This is a method of suppressing the precipitation of chromium carbide by cooling at a higher cooling rate than that used in US304 and SUS316.
【0004】他方は、SUS321やSUS347など
の安定化ステンレス鋼に代表されるように、TiやNb
などのCを固定する元素を添加する方法である。これら
の元素を適正量添加することによりクロム炭化物より熱
的に安定なTiCやNbCとして析出させ、C含有量を
減らすことで粒界へのクロム炭化物析出を抑えることに
よりクロム欠乏層による耐粒界腐食性の劣化を抑制する
ものである。On the other hand, as represented by stabilized stainless steel such as SUS321 and SUS347, Ti and Nb are used.
It is a method of adding an element that fixes C such as. By adding these elements in appropriate amounts, they are precipitated as TiC and NbC which are more thermally stable than chromium carbides, and by reducing the C content, the precipitation of chromium carbides at grain boundaries is suppressed and the grain boundary resistance of the chromium-deficient layer is improved. It suppresses corrosive deterioration.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、Ni含
有量が高くCの固溶度がもともと低い合金においては、
耐粒界腐食性を向上させるために行われる上記の方法
で、高温で固溶化処理を行い通常の冷却速度よりも速い
冷却を行うためには、高温で長時間保持できる加熱炉と
即時に冷却を可能にする特別なレイアウトの冷却装置が
必要であり、通常使用されるような連続炉の場合、冷却
能向上を目的にすれば搬送速度を高速にせねばならず、
保持時間を確保するために炉長を現在の数倍程度とする
必要があり、結果的に設備面、製造面で多大なコストを
要する。また、加熱炉の規模が大きくなるに従い、温度
設定や雰囲気設定など固溶化処理条件の制御も困難とな
り、強いては材質を適正にコントロールしにくくなると
いう問題があった。However, in an alloy having a high Ni content and originally a low solid solubility of C,
In order to perform solution treatment at high temperature and to perform cooling faster than the normal cooling rate by the above method that is performed to improve intergranular corrosion resistance, a heating furnace that can be held at high temperature for a long time and immediate cooling It is necessary to have a cooling device with a special layout that makes it possible, and in the case of a continuous furnace that is normally used, it is necessary to increase the transfer speed for the purpose of improving cooling capacity,
In order to secure the holding time, it is necessary to make the furnace length several times the current length, resulting in enormous cost in terms of equipment and manufacturing. Further, as the scale of the heating furnace becomes larger, it becomes difficult to control the solution treatment conditions such as temperature setting and atmosphere setting, and thus it becomes difficult to properly control the material.
【0006】また、TiやNbのような炭化物を固定す
る元素を添加する方法は、合金の成分コントロールで耐
蝕性は確保できるが、これらの合金は価格的に高いた
め、コストアップを招く。また、合金の組成によって
は、熱間加工性を阻害し、歩留りを低下させるなどの悪
影響を及ぼすといった問題があった。また、例えば、T
iCが強い酸化性の酸に溶解するなど、曝される環境に
よっては逆に腐食を促進するため望ましくない場合があ
った。Further, the method of adding an element for fixing carbides such as Ti and Nb can secure corrosion resistance by controlling the composition of the alloy, but these alloys are expensive, so that the cost is increased. Further, depending on the composition of the alloy, there is a problem that hot workability is hindered and the yield is lowered, and other adverse effects are exerted. Also, for example, T
Depending on the environment in which it is exposed, such as iC being dissolved in a strongly oxidizing acid, it may accelerate corrosion, which is not desirable in some cases.
