JPS63134627A - Manufacture of austenitic stainless steel having superior cryogenic characteristic after heat treatment for forming nb3sn - Google Patents

Manufacture of austenitic stainless steel having superior cryogenic characteristic after heat treatment for forming nb3sn

Info

Publication number
JPS63134627A
JPS63134627A JP27937686A JP27937686A JPS63134627A JP S63134627 A JPS63134627 A JP S63134627A JP 27937686 A JP27937686 A JP 27937686A JP 27937686 A JP27937686 A JP 27937686A JP S63134627 A JPS63134627 A JP S63134627A
Authority
JP
Japan
Prior art keywords
heat treatment
nb3sn
stainless steel
austenitic stainless
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27937686A
Other languages
Japanese (ja)
Other versions
JPH0629459B2 (en
Inventor
Kensaburo Takizawa
瀧澤 謙三郎
Haruo Kaji
梶 晴男
Chisato Ishioka
石岡 千里
Shoji Tone
登根 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27937686A priority Critical patent/JPH0629459B2/en
Publication of JPS63134627A publication Critical patent/JPS63134627A/en
Publication of JPH0629459B2 publication Critical patent/JPH0629459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture an austenitic stainless steel having superior cryogenic characteristics after heat treatment for forming Nb3Sn by subjecting a steel ingot having a specified compsn. to hot rolling, soln. heat treatment at a speci fied temp. and further heating to a specified temp. CONSTITUTION:A steel ingot or slab consisting of, by weight, <=0.03% C, 0.1-2.0% Si, 0.1-20.0% Mn, <=0.025% P, <=0.015% S, 3-15% Ni, 12-20% Cr, 0.5-2.5% Mo, 0.01-0.18% Nb, 0.05-0.25% N and the balance Fe with inevitable impurities and satisfying a formula Ni+0.5Mn+30C+30N>2/3(Cr+Mo+Si-8) is hot rolled or hot rolled and cold rolled, subjected to soln. heat treatment at 1,000-1,150 deg.C and further heated to 820-900 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はNb3Sn生成熱処理後の極低温特性に優れた
オーステナイト系ステンレス鋼の製造方法に関し、さら
に詳しくは、超電導磁石の支持体に代表される極低温用
構造材料であって、使用に先立って冷間加工、Nb3S
n生成熱処理が行なわれてし極低温特性に優れたオース
テナイト系ステンレス鋼の製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing austenitic stainless steel having excellent cryogenic properties after heat treatment for Nb3Sn formation, and more specifically relates to a method for producing austenitic stainless steel, which is typified by supports for superconducting magnets. Structural material for cryogenic temperatures, cold worked and Nb3S prior to use.
The present invention relates to a method for producing austenitic stainless steel that has been subjected to n-forming heat treatment and has excellent cryogenic properties.

[従来技術] 一般に、超電導磁石はNbTi線より8テスラ程度の磁
界を発生できるが、それ以上の高磁界を発生させるため
にはNb3Snに代表される化合物超電導体を利用する
ことが有効であるとされている。
[Prior art] Generally, superconducting magnets can generate a magnetic field of about 8 Tesla than NbTi wires, but in order to generate a higher magnetic field, it is effective to use compound superconductors such as Nb3Sn. has been done.

しかし、超電導体か化合物であるため可塑性が悪いとい
う問題があり、そのため、Nb3Sn生成前に支持材料
と共に加工を行なう導体製造工程または超電導磁石の製
造工程の最後に、Nb3Snを600〜800°C×5
0〜300時間の熱処理によって生成させ、Nb3Sn
の変形を最小に抑制している。
However, since it is a superconductor or a compound, it has a problem of poor plasticity. Therefore, Nb3Sn is heated at 600 to 800°C 5
Produced by heat treatment for 0 to 300 hours, Nb3Sn
deformation is suppressed to a minimum.

従って1、構造材料は、Nb3Snの生成熱処理を同時
に受けるため、時効されて延性、靭性の劣化が生じ、こ
の劣化は極低温において特に顕著になるという問題があ
る。
Therefore, 1. Since the structural material is simultaneously subjected to heat treatment for Nb3Sn formation, it is aged and deteriorates in ductility and toughness, and this deterioration becomes particularly noticeable at extremely low temperatures.

