JPH09262687A - Manufacture of rolled titanium clad steel plate - Google Patents

Manufacture of rolled titanium clad steel plate

Info

Publication number
JPH09262687A
JPH09262687A JP7423796A JP7423796A JPH09262687A JP H09262687 A JPH09262687 A JP H09262687A JP 7423796 A JP7423796 A JP 7423796A JP 7423796 A JP7423796 A JP 7423796A JP H09262687 A JPH09262687 A JP H09262687A
Authority
JP
Japan
Prior art keywords
content
titanium
weight
clad steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7423796A
Other languages
Japanese (ja)
Inventor
Hideaki Fukai
英明 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7423796A priority Critical patent/JPH09262687A/en
Publication of JPH09262687A publication Critical patent/JPH09262687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of manufacturing a wide or thick rolled titanium clad steel plate having excellent joining strength by an existing equipment without necessitating any excessive cost for the equipment. SOLUTION: A titanium clad steel plate is obtained by assembling a slab by inserting an extremely low carbon steel plate having the composition consisting of, by weight, 0.001-0.01% C in a base metal side and a α type titanium alloy plate having the composition consisting of <=0.25% Fe and <=0.15% contents specified by the formula [O]+1.1[C]+2.0[N]+[Al] of O, N, C, and Al in a clad plate side (where, [O], [C], [N], and [Al] respectively denote the O content, C content, N content, and Al content), and <=3.0% Al, as the intermediate member, between the base metal made of carbon steel and the clad plate made of titanium or titanium alloy, and rolling the assembled slab.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、優れた接合特性を
有する広幅または厚肉の圧延型チタンクラッド鋼板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wide-width or thick-rolled titanium clad steel sheet having excellent joining characteristics.

【0002】[0002]

【従来の技術】従来、圧延型チタンクラッド鋼板では、
その製造過程において、母材である炭素鋼と合せ材との
間に、Cu,Cu合金、Ni,Ni合金、極低炭素鋼、
あるいはこれらを組み合わせたものを中間材として用い
ている。
2. Description of the Related Art Conventionally, in rolling type titanium clad steel plates,
In the manufacturing process, Cu, Cu alloy, Ni, Ni alloy, ultra-low carbon steel, between the base carbon steel and the composite material,
Alternatively, a combination of these is used as an intermediate material.

【0003】これらの中間材は、母材および合せ材中に
含有される元素が拡散し、相手材との界面で脆化相ある
いは低融点相を形成することを抑制している。例えば、
チタンクラッド鋼板における極低炭素鋼の中間材は、母
材中に含有される炭素のチタン材への拡散を阻害し、T
iC等の化合物形成を抑制して接合界面での脆化を防
ぎ、優れた接合性を達成する効果を有している。
These intermediate materials prevent the elements contained in the base material and the composite material from diffusing and forming an embrittlement phase or a low melting point phase at the interface with the mating material. For example,
The intermediate material of the ultra-low carbon steel in the titanium clad steel plate inhibits the diffusion of carbon contained in the base material into the titanium material,
It has the effect of suppressing the formation of compounds such as iC to prevent embrittlement at the bonding interface and achieving excellent bondability.

【0004】例えば、特公昭57−55514号、特開
昭62−89588号、特開昭62−158584号、
特開昭62−197285号、特開昭62−22758
6号、特開昭63−56370号、特公平6−7596
4号等の公報に、その製造過程において母材である炭素
鋼と合せ材との間に、Cu、Cu合金、Ni、Ni合
金、極低炭素鋼、あるいはこれらを組み合わせたものを
中間材として適用し、スラブ組み立て、加熱、圧延を行
う方法が開示されている。
For example, JP-B-57-55514, JP-A-62-895588, JP-A-62-158584,
JP-A-62-197285, JP-A-62-22758
6, JP-A-63-56370, JP-B-6-7596
No. 4, etc. discloses that Cu, Cu alloy, Ni, Ni alloy, ultra low carbon steel, or a combination thereof, as an intermediate material, between carbon steel as a base material and a composite material in the manufacturing process. A method of applying, slab assembling, heating and rolling is disclosed.