【0007】[0007]
【課題を解決するための手段】上述のような、Ni含有
量が高くクロム炭化物が析出しやすい合金において、耐
粒界腐食性が低下する問題に鑑み、該合金において耐粒
界腐食性を向上させ、なおかつ低コストで製造する方法
について検討を行った。その結果、冷間加工と再結晶お
よびクロム炭化物析出状態について調査し、クロム炭化
物析出後の冷間加工度とその後の熱処理により、耐粒界
腐食性に有害なクロム欠乏層を無害化する方法を見出し
た。本発明はこのような知見に基づきなされたもので、
以下のような構成からなることを特徴とするものであ
る。In view of the problem that the intergranular corrosion resistance is lowered in the above-mentioned alloy having a high Ni content and in which chromium carbide is likely to precipitate, the intergranular corrosion resistance of the alloy is improved. Then, a method for manufacturing at low cost was examined. As a result, cold working, recrystallization and chromium carbide precipitation state were investigated, and a method for detoxifying the chromium deficient layer harmful to intergranular corrosion resistance by cold working degree after chromium carbide precipitation and subsequent heat treatment. I found it. The present invention was made based on such findings,
It is characterized by having the following configuration.
【0008】すなわち、本発明に要旨とするところは、
重量%で、Ni:20.0%以上、Cr:14.0%以
上を含有するFe基およびNi基合金において、熱間加
工後クロム炭化物の析出する600〜700℃に保持し
た後、加工度20%以上の冷間加工を施し、さらに再結
晶温度以上クロム炭化物固溶以下の温度で熱処理を行う
ことを特徴とする耐粒界腐食性に優れた合金の製造方法
にある。That is, the gist of the present invention is that
In Fe-based and Ni-based alloys containing Ni: 20.0% or more and Cr: 14.0% or more by weight, after the hot working, the workability is maintained at 600 to 700 ° C. where chromium carbide precipitates. A method for producing an alloy having excellent intergranular corrosion resistance is characterized in that cold working of 20% or more is performed, and further heat treatment is performed at a temperature of a recrystallization temperature or higher and a solid solution of chromium carbide or lower.
【0009】[0009]
【発明の実施の形態】以下、本発明における合金を定め
た理由について説明する。なお、以下、%は重量%を意
味する。 Ni:Niは安定なオーステナイト組織と耐蝕性を得る
ための重量な元素である。Ni含有量が20.0%未満
では通常の固溶化処理により比較的容易にCの固溶化が
達成できるが、含有量が20%以上ではマトリックス中
へのCの固溶度を下げ結晶粒界へのクロム炭化物析出が
促進され、クロム欠乏層を形成しやすくなるため耐粒界
腐食性を低下させる。よって、本発明で目的とする合金
のNi含有量は20.0%以上とした。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for defining the alloy in the present invention will be described below. Hereinafter,% means% by weight. Ni: Ni is a heavy element for obtaining a stable austenite structure and corrosion resistance. When the Ni content is less than 20.0%, the solid solution of C can be achieved relatively easily by the ordinary solution treatment, but when the Ni content is 20% or more, the solid solubility of C in the matrix is lowered and the grain boundaries are increased. Chromium carbide precipitation is promoted to facilitate the formation of a chromium-deficient layer, which lowers the intergranular corrosion resistance. Therefore, the Ni content of the alloy intended in the present invention is set to 20.0% or more.
【0010】Cr:Crは多様な環境下における耐蝕性
の向上改善作用、特に硝酸に代表されるような酸化性環
境における耐蝕性に優れた作用を発揮する主要元素であ
る。しかし、Fe基、Ni基合金において含有量が1
4.0%未満では上記効果が少ないため、Cr含有量は
14.0%以上とした。Cr: Cr is a main element that exhibits an effect of improving and improving the corrosion resistance under various environments, particularly an effect of excellent corrosion resistance under an oxidizing environment represented by nitric acid. However, the content in Fe-based and Ni-based alloys is 1
If it is less than 4.0%, the above effect is small, so the Cr content is set to 14.0% or more.