このような極低温における特性の劣化に対して、Niを
多量に含有させたインコロイ合金等が使用されているが
、非常に高価であるので安価なステンレス鋼が望まれて
いる。
In order to deal with such deterioration of characteristics at extremely low temperatures, Incoloy alloy containing a large amount of Ni is used, but since it is very expensive, inexpensive stainless steel is desired.

しかして、最近になってNi5Cr系ステンレス鋼にV
を含有させて特性の改善を行なった例として特公昭61
−000416号公報により提案されているが、このV
を含有させた綱は時効前の冷間加工により極低温下にお
ける延性が大幅に劣化するという問題があり、この冷間
加工を考慮した特性改善が重要な技術的に解決すべき問
題である。
However, recently, V
As an example of improving properties by incorporating
-000416, but this V
Steel containing steel has the problem that its ductility at extremely low temperatures is significantly degraded due to cold working before aging, and improving properties by taking this cold working into consideration is an important technical problem to be solved.

[発明が解決しようとする問題点コ 本発明は、上記に説明したような従来にお(Jる極低温
構造用材料としての種々の問題点に鑑みなされたもので
あり、本発明者が鋭意研究を行なった結果、Nb3Sn
等の化合物系超電導磁石の構造材料で冷間加工が行なわ
れた後、Nb3Sn生成熟処理を行っても、極低温にお
いて延性、靭性に優れた極低温特性に優れたオーステナ
イト系ステンレス鋼の製造方法を開発したのである。
[Problems to be Solved by the Invention] The present invention has been made in view of the various problems that have arisen in the past as materials for cryogenic structures, as explained above, and the present inventors have endeavored to solve them. As a result of research, Nb3Sn
A method for manufacturing an austenitic stainless steel with excellent cryogenic properties that exhibits excellent ductility and toughness at cryogenic temperatures even after Nb3Sn biomaturation treatment is performed after cold working with structural materials for compound-based superconducting magnets such as was developed.

[問題点を解決するための手段] 本発明に係るNb3Sn生成熱処理後の極低温特性に優
れたオーステナイト系ステンレス鋼の製造方法は、 (1) C0,03wt%以下、S i 0.1〜2.
0wt%、Mn 0.1〜20.0wt%、P 0.0
25wt%以下、S 0.015twt%以下、Ni 
3〜15wt%、Cr12〜20wt%、Mo 0.5
〜2.5wt%、Nb 0.01〜0.18wt%、N
 0.05〜0.25wt%を含有し、かつ、 Ni+0.5Mn+30C+3ON >2/3(Cr+Mo+ S 1−8)を満足し、残部
Feおよび不可避不純物からなる鋼塊または鋼片を熱間
圧延或いは熱間圧延、冷間圧延を行い、次いで、100
0〜1150℃の温度において溶体化処理を行った後、
さらに、820〜900℃の温度に加熱することを特徴
とするNb3Sn生成熱処理後の極低温特性に優れたオ
ーステナイト系ステンレス鋼の製造方法を第1の発明と
し、 (2) C0.03wt%以下、S i 0.1〜2.
0wt%、Mn 0.1〜20.0wt%、P 0.0
25wt%、S 0.015wt%以下、Ni3〜L5
wt%、Cr12〜20wt%、Mo 0.5〜2.5
wt%、Nb 0.01〜0.18wt%、N 0.0
5〜0.25wt%を含有し、さらに、 Ca、Ce、Zrのうちから進んだ1種または2種以上
0.001〜0.100wt%を含有し、かつ、 Ni+0.5Mn+300+3ON >2/3(Or+Mo+S 1−8) を満足し、残部Feおよび不可避不純物からなる鋼塊ま
たは鋼片を熱間圧延或いは熱間圧延、冷間圧延を行い、
次いで、1000〜1150℃の温度において溶体化処
理を行った後、さらに、820〜900℃の温度に加熱
することを特徴とするNb3Sn生成熱処理後の極低温
特性に優れたオーステナイト系ステンレス鋼の製造方法
を第2の発明とする2つの発明よりなるものである。
[Means for solving the problems] The method for producing austenitic stainless steel with excellent cryogenic properties after Nb3Sn generation heat treatment according to the present invention is as follows: (1) C0.03 wt% or less, Si 0.1 to 2 ..
0wt%, Mn 0.1-20.0wt%, P 0.0
25wt% or less, S 0.015twt% or less, Ni
3-15wt%, Cr12-20wt%, Mo 0.5
~2.5wt%, Nb 0.01~0.18wt%, N
A steel ingot or billet containing 0.05 to 0.25 wt% and satisfying Ni+0.5Mn+30C+3ON>2/3 (Cr+Mo+S 1-8), with the remainder being Fe and unavoidable impurities is hot rolled or heated. Inter-rolling and cold rolling are performed, and then 100
After solution treatment at a temperature of 0 to 1150°C,
Further, the first invention provides a method for producing austenitic stainless steel having excellent cryogenic properties after Nb3Sn formation heat treatment, which is characterized by heating to a temperature of 820 to 900°C, (2) C0.03 wt% or less, S i 0.1-2.
0wt%, Mn 0.1-20.0wt%, P 0.0
25wt%, S 0.015wt% or less, Ni3~L5
wt%, Cr12-20wt%, Mo 0.5-2.5
wt%, Nb 0.01-0.18wt%, N 0.0
5 to 0.25 wt%, further contains 0.001 to 0.100 wt% of one or more of Ca, Ce, and Zr, and Ni+0.5Mn+300+3ON>2/3( Or+Mo+S 1-8) A steel ingot or billet consisting of the balance Fe and unavoidable impurities is hot-rolled, hot-rolled, and cold-rolled,
Next, after performing solution treatment at a temperature of 1000 to 1150°C, the production of an austenitic stainless steel with excellent cryogenic properties after Nb3Sn formation heat treatment is characterized in that it is further heated to a temperature of 820 to 900°C. This invention consists of two inventions, with the second invention being a method.

