JPH0551800A - Method for revealing grain boundary of steel material sample - Google Patents

Method for revealing grain boundary of steel material sample

Info

Publication number
JPH0551800A
JPH0551800A JP23222391A JP23222391A JPH0551800A JP H0551800 A JPH0551800 A JP H0551800A JP 23222391 A JP23222391 A JP 23222391A JP 23222391 A JP23222391 A JP 23222391A JP H0551800 A JPH0551800 A JP H0551800A
Authority
JP
Japan
Prior art keywords
grain boundary
steel material
sample
grain boundaries
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23222391A
Other languages
Japanese (ja)
Inventor
Tetsuya Tamura
哲也 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23222391A priority Critical patent/JPH0551800A/en
Publication of JPH0551800A publication Critical patent/JPH0551800A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To brightly reveal grain boundary of martensite structure. CONSTITUTION:A surface to be inspected of a steel material having martensite structure is dipped into an aqueous nitric acid of 40-70wt.% conc. and by supplying current with anode of the steel material sample at 10-500mA/dm<2> current density for 0.5-2hours current supplying time, grain boundary of martensite structure is selectively etched. As carbide of grain boundary is selectively etched and grain boundary is drastically brightly revealed. As the result, precision of measured value of crystal grain size is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼材試料の結晶粒界現出
方法に関し、更に詳しくは、マルテンサイト組織を有す
るステンレス鋼において、そのマルテンサイト組織の結
晶粒界を鮮明に現出させ、もって結晶粒度測定値の精度
向上に寄与する鋼材の結晶粒界現出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for revealing crystal grain boundaries of a steel material sample. More specifically, in a stainless steel having a martensite structure, the crystal grain boundaries of the martensite structure are clearly expressed, The present invention relates to a method for developing grain boundaries of steel, which contributes to improvement in the accuracy of grain size measurement values.

【0002】[0002]

【従来の技術】焼入れ,焼入・焼戻しなどの熱処理が施
された鋼材については、その金属組織を顕微鏡で観察し
て結晶粒度を測定することが行われている。この作業
は、概ね、次のようにして行われる。すなわち、まず、
熱処理後の鋼材を切断採取して試料とし、その試料の被
検面を条痕きずのない完全な平面に研磨したのち、その
被検面を鏡面仕上げする。
2. Description of the Related Art With respect to steel materials that have been subjected to heat treatments such as quenching, quenching and tempering, the grain structure is measured by observing the metal structure of the steels with a microscope. This work is generally performed as follows. That is, first,
The steel material after the heat treatment is cut and sampled, and the surface to be inspected of the sample is polished to a perfect flat surface without scratches, and then the surface to be inspected is mirror-finished.

【0003】ついで、被検面に化学的または電気化学的
方法によるエッチング処理を施して結晶粒界を現出させ
たのち、それを顕微鏡で観察する。このエッチング処理
は、対象とする試料との関係で適宜な方法を選択して行
われるが、いずれにしても、結晶粒界の成分または結晶
粒そのものを選択的に腐食して結晶粒と結晶粒界を差別
化することにより結晶粒界を現出させることを目的とし
て行われるものである。
Then, the surface to be inspected is subjected to etching treatment by a chemical or electrochemical method to expose crystal grain boundaries, which are then observed with a microscope. This etching process is performed by selecting an appropriate method in relation to the target sample, but in any case, the crystal grains and the crystal grains are selectively corroded by selectively corroding the components of the crystal grain boundaries or the crystal grains themselves. The purpose is to make the grain boundaries appear by differentiating the boundaries.