【0011】また、さらに本発明では、上記化学成分の
合金は、熱間加工後クロム炭化物の析出する600〜7
00℃で保持した後、加工度20%以上の冷間加工を施
し、さらに再結晶温度以上クロム炭化物固溶以下の温度
で熱処理を行うことで製造されるものである。以下にそ
の製造過程について説明する。先ずはじめに、本発明の
製造工程での組織変化の概念図を図1(a),(b),
(c)に、またクロム炭化物と周辺のクロム欠乏層(ク
ロム濃度分布)の概念図を図1(d),(e)に示す。
この図1(a)に示すように、熱間加工後、通常の固溶
化処理後もしくは炭化物析出処理後は粒界にクロム炭化
物が析出・残存した状態であり、シュウ酸エッチ試験で
は混合組織やみぞ状組織となり、粒界近傍にはクロム欠
乏層が存在する。それらを冷間加工した状態が図1
(b)である。図1(b)では結晶粒は加工により変形
した組織となるが、炭化物は粒界に存在したままであ
る。これを再結晶温度以上炭化物固溶温度以下で熱処理
することで、変形された結晶粒は再結晶を起こし図1
(c)に示すような整粒となるが、クロム炭化物はもと
もと存在したものが殆ど固溶せず存在するため整粒とな
った結晶粒内部に点在する。Further, according to the present invention, the alloy of the above chemical composition has a precipitation of chromium carbide of 600 to 7 after hot working.
After being held at 00 ° C., cold working with a working ratio of 20% or more is performed, and further heat treatment is performed at a temperature of not less than the recrystallization temperature and not more than the solid solution of chromium carbide. The manufacturing process will be described below. First, a conceptual diagram of the change in structure in the manufacturing process of the present invention is shown in FIGS.
FIGS. 1 (d) and 1 (e) show conceptual diagrams of (c) and the chromium carbide and the surrounding chromium-depleted layer (chromium concentration distribution).
As shown in FIG. 1 (a), after hot working, after normal solution treatment or after carbide precipitation treatment, chromium carbide is precipitated and remains at grain boundaries. It has a groove-like structure, and a chromium-deficient layer exists near the grain boundaries. Figure 1 shows the cold-worked state.
(B). In FIG. 1B, the crystal grains have a deformed structure due to processing, but the carbide remains present at the grain boundaries. When this is heat-treated at a temperature above the recrystallization temperature and below the solid solution temperature of the carbide, the deformed crystal grains cause recrystallization and
Although the grain size is as shown in (c), since the chromium carbide originally existed is hardly dissolved, it is scattered inside the grain size-controlled grains.
【0012】しかし、この炭化物は新たに析出したもの
ではないため周辺にはクロム欠乏層は存在しない。ま
た、クロム炭化物は一般的にはCr23C6 と示されるよ
うに多量のクロムを含んだ化合物であり、それ自体は殆
どの環境において非常に優れた耐蝕性を示す。よって、
この再結晶組織にはクロム欠乏層は存在せず優れた耐粒
界腐食性を示す。また、最初に炭化物析出処理を行って
いるのでマトリックス中の固溶Cも非常に少なくなって
おり、いわゆる鋭敏化する環境においても新たな炭化物
析出はなく、耐粒界腐食性が劣化することはない。However, since this carbide is not newly deposited, there is no chromium depletion layer in the periphery. In addition, chromium carbide is a compound containing a large amount of chromium, which is generally represented by Cr 23 C 6, and as a result, it exhibits excellent corrosion resistance in most environments. Therefore,
This recrystallized structure has no chromium-deficient layer and exhibits excellent intergranular corrosion resistance. Further, since the carbide precipitation treatment is performed first, the amount of solid solution C in the matrix is very small, and there is no new carbide precipitation even in a so-called sensitizing environment, and the intergranular corrosion resistance does not deteriorate. Absent.