本発明に係るNbaSn生成熱処理後の極低温特性に優
れたオーステナイト系ステンレス鋼の製造方法について
以下詳細に説明する。
The method for manufacturing an austenitic stainless steel having excellent cryogenic properties after NbaSn generation heat treatment according to the present invention will be described in detail below.

先ず、本発明に係るNb3Sn生成熱処理後の極低温特
性に優れたオーステナイト系ステンレス鋼の製造方法(
以下本発明に係る鋼の製造方法ということかある。)に
おいて使用するオーステナイト系ステンレス鋼の含有成
分および成分割合について説明する。
First, the method for producing austenitic stainless steel with excellent cryogenic properties after NbSn generation heat treatment according to the present invention (
The following may be referred to as the method for manufacturing steel according to the present invention. The components and component ratios of the austenitic stainless steel used in ) will be explained.

Cはオーステナイトの安定化と耐力向上に必要な元素で
あるが、含有量が0.03wt%を越えるような多量の
含有であるとNb3Sn生成熱処理中にに炭化物を析出
して延性、靭性を劣化させるようになる。よって、C含
有量は(1,03wt%以下とする。
C is an element necessary for stabilizing austenite and improving its yield strength, but if the content exceeds 0.03 wt%, carbides will precipitate during the heat treatment to form Nb3Sn, resulting in deterioration of ductility and toughness. You will be able to do it. Therefore, the C content is 1.03 wt% or less.

Siは脱酸のためと高温における耐酸化性を改善する元
素であり、含有量が0.1wt%未満ではこのような効
果は少なく、また、2.0wt%を越えて多量に含有さ
れると靭性を劣化させる。よって、Si含有量は0,1
〜2.0wt%とする。
Si is an element for deoxidation and improving oxidation resistance at high temperatures, and if the content is less than 0.1 wt%, this effect will be small, and if it is contained in a large amount exceeding 2.0 wt%, Degrades toughness. Therefore, the Si content is 0.1
~2.0wt%.

Mnはオーステナイトの安定化、Nの固溶限の上昇に有
効であるが、含有量がQ、1wt%未満ではこのような
効果は少なく、また、20.0wt%を越えて含有され
るとCrとの共存で時効中に脆いσ相が析出し、靭性を
劣化させる。よって、Mn含宵量は0.1〜20.0w
t%とする。
Mn is effective in stabilizing austenite and increasing the solid solubility limit of N, but if the content is less than 1 wt%, this effect is small, and if it is contained in more than 20.0 wt%, Cr In the coexistence with steel, a brittle σ phase precipitates during aging and deteriorates toughness. Therefore, the Mn content is 0.1 to 20.0w
It is assumed to be t%.

PはNb3Sn生成熱処理によりオーステナイト粒界に
移動、偏析し、粒界脆化を促進するため極力低(抑える
必要があるが、経済性を考慮してP含有量は0.025
wt%とする。
P moves to the austenite grain boundaries and segregates during the Nb3Sn formation heat treatment, promoting grain boundary embrittlement, so it must be kept as low as possible (it must be suppressed, but considering economic efficiency, the P content is set to 0.025.
Let it be wt%.