【0005】さらに、特開平1−309791号公報に
は、母材側にフェライト系ステンレス鋼、マルテンサイ
ト系ステンレス鋼、Nb、Ta、Fe、Mo、Cr、V
およびNiのうち1種または2種以上を介在させ、合せ
材側にα型チタン合金またはα+β型チタン合金を介在
させることにより、接合性の優れたクラッド鋼板を製造
する方法が開示されている。これは、チタンのα安定化
元素を中間材に含有させることにより、母材側の中間材
に含有されるCr、Nb、Ta、Mo、V等のβ安定化
元素が合せ材に拡散して、合せ材界面近傍でβ相を増加
させ、圧延後の冷却過程でβ相が脆弱なω相に変態して
接合性の劣化を招くことを抑制することを意図するもの
であり、これにより接合性の低下を防止しようとするも
のである。
Further, in Japanese Patent Laid-Open No. 1-309791, ferritic stainless steel, martensitic stainless steel, Nb, Ta, Fe, Mo, Cr, V on the base metal side.
Also disclosed is a method for producing a clad steel sheet having excellent bondability by interposing one or more of Ni and Ni, and interposing an α-type titanium alloy or an α + β-type titanium alloy on the side of the bonding material. This is because when the α-stabilizing element of titanium is contained in the intermediate material, the β-stabilizing elements such as Cr, Nb, Ta, Mo and V contained in the intermediate material on the base metal side are diffused in the composite material. , It is intended to increase the β phase in the vicinity of the interface of the laminated material and suppress the transformation of the β phase into the fragile ω phase in the cooling process after rolling, resulting in deterioration of the bondability. It is intended to prevent deterioration of sex.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
中間材を用いることで化合物形成を抑制して優れた接合
強度を得る技術においても、その圧延時のスラブ加熱温
度に制限があって、比較的低温の圧延加熱温度とならざ
るを得ない。このため、チタンクラッド鋼板において
は、通常製造している3600mm幅材や50mm厚材
ですらスラブ加熱温度が低いために圧延機に対する負荷
が大きくなるという不都合が生じており、このため40
00mm幅を越えるような幅広材や70mmを越えるよ
うな厚肉のチタンクラッド鋼板の製造においては、圧延
機の能力およびスラブ素材の変形抵抗等の観点から現用
設備での製造は困難である。
However, even in the technique of suppressing the compound formation by using these intermediate materials to obtain excellent bonding strength, the slab heating temperature during rolling is limited, and the temperature is relatively low. There is no choice but to use the rolling heating temperature. For this reason, in the titanium clad steel plate, even the normally manufactured 3600 mm wide material and 50 mm thick material have a disadvantage that the load on the rolling mill becomes large because the slab heating temperature is low.
In the production of a wide material having a width of more than 00 mm and a titanium clad steel sheet having a thickness of more than 70 mm, it is difficult to produce it with the existing equipment from the viewpoint of the rolling mill capacity and the deformation resistance of the slab material.

【0007】つまり、現状の圧延設備を採用してチタン
クラッド鋼板を製造するに際して、Cuを中間材として
採用した場合には、圧延加熱温度が890℃以上である
とTiとCuとにより液相が形成され、圧延時に溶融が
前面および側面から飛散するという不都合が発生する。
また、Niを中間材として使用した場合には、TiとN
iとから構成される脆い金属間化合物が形成され、接合
強度を低下させる不都合がある。さらに、極低炭素鋼を
中間材として採用した場合には、当該中間材にも極微量
ではあるが炭素が含まれているので、圧延加熱温度をチ
タン材のβ変態点以上にすると、チタン材はより炭素の
拡散の速いBCC構造となり、TiCが形成されて接合
強度の低下につながることとなるため、β変態点温度未
満の圧延加熱温度にしなければならない。
That is, when Cu is used as an intermediate material in the production of a titanium clad steel sheet using the current rolling equipment, if Ti and Cu have a heating temperature of 890 ° C. or higher, a liquid phase is formed by Ti and Cu. It is formed, and there is an inconvenience that the melt is scattered from the front surface and the side surface during rolling.
Also, when Ni is used as an intermediate material, Ti and N
There is a disadvantage that a brittle intermetallic compound composed of i is formed and the joint strength is lowered. Furthermore, when ultra-low carbon steel is used as an intermediate material, the intermediate material also contains a small amount of carbon, so if the rolling heating temperature is set to the β transformation point of the titanium material or higher, the titanium material Has a BCC structure in which carbon diffuses more rapidly, TiC is formed, and this leads to a decrease in bonding strength. Therefore, the rolling heating temperature must be lower than the β transformation temperature.