【0004】ところで、各種鋼材のうち、焼入れ鋼組織
の1つであるマルテンサイト組織を有する鋼材における
その結晶粒界現出時には、通常、エッチャントとして、
ピクリン酸・塩酸・アルコールや、塩化第2銅・塩酸な
どが使用されている。しかしながら、これらのエッチャ
ントで処理しても、鮮明な結晶粒界を現出させることが
できない。これは、マルテンサイトの場合、結晶粒界に
は炭化物が析出していると同時に、結晶粒内にも固溶炭
素が存在しているため、結晶粒界の炭化物の腐食と、結
晶粒内の固溶炭素の腐食が同時進行し、この粒内腐食に
よって粒界腐食が判別できない状態になるためである。
By the way, among the various steel materials, when a crystal grain boundary appears in a steel material having a martensitic structure which is one of the quenched steel structures, it is usually used as an etchant.
Picric acid, hydrochloric acid, alcohol, cupric chloride, hydrochloric acid, etc. are used. However, even if it processes with these etchants, a clear grain boundary cannot be revealed. This is because in the case of martensite, carbide is precipitated in the crystal grain boundaries, and at the same time solid solution carbon is present in the crystal grains. This is because the corrosion of the solid solution carbon proceeds at the same time and the intergranular corrosion cannot be distinguished due to the intragranular corrosion.

【0005】そのため、マルテンサイト組織の結晶粒度
の測定においては、顕微鏡で観察した組織の状態から作
業者が結晶粒界を推測し、それに基づいてJIS規定の
結晶粒度番号を付与しているというのが現状である。す
なわち、その結晶粒度測定値は、作業者の熟練に負うと
ころ大であり、したがって精度の信頼性は低く、また測
定を標準化することが困難であるという問題がある。
Therefore, in measuring the grain size of the martensite structure, an operator estimates the grain boundaries from the state of the structure observed under a microscope, and assigns the grain size number specified by JIS based on that. Is the current situation. That is, the measured value of the crystal grain size depends largely on the skill of the operator, and therefore the reliability of accuracy is low and it is difficult to standardize the measurement.

【0006】更に、マルテンサイト組織の結晶粒界現出
法としては、試料の被検面を上向きにして管状炉で必要
時間酸化し、再び被検面を鏡面仕上げしたのち、所定の
エッチャントでエッチングして顕微鏡観察するという酸
化法も適用されている。しかしながら、この酸化法は高
い熟練度と煩雑な操作を必要とするだけではなく、エッ
チング後の結晶粒界は必ずしも鮮明とはいえないという
問題がある。
Further, as a method of revealing the grain boundaries of the martensite structure, the sample surface is faced upward, oxidized in a tubular furnace for a required time, the surface is mirror-finished again, and then etched with a predetermined etchant. The oxidation method of observing with a microscope is also applied. However, this oxidation method not only requires a high degree of skill and complicated operations, but also has a problem that the crystal grain boundaries after etching are not always clear.

【0007】[0007]

【発明が解決しようとする課題】本発明は、マルテンサ
イト組織の結晶粒界現出方法における上記した問題を解
決し、結晶粒界を極めて鮮明に現出させることができ、
もって結晶粒度の測定値の精度向上を可能とする鋼材の
結晶粒界現出方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the grain boundary revealing method of the martensite structure, and makes it possible to reveal the crystal grain boundaries extremely clearly,
Therefore, it is an object of the present invention to provide a method for revealing crystal grain boundaries of a steel material, which enables an improvement in the accuracy of the measured value of crystal grain size.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、マルテンサイト組織を有す
る鋼材試料の被検面を40〜70重量%濃度の硝酸水溶
液に浸漬し、前記鋼材試料を陽極として、電流密度10
〜500mA/dm2 ,通電時間0.5〜2時間の条件で電
流を通電することにより、前記マルテンサイト組織の結
晶粒界を選択的に電解腐食することを特徴とする鋼材試
料の結晶粒界現出方法が提供される。
In order to achieve the above-mentioned object, in the present invention, the test surface of a steel material sample having a martensitic structure is immersed in an aqueous nitric acid solution having a concentration of 40 to 70% by weight to obtain the steel material. Using the sample as an anode, current density 10
~500mA / dm 2, by applying a current under conditions of energization time 0.5-2 hours, the grain boundaries of the steel samples, characterized by selectively galvanic corrosion of grain boundaries of the martensitic structure A revealing method is provided.