Sは鋼の熱間加工性、延性、靭性を劣化させる有害な元
素であり、Pと同様極力低く抑える必要があるが、経済
性を琴慮してS含有量は0.015wt%とする。
S is a harmful element that deteriorates the hot workability, ductility, and toughness of steel, and like P, it is necessary to keep it as low as possible, but in consideration of economic efficiency, the S content is set to 0.015 wt%.

Niはオーステナイト安定化と延性、靭性の向上に有効
な元素で、特に、Nl13Sn生成熱処理後または冷間
加工+Nb*Sn生成熱処理後における延性、靭性の劣
化に対して有効であり、オーステナイト組成を確保する
ために3wt%以上は含有させることが必要で、また、
上記した効果は15wt%を越えて含有させると飽和し
、かつ、コスト上昇を招く。よって、Ni含有mは3〜
15wt%とする。
Ni is an element that is effective in stabilizing austenite and improving ductility and toughness. It is especially effective against deterioration of ductility and toughness after heat treatment to generate Nl13Sn or after heat treatment to generate cold working + Nb*Sn, ensuring the austenite composition. In order to achieve this, it is necessary to contain 3 wt% or more, and
The above-mentioned effects become saturated when the content exceeds 15 wt%, and the cost increases. Therefore, Ni content m is 3~
It is set to 15 wt%.

Crは耐蝕性の面から含有量はt2wt%以上とする必
要かあり、しかし、20wt%を越えて多量に含有させ
るとオーステナイトを不安定にし、かつ、Mnとの共存
で時効中に脆いσ相の析出を起して靭性を劣化させる。
From the viewpoint of corrosion resistance, the content of Cr needs to be t2wt% or more. However, if it is contained in a large amount exceeding 20wt%, it will destabilize austenite and cause brittle σ phase during aging due to coexistence with Mn. This causes precipitation of and deteriorates toughness.

よって、Or含有量は12〜20wt%とする。Therefore, the Or content is set to 12 to 20 wt%.

MOは耐力を向上させるのに必要であり、かつ、Nbが
含有されている場合Nh、Sn生成熱処理中における原
子拡散を抑制し、耐時効性の向上に有効であり、含有量
が0.5wt%未満ではこのような効果は少なく、また
、2.5wt%を越える多量の含有はコスト上昇につな
がる。よって、MOC含有量0.5〜2.5wt%とす
る。
MO is necessary to improve yield strength, and when Nb is contained, it suppresses atomic diffusion during Nh and Sn generation heat treatment and is effective in improving aging resistance, and when the content is 0.5 wt. If the content is less than 2.5 wt%, such an effect will be small, and if the content exceeds 2.5 wt%, the cost will increase. Therefore, the MOC content is set to 0.5 to 2.5 wt%.

Nbは炭素、窒素を固定して有害なCr炭窒化物が粒界
に析出するのを抑制するので耐時効性を高め、特に、冷
間加工材の粒界割れを防止する特性を有し、かつ、MO
との共存含有によりこのような効果が顕著となり、含有
量がl]、01wt5未満では上記した効果は少なく、
また、0.18wt%を越えて多量に含有させると強化
元素の窒素を消費して強度低下および靭性劣化を生じさ
せる。よって、Nb含有爪は0.01〜0.18wt%
とする。
Nb fixes carbon and nitrogen and suppresses the precipitation of harmful Cr carbonitrides at grain boundaries, thereby increasing aging resistance and, in particular, has the property of preventing intergranular cracking in cold-worked materials. And MO
Such effects become noticeable when coexisting with
Furthermore, if the content exceeds 0.18 wt%, nitrogen, which is a reinforcing element, will be consumed, resulting in a decrease in strength and toughness. Therefore, the Nb-containing nail is 0.01 to 0.18 wt%
shall be.

Nはオーステナイトを安定化し、かつ、耐力向上に有効
な元素であり、含有量が0.05wt%未満ではこのよ
うな効果は少なく、また、0.25wj%を越えて多量
に含有させると靭性の劣化と溶接欠陥の発生を招く。よ
って、N含有量は0.05〜0.25wt%とする。
N is an element that is effective in stabilizing austenite and improving its yield strength. If the content is less than 0.05wt%, this effect is small, and if it is contained in a large amount exceeding 0.25wj%, it may deteriorate the toughness. This leads to deterioration and welding defects. Therefore, the N content is set to 0.05 to 0.25 wt%.