【0013】以下に、各過程の限定理由について説明す
る。Cr含有量や特にNi含有量の高い合金では、固溶
化温度付近でのC固溶度が低いため、熱間加工後や固溶
化処理後も炭化物が完全に固溶できず、また冷却中に粒
界炭化物が析出しやすい。本発明では、鋭敏化といわれ
るクロム炭化物が析出する温度域、すなわち600〜7
00℃で保持することで、優先的に結晶粒界にクロム炭
化物を析出させ、マトリックス中の固溶Cの少ない状態
を得る。保持時間は合金によりクロム炭化物の析出速度
が異なるため、一概には決められないが長時間である方
が望ましい。しかし処理性やコスト等を考え、例えば2
時間程度でも目的は達せられる。The reasons for limiting each process will be described below. In alloys with a high Cr content, and especially with a high Ni content, the C solid solubility is low near the solution temperature, so the carbides cannot be completely dissolved after hot working or after solution treatment, and during cooling. Grain boundary carbide easily precipitates. In the present invention, a temperature range in which chromium carbide, which is called sensitization, precipitates, that is, 600 to 7
By maintaining the temperature at 00 ° C., chromium carbide is preferentially precipitated at the crystal grain boundaries, and a state in which solid solution C in the matrix is small is obtained. The holding time cannot be decided unconditionally because the precipitation rate of chromium carbide differs depending on the alloy, but it is desirable that the holding time is long. However, considering the processability and cost, for example, 2
The purpose can be achieved even in about time.
【0014】また、本発明において冷間加工後の均一な
再結晶過程は重要な要因であり、再結晶を行うと同時に
炭化物の固溶を抑制することが必要である。一般的に
は、再結晶温度は合金の融点の約二分の一とされている
が、冷間加工により再結晶温度を下げることができる。
そこで棒状および管状の試験片を用いて、5〜80%の
加工度で冷間加工を行い熱処理後の再結晶状況および炭
化物状況を調査した。冷間加工度と熱処理後の再結晶状
態を図2に示す。その結果、冷間加工を受けた後、熱処
理で均一な結晶粒になり、また炭化物の固溶を抑制でき
るような組織状態を得るためには、加工度20%以上の
冷間加工が必要であることが明らかになった。よって、
冷間加工度は20%以上とした。In the present invention, the uniform recrystallization process after cold working is an important factor, and it is necessary to suppress the solid solution of carbide at the same time as performing recrystallization. Generally, the recrystallization temperature is set to about one half of the melting point of the alloy, but the cold reworking can lower the recrystallization temperature.
Therefore, using rod-shaped and tubular test pieces, cold working was performed at a working ratio of 5 to 80%, and the recrystallization condition and the carbide condition after heat treatment were investigated. FIG. 2 shows the cold workability and the recrystallized state after the heat treatment. As a result, after undergoing cold working, it is necessary to carry out cold working with a working rate of 20% or more in order to obtain uniform crystal grains by heat treatment and to obtain a microstructure in which solid solution of carbide can be suppressed. It became clear. Therefore,
The cold workability was 20% or more.
【0015】次に、再結晶温度以上クロム炭化物固溶以
下の温度での熱処理とした理由は、この熱処理では、先
に析出している粒界炭化物の固溶を抑制しながら再結晶
を行うことで、新たに生成する結晶粒界にはクロム欠乏
層の存在しない結晶状態を作り出すことを目的とする。
この処理温度は、合金の組成や冷間加工度により異なる
ため、ここで明確な規定はできないが、ほぼ750〜1
000℃の領域となる場合が多い。さらにこの処理では
微細な結晶粒が得られ、副次的に強度向上が得られる利
点もある。Next, the reason why the heat treatment is performed at a temperature not lower than the recrystallization temperature and not higher than the solid solution of chromium carbide is that in this heat treatment, recrystallization is performed while suppressing the solid solution of the previously precipitated grain boundary carbide. Then, the purpose is to create a crystal state in which a chromium-deficient layer does not exist in the newly generated crystal grain boundary.
Since this treatment temperature differs depending on the composition of the alloy and the degree of cold work, it cannot be clearly specified here, but it is almost 750 to 1
It is often in the region of 000 ° C. Further, this treatment has an advantage that fine crystal grains are obtained and the strength is secondarily improved.