【0009】本発明方法は、焼入れや焼入・焼戻しなど
の熱処理によって基地中にマルテンサイト組織が析出し
ている鋼種、すなわち、結晶粒内には炭素が固溶してマ
ルテンサイト組織となっており、その粒界には炭化物が
析出した組織になっている鋼種に対して適用することが
できる。具体的には、Cr12%以上を含む耐熱ステン
レス鋼や、フェライト組織とマルテンサイト組織が2相
混在している析出硬化型ステンレス鋼などに適用でき
る。
According to the method of the present invention, a martensite structure is formed by a steel type in which a martensite structure is precipitated in the matrix by heat treatment such as quenching, quenching and tempering, that is, carbon is dissolved in the crystal grains to form a martensite structure. However, the present invention can be applied to steel types having a structure in which carbide is precipitated at the grain boundaries. Specifically, the present invention can be applied to heat-resistant stainless steel containing 12% or more of Cr, precipitation hardening stainless steel in which two phases of a ferrite structure and a martensite structure are mixed.

【0010】本発明方法では、まず従来と同じように試
料の被検面を鏡面仕上げしたのち、その被検面を40〜
70重量%濃度の硝酸水溶液に浸漬する。このことによ
って、被検面の表面には不働態膜が成膜される。つい
で、試料を陽極,前記硝酸水溶液内に配設した不溶性電
極を陰極として、10〜500mA/dm2 の直流を0.5
〜2時間通電する。
In the method of the present invention, first, the test surface of the sample is mirror-finished in the same manner as in the prior art, and then the test surface is 40 to
Immerse in a 70% by weight aqueous nitric acid solution. As a result, a passive film is formed on the surface of the test surface. Then, using the sample as an anode and the insoluble electrode disposed in the nitric acid aqueous solution as a cathode, a direct current of 10 to 500 mA / dm 2 was applied to 0.5.
Energize for ~ 2 hours.

【0011】その場合、炭素が固溶するマルテンサイト
組織は前記した不働態膜で保護された状態を維持して結
晶粒の腐食は進行しないが、しかし、理由は明確ではな
いが、結晶粒界では不働態膜が破れてその炭化物が電解
腐食される。この結晶粒界と結晶粒内における腐食進行
の画然たる相違により、結晶粒界が鮮明に現出すること
になる。
In that case, the martensite structure in which carbon is solid-solved remains protected by the passivation film and the corrosion of the crystal grains does not proceed. However, although the reason is not clear, the grain boundary is not clear. Then, the passive film is broken and the carbide is electrolytically corroded. Due to the remarkable difference in corrosion progress between the crystal grain boundaries and the crystal grains, the crystal grain boundaries appear clearly.

【0012】この一連の過程で、まず用いる硝酸水溶液
は、通常、硝酸濃度が60〜70重量%である濃硝酸を
水に溶解したものであるが、得られた硝酸水溶液におけ
る硝酸濃度が40重量%未満の場合には、被検面への上
記した機能を発揮する不働態膜が成膜されず、また70
重量%より高濃度の場合は、有害な二酸化窒素を発生し
て作業性が悪くなるという問題が生ずるので、硝酸水溶
液の硝酸濃度は上記したように40〜70重量%に設定
する。
In this series of processes, the nitric acid aqueous solution used is usually concentrated nitric acid having a nitric acid concentration of 60 to 70% by weight dissolved in water. The nitric acid aqueous solution obtained has a nitric acid concentration of 40% by weight. When it is less than%, the passivation film exhibiting the above-mentioned function is not formed on the surface to be inspected, and 70
When the concentration is higher than the weight%, harmful nitrogen dioxide is generated and workability is deteriorated. Therefore, the nitric acid concentration of the nitric acid aqueous solution is set to 40 to 70 weight% as described above.

【0013】また、通電時の電流密度が10mA/dm2
より低い場合は、結晶粒界の炭化物を選択的に電解腐食
することができず、また、500mA/dm2 より高い場
合は、結晶粒内の腐食も進行してしまい、いずれの場合
においても結晶粒界の鮮明な現出ができなくなる。更
に、通電時間が0.5時間より短いときは、結晶粒界の選
択的な電解腐食が充分に進行せず、また2時間を超える
と、結晶粒界のみならず結晶粒内の腐食も進行して、同
じく粒界の鮮明な現出が起こらない。
The current density during energization is 10 mA / dm 2
When it is lower than 500 mA / dm 2 , it is impossible to selectively electrolytically corrode carbides at the grain boundaries, and when it is higher than 500 mA / dm 2 , corrosion in the crystal grains also progresses. The grain boundary cannot be clearly displayed. Furthermore, when the energization time is shorter than 0.5 hours, the selective electrolytic corrosion of the crystal grain boundaries does not proceed sufficiently, and when it exceeds 2 hours, not only the crystal grain boundaries but also the corrosion inside the crystal grains progresses. Also, no clear appearance of grain boundaries occurs.