【0008】また、合せ材側にα型チタン合金またはα
+β型チタン合金を介在させる方法においては、α型チ
タン合金の場合には不純物として含有されるFeのため
に圧延加熱温度を高温化した際にはβ相が多量に形成さ
れそのβ相の部分で、α+β型チタン合金の場合にはβ
相を含んでいるのでβ相の部分でC等の拡散により脆化
相が形成され接合特性の低下を招くという不都合が生じ
る。
Further, α-type titanium alloy or α is provided on the side of the mating material.
In the method of interposing + β-type titanium alloy, in the case of α-type titanium alloy, a large amount of β-phase is formed when the rolling heating temperature is raised due to Fe contained as an impurity, and the β-phase part is formed. And β for α + β type titanium alloys
Since it contains a phase, there is a disadvantage that the embrittlement phase is formed due to the diffusion of C and the like in the β phase portion and the bonding characteristics are deteriorated.

【0009】つまり、このような2重に中間材を挿入す
る方法においても、圧延加熱温度上昇によるβ相の体積
分率増加によって、脆化相をより多く形成するので、圧
延加熱温度に制限がある。
That is, even in the method of double-inserting the intermediate material, the embrittlement phase is formed more due to the increase in the volume fraction of the β phase due to the increase in the rolling heating temperature, so that the rolling heating temperature is limited. is there.

【0010】一方で、広幅あるいは厚肉のクラッド鋼板
を製造することは、溶接の省略や歩留まりの向上などの
メリットがある。しかしながら、上述したように現在の
スラブ加熱温度では、広幅化および厚肉化による圧延時
の変形抵抗の上昇による圧延荷重の増大により、現用の
圧延設備では製造不可能となる。また、たとえ圧延がで
きたとしても、各パスにおいて十分な圧下を加えること
ができず、圧延応力が低く合せ材が十分に塑性変形せ
ず、満足な接合強度が得られない不都合も生じる。
On the other hand, manufacturing a wide or thick clad steel plate has advantages such as omission of welding and improvement of yield. However, as described above, at the current slab heating temperature, the rolling load increases due to the increase in deformation resistance during rolling due to the widening and thickening, so that it cannot be manufactured with the current rolling equipment. Further, even if rolling can be performed, sufficient reduction cannot be applied in each pass, rolling stress is low, and the laminated material does not plastically deform sufficiently, resulting in inconvenience that satisfactory joining strength cannot be obtained.

【0011】本発明はかかる事情に鑑みてなされたもの
であって、過大な設備負担なく現有設備にて優れた接合
強度を有する広幅または厚肉の圧延チタンクラッド鋼板
が得られる圧延型チタンクラッド鋼板の製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and a rolled titanium clad steel plate capable of obtaining a wide or thick rolled titanium clad steel plate having excellent bonding strength with existing equipment without excessive equipment burden. It aims at providing the manufacturing method of.

【0012】[0012]

【課題を解決するための手段】本発明者らは、優れた接
合強度を有する広幅または厚肉のチタンクラッド鋼板の
製造において、圧延機を改造することなく現用の圧延能
力でこれらを製造することが可能な方法について詳細な
検討を重ねた結果、中間材として母材である炭素鋼側に
C含有量を制御した極低炭素鋼板を、合せ材であるチタ
ン側にFe、O,C、NおよびAlの含有量を制御して
合せ材より高い変態点を有するα型チタン合金板を母材
と合わ材との間に挿入してスラブを組み立てることによ
り、圧延加熱温度を従来より高くしても脆化相等の接合
強度に悪影響を及ぼすような相が厚く形成されることを
抑制することができ、かつ圧延加熱温度が高温化される
ことにより変形抵抗を低下させて圧延することが可能な
ことを見出した。
DISCLOSURE OF THE INVENTION In the production of wide or thick titanium clad steel sheets having excellent joint strength, the inventors of the present invention can produce these with current rolling capacity without modifying the rolling mill. As a result of repeated detailed studies on possible methods, an ultra-low carbon steel sheet with controlled C content on the carbon steel side as the base material and Fe, O, C, N on the titanium side as the joint material And, by controlling the Al content and inserting an α-type titanium alloy plate having a transformation point higher than that of the laminated material between the base material and the laminated material to assemble the slab, the rolling heating temperature can be made higher than before. Also, it is possible to suppress the formation of a thick phase such as an embrittlement phase that adversely affects the bonding strength, and it is possible to reduce deformation resistance by rolling at a higher heating temperature for rolling. I found that.