Ca、Ce5Zrは鋼を清浄化し、介在物を微細化、球
状化し、靭性を向上させる元素であり、含有量がQ、0
01wt%未満ではこのような効果は少なく、また、0
.lwt%を越えて多量に含有させるとかえって清浄化
を悪くする。よって、Ca、 Ce。
Ca, Ce5Zr are elements that clean steel, make inclusions finer and spheroidal, and improve toughness.
If it is less than 0.01 wt%, this effect is small, and if it is less than 0.
.. If it is contained in a large amount exceeding 1wt%, cleaning will become worse. Therefore, Ca, Ce.

Zrの含有量は0.001〜0.1wt%とする。The content of Zr is 0.001 to 0.1 wt%.

Ni+0.5Mn+300+3ON >2/3(Cr+Mo+ S 1−8)は、極低温で延
性、靭性の高い安定したオーステナイト組織を得るため
に必要であり、これを満足しない成分系の材料において
は、冷間加工後或いはNb3Sn生成熱処理後オーステ
ナイト中にマルテンサイトが生成し、極低温での延性、
靭性を大きく損なうことになる。
Ni + 0.5Mn + 300 + 3ON > 2/3 (Cr + Mo + S 1-8) is necessary to obtain a stable austenitic structure with high ductility and toughness at extremely low temperatures, and materials with component systems that do not satisfy this need to be cold worked. After or Nb3Sn generation heat treatment, martensite is generated in austenite, which increases ductility at extremely low temperatures.
Toughness will be greatly impaired.

本発明に係る鋼の製造方法によれば、上記した化学成分
を有する鋼塊または鋼片を熱間圧延或いは熱間圧延、冷
間圧延を行い、次いで、1000〜1150℃しの温度
において溶体化処理を行った後、さらに、820〜90
0℃の温度に加熱することにより、Nb3Sn生成熱処
理後の極低温特性に優れたオーステナイト系ステンレス
鋼が製造される。
According to the method for manufacturing steel according to the present invention, a steel ingot or slab having the above-mentioned chemical components is hot rolled, hot rolled, or cold rolled, and then solution-treated at a temperature of 1000 to 1150°C. After processing, further 820 to 90
By heating to a temperature of 0° C., an austenitic stainless steel with excellent cryogenic properties after Nb3Sn generation heat treatment is produced.

熱間圧延または熱間圧延、冷間圧延を行った後に、l0
00〜1150℃の温度で溶体化処理を行うのであるが
、この温度が1000°C未満であると析出物の固溶が
充分でなく、オーステナイト結晶粒が細かくなるため、
延性、靭性が劣化し、また、1150°Cを越える温度
で溶体化処理を行うとオーステナイト結晶粒が粗大化が
著しく耐力の低下が大きくなる。
After hot rolling or hot rolling, cold rolling, l0
Solution treatment is performed at a temperature of 00 to 1150°C, but if this temperature is less than 1000°C, the solid solution of the precipitates will not be sufficient and the austenite crystal grains will become fine.
Ductility and toughness deteriorate, and when solution treatment is performed at a temperature exceeding 1150°C, austenite crystal grains become coarse and the yield strength decreases significantly.

さらに、このような溶体化処理後に820〜900℃に
再加熱安定化熱処理するが、この姿定化熱処理は、その
後の加工において行なわれる溶接或いはNbaSn生成
熱処理時にCr炭窒堪物の結晶粒界析出を抑制し、延性
、靭性の劣化を小さくするのに有効である。
Furthermore, after such solution treatment, a stabilization heat treatment is performed at 820 to 900°C, but this shape stabilization heat treatment is performed during welding or NbaSn formation heat treatment performed in subsequent processing to remove the grain boundaries of the Cr-carbonitride material. It is effective in suppressing precipitation and reducing deterioration in ductility and toughness.

真空溶解により鋼(第1表のNo、1)を溶製し、鍛造
後、板厚30市に熱間圧延した。さらに、1100℃の
温度で溶体化処理を行った鋼板を供試板とし、安定化熱
処理温度と一269°Cの温度における破壊靭性Klc
値との関係を調査した。その結果第1図に示す。この供
試鋼板はいずれも安定化熱処理後、700℃×100時
間のNb3Sn生成熱処理が施されている。
Steel (No. 1 in Table 1) was produced by vacuum melting, forged, and then hot rolled to a plate thickness of 30 mm. Furthermore, a steel plate solution-treated at a temperature of 1100°C was used as a test plate, and the fracture toughness Klc at the stabilization heat treatment temperature and at a temperature of -269°C was determined.
We investigated the relationship with the value. The results are shown in Figure 1. All of these test steel plates were subjected to Nb3Sn generation heat treatment at 700° C. for 100 hours after stabilization heat treatment.