【0016】上記の過程の組合せにより製造された合金
においては、粒界炭化物は存在しないためクロム欠乏層
がなく、また先に析出した炭化物相はクロム欠乏層のな
い状態でマトリックス中に存在するため、粒界腐食は大
幅に抑制される。また固溶Cも少ないため鋭敏化の温度
域に保持されても、さらなる鋭敏化は起こらない。しか
し、再結晶中に先に析出している炭化物で再結晶粒界が
止められる可能性があるため、組織観察では結晶粒界に
も炭化物が存在することがある。しかし、最終熱処理後
の結晶粒界上に存在する炭化物も最終熱処理で生成した
ものではないため、クロム欠乏層は存在せず、結晶粒内
に存在する炭化物と同じく粒界腐食に影響は及ぼさな
い。In the alloy produced by the combination of the above-mentioned processes, there is no grain boundary carbide, so that there is no chromium depletion layer, and the previously precipitated carbide phase exists in the matrix without a chromium depletion layer. , Intergranular corrosion is significantly suppressed. Further, since the amount of solid solution C is small, further sensitization does not occur even if the temperature is kept in the sensitization temperature range. However, since the recrystallized grain boundaries may be stopped by the carbide that has previously precipitated during the recrystallization, carbides may also exist at the crystal grain boundaries in the structure observation. However, since the carbides existing on the grain boundaries after the final heat treatment were not generated by the final heat treatment, there is no chromium deficient layer, and it does not affect the intergranular corrosion like the carbides existing inside the crystal grains. .
【0017】[0017]
【実施例】表1に示す化学成分の合金を真空高周波溶解
炉で溶製し、得られた鋼塊を1230℃で熱間加工し外
径25mmおよび50mmの棒とした。本発明の対象と
なる合金はいずれもNi≧20.0%、Cr≧14.0
%を含むものである。外径25mmの棒は、1050℃
×10分水冷の固溶化処理および675℃で鋭敏化処理
後、旋削により外径21mmの棒とし、引抜きにより加
工度5〜50%の冷間加工を加えた。同じく外径50m
mの棒は、1050℃×10分水冷の固溶化処理および
675℃で鋭敏化処理後、旋削、穿孔により外径45m
m肉厚5mmの管とし、冷間圧伸により50〜80%の
冷間加工を与えた。これら冷間加工を加えた棒および管
は800〜1000℃の間の温度で10分間熱処理を施
した後、14×30×1.5mmの腐食試験片を採取し
た。腐食試験片は、電解研磨により0.2mm表面を除
去し試験片加工時の加工層を除去した後、沸騰硫酸・硫
酸第二鉄(JIS G 0572)中にて耐粒界腐食性
の評価を行った。また、各過程中の材料において、10
%シュウ酸エッチ試験(JIS G 0571)にて組
織評価を行った。また、比較として、表1の合金を熱間
加工後1050℃×10分水冷の固溶化処理を行ったも
のを用いた。EXAMPLE Alloys having the chemical composition shown in Table 1 were melted in a vacuum high frequency melting furnace, and the obtained steel ingot was hot worked at 1230 ° C. to obtain rods having outer diameters of 25 mm and 50 mm. All alloys to which the present invention is applied have Ni ≧ 20.0% and Cr ≧ 14.0.
% Is included. A rod with an outer diameter of 25 mm is 1050 ° C
After a solid solution treatment for 10 minutes with water cooling and a sensitization treatment at 675 ° C., a rod having an outer diameter of 21 mm was formed by turning, and cold working was performed by drawing to have a workability of 5 to 50%. Similarly outer diameter 50m
The rod of m has an outer diameter of 45 m by turning and punching after solid solution treatment with water cooling at 1050 ° C for 10 minutes and sensitization treatment at 675 ° C.
A tube having a wall thickness of 5 mm was used and subjected to cold working by 50 to 80% by cold drawing. The cold-worked rods and tubes were heat-treated at a temperature between 800 and 1000 ° C. for 10 minutes, and then corrosion test pieces of 14 × 30 × 1.5 mm were sampled. For the corrosion test piece, the surface of 0.2 mm was removed by electrolytic polishing to remove the processing layer at the time of processing the test piece, and then the intergranular corrosion resistance was evaluated in boiling sulfuric acid / ferric sulfate (JIS G 0572). went. In addition, in the material during each process, 10
The structure was evaluated by a% oxalic acid etch test (JIS G 0571). For comparison, the alloys shown in Table 1 were used after being hot-worked and subjected to a solution treatment by water cooling at 1050 ° C. for 10 minutes.