【0013】本発明はこのような知見に基づいてなされ
たものであり、炭素鋼からなる母材とチタンまたはチタ
ン合金からなる合せ材との間に、中間材として、母材側
にC含有量が0.001〜0.01重量%の極低炭素鋼
板を、合せ材側にFe含有量が0.25重量%以下でか
つO、N、CおよびAlの含有量が[O]+1.1
[C]+2.0[N]+0.1[Al](ただし、
[O]、[C]、[N]、[Al]はそれぞれO含有
量、C含有量、N含有量,Alの含有量を示す)で0.
15重量%以上かつAl含有量が3.0重量%以下であ
るα型チタン合金板を挿入してスラブを組み立て、圧延
することを特徴とするチタンクラッドクラッド鋼板の製
造方法を提供するものである。
The present invention has been made on the basis of such findings, and as an intermediate material, a C content on the base material side is provided between a base material made of carbon steel and a composite material made of titanium or a titanium alloy. Is an ultra low carbon steel sheet having a Fe content of 0.001 to 0.01% by weight and a Fe content of 0.25% by weight or less and a content of O, N, C and Al on the side of the laminated material is [O] +1.1.
[C] +2.0 [N] +0.1 [Al] (however,
[O], [C], [N], and [Al] represent O content, C content, N content, and Al content, respectively.
Provided is a method for producing a titanium clad clad steel plate, which comprises assembling and rolling an slab by inserting an α-type titanium alloy plate having an Al content of 15% by weight or more and an Al content of 3.0% by weight or less. .

【0014】また、本発明は、上記方法において、スラ
ブ加熱温度T℃を、890≦T≦885+150[O]
+160[C]+300[N]+20[Al]−20
[Fe](ただし、[Fe]はFe含有量を示す。)の
温度域として圧延することを特徴とするチタンクラッド
鋼板の製造方法を提供するものである。
Further, according to the present invention, in the above method, the slab heating temperature T ° C. is 890 ≦ T ≦ 885 + 150 [O]
+160 [C] +300 [N] +20 [Al] -20
The present invention provides a method for producing a titanium clad steel sheet, which comprises rolling in a temperature range of [Fe] (where [Fe] represents the Fe content).

【0015】さらに、上記方法において、中間材とし
て、母材側にC含有量が0.001〜0.01重量%の
極低炭素鋼板を、合せ材側にFe含有量が0.10重量
%未満でかつO、N、CおよびAlの含有量が[O]+
1.1[C]+2.0[N]+0.1[Al](ただ
し、[O]、[C]、[N]、[Al]はそれぞれO含
有量、C含有量、N含有量,Alの含有量を示す)で
0.15重量%以上かつAl含有量が3.0重量%以下
であるα型チタン合金板を用いることを特徴とするチタ
ンクラッド鋼板の製造方法を提供するものである。
Further, in the above method, as an intermediate material, an ultra low carbon steel sheet having a C content of 0.001 to 0.01% by weight on the base material side and an Fe content of 0.10% by weight on the laminated material side. And content of O, N, C and Al is less than [O] +
1.1 [C] +2.0 [N] +0.1 [Al] (however, [O], [C], [N], and [Al] are O content, C content, N content, The present invention provides a method for producing a titanium clad steel sheet, characterized by using an α-type titanium alloy plate having an Al content of 0.15 wt% or more and an Al content of 3.0 wt% or less. is there.