【0014】この電流密度と通電時間が結晶粒界の現出
に与える影響を図1に示す。図1は、Cr12重量%,
Ni2.5重量%,Mo1.5重量%,V0.3重量%,残部
Feの組成を有するステンレス鋼材を、950℃で1時
間加熱したのち空冷して焼入れを施した試料1と、Cr
13重量%,Ni8重量%,Mo2.2重量%,Al1.1
重量%,残部Feの組成を有するステンレス鋼材(AM
S5627Cに相当する鋼種)を925℃で1時間加熱
したのち、油冷して焼入れを施し、更に500℃で4時
間加熱したのち空冷する焼戻しを2回行った試料2につ
き、濃度45重量%の硝酸水溶液中で、電流密度と通電
時間を変化させて電解エッチング処理を施し、処理後の
各試料の被検面を倍率400倍で顕微鏡観察して結晶粒
界現出の鮮明度を判定した結果である。
FIG. 1 shows the influence of the current density and the conduction time on the appearance of grain boundaries. FIG. 1 shows Cr 12% by weight,
Sample 1 in which a stainless steel material having a composition of 2.5 wt% Ni, 1.5 wt% Mo, 0.3 wt% V, and the balance Fe was heated at 950 ° C. for 1 hour and then air-cooled and quenched, and Cr
13 wt%, Ni 8 wt%, Mo 2.2 wt%, Al1.1
A stainless steel material having a composition of wt% and the balance Fe (AM
(Steel grade corresponding to S5627C) was heated at 925 ° C. for 1 hour, then oil-cooled and hardened, further heated at 500 ° C. for 4 hours and then air-cooled twice. Result of judging the sharpness of grain boundary appearance by observing the surface to be inspected of each sample after treatment with a microscope at a magnification of 400 times in an aqueous nitric acid solution while changing the current density and the energization time. Is.

【0015】図中、領域Aは、試料1において結晶粒界
が鮮明に現出する領域を示し、領域Bは試料2において
結晶粒界が鮮明に現出する領域を示し、また領域Cは粒
内腐食が発生する領域を示している。
In the figure, a region A shows a region where crystal grain boundaries appear clearly in Sample 1, a region B shows a region where crystal grain boundaries appear clearly in Sample 2, and a region C shows grain boundaries. The area where internal corrosion occurs is shown.

【0016】[0016]

【実施例】【Example】

実施例1 Cr:12重量%,Ni:2.5重量%,Mo:1.5重量
%,V:0.3重量%, 残部:Feから成る鋼材を950℃で1時間加熱したの
ち空冷して焼入れ材とし、この焼入れ材から試料を採取
してその被検面を鏡面仕上げした。
Example 1 A steel material composed of Cr: 12% by weight, Ni: 2.5% by weight, Mo: 1.5% by weight, V: 0.3% by weight and the balance: Fe was heated at 950 ° C. for 1 hour and then air-cooled. As a quenching material, a sample was taken from this quenching material and the test surface was mirror-finished.