【0018】[0018]
【表1】 [Table 1]
【0019】表2に、表1に示す合金を、従来法である
1050℃×10分水冷の固溶化処理状態、および本発
明法の例として675℃で鋭敏化処理の後50%冷間加
工を施し、さらに再結晶熱処理を行った状態の組織判定
結果を示す。判定法はJISG 0571シュウ酸エッ
チ試験により、結晶粒界の状態において判定基準A:段
状組織、B:混合組織、C:みぞ状組織に分類した。そ
の結果、従来の固溶化状態では、炭化物の固溶が不十分
であり混合組織またはみぞ状組織を呈したが、本発明工
程で処理した状態では、いずれの合金においても段状組
織を示した。また、併せて表2に、表1に示す合金の従
来工程(固溶化処理)、および本発明による製造工程後
における耐粒界腐食試験の結果を示す。腐食試験には耐
粒界腐食性の評価として広く用いられているJIS G
0572硫酸・硫酸第二鉄腐食試験を使用した。評価
方法は単位時間、単位面積当たりの腐食減量で評価し
た。この結果より、いずれの合金においても、従来の固
溶化処理に比べて、本発明工程で製造されたものは優れ
た耐粒界腐食性を示すことが判る。In Table 2, the alloys shown in Table 1 are subjected to a solution treatment in the conventional method of water cooling at 1050 ° C. for 10 minutes, and as an example of the method of the present invention, a sensitizing treatment at 675 ° C. followed by 50% cold working. The results of the structure determination in the state of being subjected to the heat treatment and the recrystallization heat treatment are shown. Judgment method was according to JIS G 0571 oxalic acid etch test, and it was classified into judgment criteria A: step structure, B: mixed structure, and C: groove structure in the state of crystal grain boundaries. As a result, in the conventional solid solution state, the solid solution of carbide was insufficient and a mixed structure or a groove structure was exhibited, but in the state treated by the process of the present invention, any alloy showed a step structure. . In addition, Table 2 also shows the results of the intergranular corrosion resistance test of the alloy shown in Table 1 in the conventional process (solution treatment) and after the manufacturing process according to the present invention. JIS G widely used for evaluation of intergranular corrosion resistance in corrosion tests
The 0572 sulfuric acid / ferric sulfate corrosion test was used. The evaluation method was evaluated by the corrosion weight loss per unit time and unit area. From these results, it can be seen that any of the alloys produced by the process of the present invention exhibits excellent intergranular corrosion resistance as compared with the conventional solution treatment.
【0020】[0020]
【表2】 [Table 2]
【0021】[0021]
【発明の効果】以上述べたように、本発明の製造方法に
より、過酷な腐食環境、なかでも結晶粒界へのクロム炭
化物析出による結晶粒界のクロム欠乏層に起因する粒界
腐食を引き起こすような環境下においても、優れた耐粒
界腐食性を有する安価な合金を提供することが出来る極
めて優れた効果を奏するものである。As described above, according to the production method of the present invention, it is possible to cause the intergranular corrosion due to the harsh corrosive environment, especially the chromium-deficient layer at the crystal grain boundary due to the precipitation of chromium carbide at the crystal grain boundary. Even under various environments, it is possible to provide an inexpensive alloy having excellent intergranular corrosion resistance, which is an extremely excellent effect.
【図1】本発明の各製造過程における組織変化およびク
ロム炭化物と周辺のクロム欠乏層を示す概念図である。FIG. 1 is a conceptual diagram showing a microstructure change in each manufacturing process of the present invention and a chromium carbide and a surrounding chromium deficient layer.
【図2】冷間加工度と熱処理後の再結晶状態を示す図で
ある。FIG. 2 is a diagram showing a cold workability and a recrystallized state after heat treatment.