この第1図からも明らかなように、820〜900℃の
温度範囲で熱処理を行った鋼は、ト1b3S+r生成熱
処理後においても高い破壊靭性を示している。
As is clear from FIG. 1, the steel heat-treated in the temperature range of 820 to 900° C. exhibits high fracture toughness even after the heat treatment to form T1b3S+r.

これは、820〜900℃の温度に加熱することにより
、球状のNb炭窒化物が生成、安定化し、その後のNb
3Sn生成熱処理(700℃×100時間)による延性
、靭性を阻害するCr炭窒化物の粒界析出を抑制するた
めと考えられる。
This is because spherical Nb carbonitrides are generated and stabilized by heating to a temperature of 820 to 900°C, and the subsequent Nb
It is thought that this is to suppress grain boundary precipitation of Cr carbonitrides that inhibit ductility and toughness due to the 3Sn generation heat treatment (700° C. x 100 hours).

[実 施 例] 本発明に係るNbaSn生成熱処理後の極低温特性に侵
れ1こオーステナイト系ステンレス鋼の製造方法の実施
例を説明する。
[Example] An example of the method of manufacturing a single austenitic stainless steel having poor cryogenic properties after NbaSn generation heat treatment according to the present invention will be described.

実施例 第1表(1)に示す5種類の含有成分および含有割合の
鋼を真空溶解により溶製し、鍛造後、板厚30mmの閏
仮に熱間圧延した。
EXAMPLE Steel having the five types of components and content ratios shown in Table 1 (1) was produced by vacuum melting, forged, and then hot rolled into a 30 mm thick plate.

この鋼板を使用し、所定の熱処理、熱間加工を行い、さ
らに、700℃×100時間のNb5SI+生成熱処理
を行った後、引張り、破壊靭性試験片を採取し、−26
9℃の温度での試験に供した。
Using this steel plate, predetermined heat treatment and hot working were performed, and after further Nb5SI+ formation heat treatment was performed at 700°C for 100 hours, tensile and fracture toughness test pieces were taken.
It was subjected to a test at a temperature of 9°C.

また、板厚30mdt4板の一部を使用し、熱間圧延、
冷間圧延を行い、板厚1.5〜2 、0 mmの冷間圧
延鋼板を製造し、30mm材と同様の処理を行った後、
引張り試験片を採取し、−269℃の温度で試験を実施
した。
In addition, using a part of 4 plates with a thickness of 30 mdt, hot rolling,
After performing cold rolling to produce a cold rolled steel plate with a plate thickness of 1.5 to 2.0 mm, and performing the same treatment as the 30 mm material,
Tensile test specimens were taken and tested at a temperature of -269°C.

なお、透磁率は低透磁率針により測定した。Note that the magnetic permeability was measured using a low magnetic permeability needle.

第1表(1)のN011〜8は本発明に係る銅の製造方
法に使用する鋼と同一の鋼を用いて、製造条件(第1表
(2))を変化させたしのである。
Nos. 011 to 8 in Table 1 (1) were obtained by using the same steel as the steel used in the copper manufacturing method according to the present invention, but by changing the manufacturing conditions (Table 1 (2)).

N011.3.5.7材は本発明に係る鋼の製造方法を
用いて試作したものであり、No、2.4.6.8と比
較して、延性、靭性の著しい向上が認められる。
Material No. 11.3.5.7 was prototyped using the steel manufacturing method according to the present invention, and compared to No. 2.4.6.8, significant improvements in ductility and toughness were observed.

N089、IO材は同−鋼であるが、安定化熱処理が実
施されていないNo、 10材は、NO39材と比較し
て延性、靭性が劣っている。No、lI。
The No. 89 and IO materials are the same steels, but the No. 10 materials, which have not been subjected to stabilization heat treatment, are inferior in ductility and toughness compared to the No. 39 materials. No, lI.

I2材についても同様のことがいえる。The same can be said about I2 material.