【0017】試料を、45重量%硝酸水溶液(室温)に
浸漬して、10mA/dm2 の電流密度で1時間通電処理
した。処理後の試料を水洗し、その被検面を倍率400
倍で顕微鏡観察した。その顕微鏡写真を図2に示した。
比較のため、上記試料を、ピクリン酸1gと塩酸5ml
とアルコール100mlにより調製したエッチャント
1;塩化第2銅5gと塩酸100mlとアルコール10
0mlにより調製したエッチャント2;ピクリン酸4g
と界面活性剤(ドデシルベンゼンスルホン酸ナトリウ
ム、関東化学社製)1gと水100mlにより調製した
エッチャント3;に、それぞれ、10秒,10秒,1時
間浸漬したのち取り出し、その結晶粒界の現出状態を倍
率400倍で顕微鏡観察した。エッチャント1による場
合を比較例1,エッチャント2による場合を比較例2,
エッチャント3による場合を比較例3とし、それぞれの
場合の顕微鏡写真を図3〜図5として示した。
The sample was immersed in a 45% by weight nitric acid aqueous solution (room temperature) and subjected to an electric current treatment at a current density of 10 mA / dm 2 for 1 hour. The processed sample is washed with water and the surface to be inspected is magnified 400 times.
It was observed under a microscope at a magnification of 2. The micrograph is shown in FIG.
For comparison, 1 g of picric acid and 5 ml of hydrochloric acid were used for comparison.
Etchant 1 prepared with 100 ml of alcohol and 5 ml of cupric chloride, 100 ml of hydrochloric acid and 10 of alcohol
Etchant 2 prepared with 0 ml; picric acid 4 g
And 10 g of surfactant (sodium dodecylbenzene sulfonate, manufactured by Kanto Chemical Co., Ltd.) and 100 ml of water prepared for 10 seconds, 10 seconds, and 1 hour respectively, and then taken out to reveal the crystal grain boundaries. The state was microscopically observed at a magnification of 400 times. Comparative example 1 using the etchant 1 and comparative example 2 using the etchant 2
The case of using the etchant 3 was set as Comparative Example 3, and the micrographs in each case are shown in FIGS. 3 to 5.

【0018】これらの顕微鏡写真から明らかなように、
本発明方法によると結晶粒界が鮮明に現出しているが、
従来の方法では、結晶粒内の腐食も進行して結晶粒界の
現出は極めて不鮮明である。 実施例2 鋼材が、950℃で1時間加熱したのち空冷して焼入れ
を施し、ついで、650℃で2時間の加熱後に空冷する
焼戻しを2回行った焼入れ・焼戻し材であったことを除
いては、実施例1の場合と同様にして電解腐食を行い、
その被検面を顕微鏡観察した。その顕微鏡写真を図6に
示した。
As is clear from these micrographs,
According to the method of the present invention, the crystal grain boundaries are clearly exposed,
In the conventional method, the appearance of the crystal grain boundaries is extremely unclear due to the progress of corrosion in the crystal grains. Example 2 Except that the steel material was a tempered / tempered material which was heated at 950 ° C. for 1 hour, air-cooled and hardened, and then tempered twice by air-cooling after heating at 650 ° C. for 2 hours. Performs electrolytic corrosion in the same manner as in Example 1,
The test surface was observed under a microscope. The micrograph is shown in FIG.

【0019】また、実施例1で用いたエッチャント1,
エッチャント2,エッチャント3によって試料を処理
し、エッチャント1による場合を比較例4,エッチャン
ト2による場合を比較例5,エッチャント3による場合
を比較例6とし、それぞれの場合の顕微鏡写真を図7〜
図9として示した。これらの顕微鏡写真から明らかなよ
うに、本発明方法によると、焼入・焼戻し材についても
その結晶粒界が鮮明に現出している。
In addition, the etchant 1 used in Example 1
The sample was treated with etchant 2 and etchant 3, and the case with etchant 1 was used as Comparative Example 4, the case with etchant 2 was used as Comparative Example 5, and the case with etchant 3 was used as Comparative Example 6, and the micrographs of each case are shown in FIGS.
Shown as FIG. As is clear from these micrographs, according to the method of the present invention, the crystal grain boundaries of the quenched and tempered material are clearly exposed.

【0020】実施例3,4 Cr:13重量%,Ni:8.0重量%,Mo:2.2重量
%,Al:1.1重量%,残部:Feから成る鋼材を92
5℃で1時間加熱したのち油冷して焼入れ材とし、この
焼入れ材から試料を採取してその被検面を鏡面仕上げし
た。試料を、45重量%硝酸水溶液(室温)に浸漬し
て、50mA/dm2 の電流密度で0.5時間,1時間通電
処理した。
Examples 3 and 4 Steel material consisting of Cr: 13% by weight, Ni: 8.0% by weight, Mo: 2.2% by weight, Al: 1.1% by weight, and balance: Fe.
After heating at 5 ° C. for 1 hour, it was oil-cooled to obtain a hardened material, and a sample was taken from this hardened material and its test surface was mirror-finished. The sample was immersed in a 45 wt% nitric acid aqueous solution (room temperature) and subjected to energization treatment at a current density of 50 mA / dm 2 for 0.5 hours and 1 hour.