【0016】さらにまた、上記方法において、合せ材側
に設置される中間材の厚さをtmm、母材、前記2種類
の中間材、および合せ材合計の厚さをTmmとした場
合、t/T≦0.01であることを特徴とするチタンク
ラッド鋼板の製造方法を提供するものである。
Further, in the above method, when the thickness of the intermediate material installed on the side of the laminated material is tmm, and the total thickness of the base material, the above two kinds of intermediate materials, and the laminated material is Tmm, t / A method for producing a titanium clad steel sheet, wherein T ≦ 0.01.

【0017】[0017]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明の圧延型チタンクラッド鋼板は、炭素鋼
からなる母材とチタンまたはチタン合金からなる合せ材
との間に、中間材として、母材側にC含有量が0.00
1〜0.01重量%の極低炭素鋼板を、合せ材側にFe
含有量が0.25重量%以下でかつO、N、CおよびA
lの含有量が[O]+1.1[C]+2.0[N]+
0.1[Al](ただし、[O]、[C]、[N]、
[Al]はそれぞれO含有量、C含有量、N含有量,A
lの含有量を示す)で0.15重量%以上かつAl含有
量が3.0重量%以下であるα型チタン合金板を挿入し
てスラブを組み立て、圧延することにより得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The rolled titanium clad steel sheet of the present invention has a C content of 0.00 on the base material side as an intermediate material between the base material made of carbon steel and the composite material made of titanium or titanium alloy.
An ultra low carbon steel sheet of 1 to 0.01% by weight, Fe
Content is 0.25% by weight or less and O, N, C and A
The content of 1 is [O] +1.1 [C] +2.0 [N] +
0.1 [Al] (however, [O], [C], [N],
[Al] is O content, C content, N content, A
It is obtained by inserting an α-type titanium alloy plate having an Al content of 0.15% by weight or more and an Al content of 3.0% by weight or less, and assembling and rolling the slab.

【0018】中間材として母材である炭素鋼側にC含有
量が0.001〜0.01重量%の極低炭素鋼板を用い
ることは、もう一つの中間材および合せ材に対する、厚
く脆化相を形成する多量のCの拡散を抑制し、かつ特性
劣化を招かない程度の極薄のTiCの形成によって、同
じく接合特性を低下させる脆化相であるTiFeの形成
を抑制する効果を有する。
The use of an ultra-low carbon steel sheet having a C content of 0.001 to 0.01% by weight on the carbon steel side as a base material as an intermediate material makes it thicker and more brittle than another intermediate material and a laminated material. By suppressing the diffusion of a large amount of C forming a phase and by forming an extremely thin TiC to the extent that characteristics are not deteriorated, it is possible to suppress the formation of TiFe, which is an embrittlement phase that also deteriorates the bonding characteristics.

【0019】もう一つの中間材として合せ材側にFe含
有量0.25重量%以下でかつO、N、CおよびAlの
含有量が[O]+1.1[C]+2.0[N]+0.1
[Al](ただし、[O]、[C]、[N]、[Al]
はそれぞれO含有量、C含有量、N含有量,Alの含有
量を示す)で0.15重量%以上かつAl含有量が3.
0重量%以下であるα型チタン合金板を用いることは、
この材料が合せ材より高い変態点を有しているので、圧
延加熱温度を高温化した際に合せ材が変態点を越えてC
の拡散の速い結晶構造(この場合にはBCC構造)に変
態した場合にも、該中間材はその変態点を越えずに接合
強度に悪影響を及ぼす元素の拡散速度の遅い細密重点の
結晶構造(この場合にはHCP構造)のままであり、接
合特性の低下につながるCが合せ材および合せ材側の中
間材へ拡散することを防止し、圧延加熱温度の高温化の
場合にも接合界面での脆化相形成を抑制し、優れた接合
特性を達成する効果を有する。
As another intermediate material, the Fe content is 0.25% by weight or less and the contents of O, N, C and Al are [O] +1.1 [C] +2.0 [N] on the side of the composite material. +0.1
[Al] (however, [O], [C], [N], [Al]
Indicates O content, C content, N content, and Al content, respectively, and is 0.15% by weight or more and the Al content is 3.
Using an α-type titanium alloy plate of 0% by weight or less
Since this material has a higher transformation point than the laminated material, when the rolling heating temperature is raised, the laminated material exceeds the transformation point and C
In the case where the intermediate material is transformed into a crystal structure with a fast diffusion (in this case, a BCC structure), the intermediate material does not exceed the transformation point, and the fine-grained crystal structure with a slow diffusion rate of an element that has a bad influence on the bonding strength ( In this case, the HCP structure remains as it is, and it is possible to prevent C, which leads to deterioration of the joining characteristics, from diffusing into the laminated material and the intermediate material on the laminated material side, and also at the joint interface even when the heating temperature for rolling is increased. It has the effect of suppressing the formation of an embrittlement phase and achieving excellent bonding characteristics.