マタ、No、 13、l 4 HハS US 304 
t、aテあり、Mo、Nbが含有されていないため、安
定化熱処理の有無に拘わらず、延性、靭性が低い。
Mata, No. 13, l 4 H HaS US 304
Since it has t and ate and does not contain Mo or Nb, its ductility and toughness are low regardless of the presence or absence of stabilizing heat treatment.

No、 l 5.16材は個々の成分範囲は満足してい
るが、Ni+0.5Mn+300+3ON>2/3(C
r+Mo+5i−8)を満足しないため、オーステナイ
ト中に強磁性体であるマルテンサイトが生成し、透磁率
が高くなっている。このマルテンサイト生成のため延性
、靭性が極めて低い。
No. l 5.16 material satisfies the individual component ranges, but Ni+0.5Mn+300+3ON>2/3(C
r+Mo+5i-8), martensite, which is a ferromagnetic material, is generated in austenite, resulting in high magnetic permeability. Due to this martensite formation, ductility and toughness are extremely low.

[発明の効果] 以上説明したように、本発明に係るNb3Sn生成熱処
理後の極低温特性に優れたオーステナイト系ステンレス
鋼の製造方法は上記の構成であるから、冷間加工および
Nb3Sn生成熱処理を行っても極低温特性に優れ、超
電導磁石の支持体に代表される極低温用構造材として好
適なオーステナイト系ステンレス鋼を製造することがで
きるという効果を有する。
[Effects of the Invention] As explained above, since the method for producing austenitic stainless steel having excellent cryogenic properties after Nb3Sn generation heat treatment according to the present invention has the above configuration, cold working and Nb3Sn generation heat treatment are performed. It has the effect of producing an austenitic stainless steel that has excellent cryogenic properties and is suitable for cryogenic structural materials such as supports for superconducting magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一296℃での破壊靭性・Klcと安定化処理
温度との関係を示す図である。 矛1図
FIG. 1 is a diagram showing the relationship between fracture toughness/Klc and stabilization treatment temperature at -296°C. Spear 1

Claims (2)

【特許請求の範囲】[Claims] (1)C0.03wt%以下、Si0.1〜2.0wt
%、Mn0.1〜20.0wt%、P0.025wt%
以下、S0.015wt%以下、Ni3〜15wt%、
Cr12〜20wt%、Mo0.5〜2.5wt%、N
b0.01〜0.18wt%、N0.05〜0.25w
t%を含有し、かつ、 Ni+0.5Mn+30C+30N >2/3(Cr+Mo+Si−8) を満足し、残部Feおよび不可避不純物からなる鋼塊ま
たは鋼片を熱間圧延或いは熱間圧延、冷間圧延を行い、
次いで、1000〜1150℃の温度において溶体化処
理を行った後、さらに、820〜900℃の温度に加熱
することを特徴とするNb_3Sn生成熱処理後の極低
温特性に優れたオーステナイト系ステンレス鋼の製造方
法。
(1) C0.03wt% or less, Si0.1-2.0wt
%, Mn0.1-20.0wt%, P0.025wt%
Below, S0.015wt% or less, Ni3 to 15wt%,
Cr12-20wt%, Mo0.5-2.5wt%, N
b0.01~0.18wt%, N0.05~0.25w
t% and satisfies Ni + 0.5Mn + 30C + 30N > 2/3 (Cr + Mo + Si - 8), and the remainder consists of Fe and unavoidable impurities, hot rolling, hot rolling, cold rolling. ,
Production of austenitic stainless steel with excellent cryogenic properties after Nb_3Sn formation heat treatment, which is characterized by performing solution treatment at a temperature of 1000 to 1150°C and then heating to a temperature of 820 to 900°C. Method.
(2)C0.03wt%以下、Si0.1〜2.0wt
%、Mn0.1〜20.0wt%、P0.025wt%
、S0.015wt%以下、Ni3〜15wt%、Cr
12〜20wt%、Mo0.5〜2.5wt%、Nb0
.01〜0.18wt%、N0.05〜0.25wt%
を含有し、さらに、 Ca、Ce、Zrのうちから選んだ1種または2種以上
0.001〜0.100wt% を含有し、かつ、 Ni+0.5Mn+30C+30N >2/3(Cr+Mo+Si−8) を満足し、残部Feおよび不可避不純物からなる鋼塊ま
たは鋼片を熱間圧延或いは熱間圧延、冷間圧延を行い、
次いで、1000〜1150℃の温度において溶体化処
理を行った後、さらに、820〜900℃の温度に加熱
することを特徴とするNb_3Sn生成熱処理後の極低
温特性に優れたオーステナイト系ステンレス鋼の製造方
法。
(2) C0.03wt% or less, Si0.1-2.0wt
%, Mn0.1-20.0wt%, P0.025wt%
, S0.015wt% or less, Ni3-15wt%, Cr
12-20wt%, Mo0.5-2.5wt%, Nb0
.. 01-0.18wt%, N0.05-0.25wt%
and further contains 0.001 to 0.100 wt% of one or more selected from Ca, Ce, and Zr, and satisfies Ni+0.5Mn+30C+30N>2/3(Cr+Mo+Si-8) Then, the steel ingot or billet consisting of the remaining Fe and unavoidable impurities is hot-rolled, hot-rolled, and cold-rolled,
Production of austenitic stainless steel with excellent cryogenic properties after Nb_3Sn formation heat treatment, which is characterized by performing solution treatment at a temperature of 1000 to 1150°C and then heating to a temperature of 820 to 900°C. Method.
JP27937686A 1986-11-22 1986-11-22 Nb (3) Method for producing austenitic stainless steel having excellent cryogenic properties after Sn formation heat treatment Expired - Lifetime JPH0629459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27937686A JPH0629459B2 (en) 1986-11-22 1986-11-22 Nb (3) Method for producing austenitic stainless steel having excellent cryogenic properties after Sn formation heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27937686A JPH0629459B2 (en) 1986-11-22 1986-11-22 Nb (3) Method for producing austenitic stainless steel having excellent cryogenic properties after Sn formation heat treatment