【0021】処理後の各試料を水洗し、その被検面を倍
率400倍で顕微鏡観察した。その顕微鏡写真を通電時
間0.5時間のものを図10,1時間のものを図11とし
て示した。 実施例5〜8 試料として、組成は実施例3,4の鋼種と同じであり、
それを925℃で1時間加熱したのち油冷して焼入れを
行い、更に、500℃で4時間加熱したのち空冷する焼
戻しを2回行った焼入・焼戻し材を用意した。
Each sample after the treatment was washed with water, and the surface to be inspected was observed with a microscope at a magnification of 400 times. The photomicrographs are shown in FIG. 10 for the energization time of 0.5 hours and in FIG. 11 for the one hour time. Examples 5-8 As samples, the composition is the same as the steel types of Examples 3 and 4,
A quenching / tempering material was prepared in which it was heated at 925 ° C. for 1 hour, then oil-cooled for quenching, and further heated at 500 ° C. for 4 hours and then air-cooled twice for tempering.

【0022】この試料を表1で示した条件下においてエ
ッチング処理を行った。
This sample was etched under the conditions shown in Table 1.

【0023】[0023]

【表1】 得られた各試料の顕微鏡写真(倍率400倍)を、図1
2(実施例5),図13(実施例6),図14(実施例
7)および図15(実施例8)として示した。
[Table 1] A micrograph (magnification of 400 times) of each obtained sample is shown in FIG.
2 (Example 5), FIG. 13 (Example 6), FIG. 14 (Example 7) and FIG. 15 (Example 8).

【0024】[0024]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、マルテンサイト組織の結晶粒界を極めて鮮
明に現出させることができる。したがって、結晶粒度の
測定値の精度は著しく向上し、その工業的価値は大であ
る。
As is clear from the above description, according to the method of the present invention, the crystal grain boundaries of the martensite structure can be made to appear extremely clearly. Therefore, the accuracy of the measured value of the crystal grain size is remarkably improved, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の電解腐食時において、結晶粒界が
現出するときの電流密度と通電時間との関係を示すグラ
フである。
FIG. 1 is a graph showing a relationship between a current density and a conduction time when a grain boundary appears during electrolytic corrosion according to the method of the present invention.

【図2】本発明方法で処理された焼入れ鋼試料の被検面
の金属組織を示す顕微鏡写真である。
FIG. 2 is a micrograph showing a metallographic structure of a test surface of a quenched steel sample treated by the method of the present invention.

【図3】比較例方法で処理された焼入れ鋼試料の被検面
の金属組織を示す顕微鏡写真である。
FIG. 3 is a micrograph showing a metallographic structure of a surface to be inspected of a quenched steel sample treated by a comparative example method.

【図4】他の比較例方法で処理された焼入れ鋼試料の被
検面の金属組織を示す顕微鏡写真である。
FIG. 4 is a micrograph showing a metal structure of a surface to be inspected of a hardened steel sample treated by another comparative example method.

【図5】更に別の比較例方法で処理された焼入れ鋼試料
の被検面の金属組織を示す顕微鏡写真である。
FIG. 5 is a micrograph showing a metal structure of a surface to be inspected of a hardened steel sample treated by a method of another comparative example.

【図6】本発明方法で処理された焼入・焼戻し鋼試料の
被検面の金属組織を示す顕微鏡写真である。
FIG. 6 is a micrograph showing a metal structure of a surface to be inspected of a quenched and tempered steel sample treated by the method of the present invention.

【図7】比較例方法で処理された焼入・焼戻し鋼試料の
被検面の金属組織を示す顕微鏡写真である。
FIG. 7 is a micrograph showing a metal structure of a test surface of a quenched / tempered steel sample treated by a comparative example method.