Claims (1)
r:14.0%以上を含有するFe基およびNi基合金
において、熱間加工後クロム炭化物の析出する600〜
700℃に保持した後、加工度20%以上の冷間加工を
施し、さらに再結晶温度以上クロム炭化物固溶以下の温
度で熱処理を行うことを特徴とする耐粒界腐食性に優れ
た合金の製造方法。1. By weight%, Ni: 20.0% or more, C
In an Fe-based and Ni-based alloy containing r: 14.0% or more, precipitation of chromium carbide after hot working is 600 to
After maintaining at 700 ° C., cold working with a working degree of 20% or more is performed, and further heat treatment is performed at a temperature of not less than the recrystallization temperature and not more than the solid solution of chromium carbide, which is excellent in intergranular corrosion resistance. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7675496A JPH09263826A (en) | 1996-03-29 | 1996-03-29 | Manufacture of alloy excellent in intergranular corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7675496A JPH09263826A (en) | 1996-03-29 | 1996-03-29 | Manufacture of alloy excellent in intergranular corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09263826A true JPH09263826A (en) | 1997-10-07 |
Family
ID=13614386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7675496A Pending JPH09263826A (en) | 1996-03-29 | 1996-03-29 | Manufacture of alloy excellent in intergranular corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09263826A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010128545A1 (en) * | 2009-05-07 | 2010-11-11 | 日新製鋼株式会社 | High‑strength stainless steel pipe |
-
1996
- 1996-03-29 JP JP7675496A patent/JPH09263826A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010128545A1 (en) * | 2009-05-07 | 2010-11-11 | 日新製鋼株式会社 | High‑strength stainless steel pipe |
CN102257172A (en) * | 2009-05-07 | 2011-11-23 | 日新制钢株式会社 | High-strength stainless steel pipe |
US9803257B2 (en) | 2009-05-07 | 2017-10-31 | Nisshin Steel Co., Ltd. | High-strength stainless steel pipe |
US10017834B2 (en) | 2009-05-07 | 2018-07-10 | Nisshin Steel Co., Ltd. | High-strength stainless steel pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6369662B1 (en) | Duplex stainless steel and manufacturing method thereof | |
JP2005350754A (en) | Low alloy steel for oil well tube having excellent sulfide stress cracking resistance | |
KR102660878B1 (en) | METHOD FOR PRODUCING TWO-PHASE Ni-Cr-Mo ALLOYS | |
JP2002322545A (en) | Mo-CONTAINING HIGH Cr HIGH Ni AUSTENITIC STAINLESS STEEL PLATE HAVING EXCELLENT DUCTILITY AND PRODUCTION METHOD THEREFOR | |
WO2018146783A1 (en) | Austenitic heat-resistant alloy and method for producing same | |
JPH09249940A (en) | High strength steel excellent insulfide stress cracking resistance and its production | |
JP5459633B1 (en) | Austenitic alloy tube | |
JPS6140750B2 (en) | ||
US3314831A (en) | Heat treatment for precipitationhardening steels | |
WO2022255223A1 (en) | Austenitic stainless steel and steel pipe | |
JPH09263826A (en) | Manufacture of alloy excellent in intergranular corrosion resistance | |
JPH06100935A (en) | Production of martensitic stainless steel type seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP6005963B2 (en) | Method for producing a cast product having an alumina barrier layer | |
JP5035250B2 (en) | Nickel materials for chemical plants | |
JP2639798B2 (en) | Manufacturing method of austenitic stainless steel | |
JP2007197821A (en) | Austenitic stainless steel | |
JPH0551800A (en) | Method for revealing grain boundary of steel material sample | |
JP2003089855A (en) | Stainless-steel reinforcing bar and its manufacturing method | |
JPH08239739A (en) | Heat tratment for ni-base alloy excellent in corrosion resistance | |
JPH07150251A (en) | Production of seamless martensitic stainless steel tube excellent in hot workability and corrosion resistance and having high toughness | |
JPH07188740A (en) | Production of austenitic metallic material having high strength and high corrosion resistance | |
JP7323784B2 (en) | Manufacturing method of stainless steel pipe | |
JP2580407B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
JPH0641638A (en) | Production of martensitic stainless steel seamless pipe excellent in toughness and stress corrosion cracking resistance | |
JPS6350403B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020409 |