Publications (2)

Publication Number Publication Date
JPS63134627A true JPS63134627A (en) 1988-06-07
JPH0629459B2 JPH0629459B2 (en) 1994-04-20

Family

ID=17610281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27937686A Expired - Lifetime JPH0629459B2 (en) 1986-11-22 1986-11-22 Nb (3) Method for producing austenitic stainless steel having excellent cryogenic properties after Sn formation heat treatment

Country Status (1)

Country Link
JP (1) JPH0629459B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429688A (en) * 1992-02-27 1995-07-04 Barbosa; Celso A. Work hardened stainless steel for springs
WO1999032682A1 (en) * 1997-12-23 1999-07-01 Allegheny Ludlum Corporation Austenitic stainless steel including columbium
EP3133179A4 (en) * 2014-04-17 2018-03-21 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429688A (en) * 1992-02-27 1995-07-04 Barbosa; Celso A. Work hardened stainless steel for springs
WO1999032682A1 (en) * 1997-12-23 1999-07-01 Allegheny Ludlum Corporation Austenitic stainless steel including columbium
EP3133179A4 (en) * 2014-04-17 2018-03-21 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel and method for producing same

Also Published As

Publication number Publication date
JPH0629459B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US11114226B2 (en) Ultra-low cobalt iron-cobalt magnetic alloys
EP2832866A1 (en) (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
KR20200042279A (en) Medium-entropy alloys and Manufacturing method of the same
JPH0536481B2 (en)
JP2978427B2 (en) High Mn nonmagnetic steel for cryogenic use and manufacturing method
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JPS5942068B2 (en) High manganese non-magnetic steel for cryogenic temperatures
JPS63134627A (en) Manufacture of austenitic stainless steel having superior cryogenic characteristic after heat treatment for forming nb3sn
JP2013531130A (en) Ferritic stainless steel with high grain refinement performance and stable grain refinement performance and its production method
JP2007262582A (en) Superconducting magnetic component
US5725691A (en) Nickel aluminide alloy suitable for structural applications
JPH02205631A (en) Production of high-mn nonmagnetic steel excellent in very low temperature characteristic after formation and heat treatment of nb3sn
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JP2674137B2 (en) High permeability magnetic material
JPH0257668A (en) Extra low temperature use nonmagnetic austenitic stainless steel having excellent reheating resistance
JPS62222048A (en) Austenitic stainless steel excellent in very low temperature characteristic after ageing
JPH02247360A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and stress corrosion cracking resistance and its manufacture
CN112063919B (en) Duplex stainless steel
KR101560921B1 (en) Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same
JPH08269547A (en) Production of stainless steel plate excellent in cryogenic characteristic after superconducting material forming heat treatment
JPH07188865A (en) High-toughness stainless steel wire and its manufacture
JPH07216516A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPS58193347A (en) Austenite stainless steel excellent in cryogenic temperature characteristics
KR101560922B1 (en) Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same