【図8】他の比較例方法で処理された焼入・焼戻し鋼試
料の被検面の金属組織を示す顕微鏡写真である。
FIG. 8 is a micrograph showing a metallographic structure of a test surface of a quenched / tempered steel sample treated by another comparative example method.

【図9】更に別の比較例方法で処理された焼入・焼戻し
鋼試料の被検面の金属組織を示す顕微鏡写真である。
FIG. 9 is a micrograph showing a metal structure of a test surface of a quenched / tempered steel sample treated by still another comparative example method.

【図10】本発明方法で処理された焼入れ鋼試料の被検
面の金属組織を示す顕微鏡写真である。
FIG. 10 is a micrograph showing a metal structure of a surface to be inspected of a hardened steel sample treated by the method of the present invention.

【図11】別の本発明方法で処理された焼入れ鋼試料の
被検面の金属組織を示す顕微鏡写真である。
FIG. 11 is a photomicrograph showing the metal structure of the surface to be inspected of the hardened steel sample treated by another method of the present invention.

【図12】実施例5の方法で処理された焼入・焼戻し鋼
試料の被検面の金属組織を示す顕微鏡写真である。
FIG. 12 is a micrograph showing a metal structure of a surface to be inspected of a quenched and tempered steel sample treated by the method of Example 5.

【図13】実施例6の方法で処理された焼入・焼戻し鋼
試料の被検面の金属組織を示す顕微鏡写真である。
FIG. 13 is a micrograph showing a metal structure of a test surface of a quenched / tempered steel sample treated by the method of Example 6;

【図14】実施例7の方法で処理された別の焼入れ鋼試
料の被検面の金属組織を示す顕微鏡写真である。
FIG. 14 is a micrograph showing the metal structure of the surface to be inspected of another quenched steel sample treated by the method of Example 7.

【図15】実施例8の方法で処理された焼入・焼戻し鋼
試料の被検面の金属組織を示す顕微鏡写真である。
FIG. 15 is a micrograph showing a metal structure of a test surface of a quenched / tempered steel sample treated by the method of Example 8.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マルテンサイト組織を有する鋼材試料の
被検面を40〜70重量%濃度の硝酸水溶液に浸漬し、
前記鋼材試料を陽極として、電流密度10〜500mA
/dm2 ,通電時間0.5〜2時間の条件で電流を通電する
ことにより、前記マルテンサイト組織の結晶粒界を選択
的に電解腐食することを特徴とする鋼材試料の結晶粒界
現出方法。
1. A test surface of a steel material sample having a martensitic structure is immersed in a nitric acid aqueous solution having a concentration of 40 to 70% by weight,
Using the steel material sample as an anode, a current density of 10 to 500 mA
/ Dm 2 , current flow for 0.5 to 2 hours, the grain boundary of the martensitic structure is selectively electrolytically corroded, and the grain boundary of steel material appears. Method.
JP23222391A 1991-08-20 1991-08-20 Method for revealing grain boundary of steel material sample Pending JPH0551800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23222391A JPH0551800A (en) 1991-08-20 1991-08-20 Method for revealing grain boundary of steel material sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23222391A JPH0551800A (en) 1991-08-20 1991-08-20 Method for revealing grain boundary of steel material sample

Publications (1)

Publication Number Publication Date
JPH0551800A true JPH0551800A (en) 1993-03-02

Family

ID=16935914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23222391A Pending JPH0551800A (en) 1991-08-20 1991-08-20 Method for revealing grain boundary of steel material sample

Country Status (1)

Country Link
JP (1) JPH0551800A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060885A (en) * 2013-01-24 2013-04-24 东北大学 Electrolysis device and method for efficiently extracting slag inclusion in steel
JP2014101890A (en) * 2014-03-10 2014-06-05 Hitachi Automotive Systems Ltd Fuel injection valve and method of processing nozzle
WO2017077595A1 (en) * 2015-11-04 2017-05-11 三菱電機株式会社 Fan casing
CN109490302A (en) * 2018-11-11 2019-03-19 上海电气上重铸锻有限公司 A kind of test method of the austenite grain of midium-carbon steel martensitic structure
CN113125318A (en) * 2021-05-25 2021-07-16 西安热工研究院有限公司 Macroscopic grain size detection method for martensite cast steel test piece containing Mo and Co
CN113125319A (en) * 2021-05-25 2021-07-16 西安热工研究院有限公司 Method for measuring and characterizing grain size of non-equiaxed grain structure of austenitic stainless steel pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060885A (en) * 2013-01-24 2013-04-24 东北大学 Electrolysis device and method for efficiently extracting slag inclusion in steel
CN103060885B (en) * 2013-01-24 2015-02-25 东北大学 Electrolysis device and method for efficiently extracting slag inclusion in steel
JP2014101890A (en) * 2014-03-10 2014-06-05 Hitachi Automotive Systems Ltd Fuel injection valve and method of processing nozzle
WO2017077595A1 (en) * 2015-11-04 2017-05-11 三菱電機株式会社 Fan casing
CN109490302A (en) * 2018-11-11 2019-03-19 上海电气上重铸锻有限公司 A kind of test method of the austenite grain of midium-carbon steel martensitic structure
CN113125318A (en) * 2021-05-25 2021-07-16 西安热工研究院有限公司 Macroscopic grain size detection method for martensite cast steel test piece containing Mo and Co
CN113125319A (en) * 2021-05-25 2021-07-16 西安热工研究院有限公司 Method for measuring and characterizing grain size of non-equiaxed grain structure of austenitic stainless steel pipe

Similar Documents

Publication Publication Date Title
Streicher General and intergranular corrosion of austenitic stainless steels in acids: effect of cations in the acids and the lnfluence of heat treatment and grain size of the steel
Aziz et al. Pitting Corrosion Characteristics of Aluminum-Influence of Magnesium and Manganese.
CN1513061A (en) Method for producing stainless steel having improved corrosion resistance
Kumari et al. Progress in understanding initiation of intergranular corrosion on AA6005 aluminum alloy with low copper content
Hodge et al. An improved Ni-Cr-Mo alloy for corrosion service
JPH0551800A (en) Method for revealing grain boundary of steel material sample
Doig et al. Influence of precipitate free zones on the stress corrosion susceptibility of a ternary Al-5.9 wt% Zn-3.2 wt% Mg alloy
CN111638113B (en) Precipitation strengthening martensite stainless steel prior austenite grain boundary corrosion method
STREICHER Relationship of heat treatment and microstructure to corrosion resistance in wrought Ni-Cr-Mo alloys
Paroni et al. Sensitization and pitting corrosion resistance of ferritic stainless steel aged at 800 C
JP3263426B2 (en) Ferritic stainless steel sheet excellent in weather resistance and method for producing the same
JPH0750097B2 (en) Ultra-low carbon steel structure revealing liquid and revealing method
US1961752A (en) Process of treating metal and alloy articles to improve the resistivity thereof to corrosion and to the product thereof
Pujar et al. Susceptibility of as-welded and thermally aged type 316LN weldments toward pitting and intergranular corrosion
Wei et al. The effect of alloying elements on the grain boundary segregation of phosphorus in iron and the intergranular corrosion of the Fe-P system
Alano et al. Corrosion resistance of the UNS N26455 superalloy in simulated environment containing chloride and CO2
Copson The influence of corrosion on the cracking of pressure vessels
Birn et al. Corrosion behavior of high-nickel and chromium alloys in natural Baltic seawater
Heger et al. Effect of minor constituents on the intergranular corrosion of austenitic stainless steels
Nichol et al. Intergranular corrosion testing and sensitization of two high-chromium ferritic stainless steels
Bond Pitting Corrosion—A Review of Recent Advances in Testing Methods and Interpretation
Lee Development of an Etching Technique for Determining the Intergranular Corrosion Resistance of Type 430 Stainless Steel
Lee Etching method for determining susceptibility to intergranular attack in ferritic stainless steels
Adenike Heat treatment and corrosion behaviour of 2101 duplex stainless steel cathodically modified with ruthenium
Whitcraft Corrosion of Pharmaceutical Equipment