【0020】この場合、極低炭素鋼の中間材のC含有量
が0.01重量%より大であるともう一つの中間材との
界面に脆弱なTiC相を厚く形成し、0.001重量%
未満であるとTiCによるTiFe形成抑制効果が発揮
されず、TiFeの形成によって接合特性の低下を招
く。
In this case, if the C content of the intermediate material of the ultra-low carbon steel is more than 0.01% by weight, a brittle TiC phase is formed thickly at the interface with another intermediate material, and 0.001% by weight is obtained. %
If the amount is less than this, the effect of suppressing TiFe formation by TiC is not exerted, and the formation of TiFe causes deterioration of the bonding characteristics.

【0021】また、もう一つの中間材を構成するα型チ
タン合金のFe含有量が0.25重量%より大である
と、β相を生成し始める温度を低下させ、圧延加熱温度
を高温化した際に多量のβ相が生成される。このため、
Cの拡散が促進されてTiCが厚く形成され、接合特性
の低下を招く。また、O、N、CおよびAlの含有量が
[O]+1.1[C]+2.0[N]+0.1[Al]
で0.15重量%未満であると、合せ材側に挿入する中
間材の変態点を充分に高温化することができず、広幅材
あるいは厚肉材を製造するために加熱温度を高温化した
際に、その中間材がCの拡散の速いBCC構造になるた
め、TiCが厚く形成されて接合特性の低下を招く。ま
た、Al含有量が3.0重量%よりも大であると、圧延
中にα型チタン合金にAlによるBasal Texture が発達
して加工性の低下を招く。
If the Fe content of the α-type titanium alloy constituting the other intermediate material is more than 0.25% by weight, the temperature at which β phase begins to be generated is lowered and the rolling heating temperature is increased. When this is done, a large amount of β phase is generated. For this reason,
The diffusion of C is promoted and TiC is thickly formed, resulting in deterioration of bonding characteristics. Further, the content of O, N, C and Al is [O] +1.1 [C] +2.0 [N] +0.1 [Al]
If it is less than 0.15% by weight, the transformation point of the intermediate material to be inserted on the side of the laminated material cannot be sufficiently raised, and the heating temperature is raised in order to produce a wide material or a thick material. At this time, since the intermediate material has a BCC structure in which C diffuses quickly, TiC is formed thickly, resulting in deterioration of bonding characteristics. Further, if the Al content is more than 3.0% by weight, a Basal Texture due to Al develops in the α-type titanium alloy during rolling, resulting in deterioration of workability.

【0022】このため、極低炭素鋼の中間材のC含有量
を0.001〜0.01重量%、α型チタン合金の中間
材のFe含有量を0.25重量%以下、O、N、Cおよ
びAlの含有量を[O]+1.1[C]+2.0[N]
+0.1[Al]で0.15重量%以上、かつAl含有
量を3.0重量%以下とする。また、α型チタン合金の
中間材のFe含有量が0.10重量%未満であると一層
接合特性が改善される。なお、α型チタン合金の中間材
のO、NおよびC含有量はそれぞれ0.4重量%程度以
下であることが好ましい。
Therefore, the C content of the intermediate material of ultra-low carbon steel is 0.001 to 0.01% by weight, the Fe content of the intermediate material of α-type titanium alloy is 0.25% by weight or less, O and N. , C and Al content is [O] +1.1 [C] +2.0 [N]
+0.1 [Al] is 0.15% by weight or more and the Al content is 3.0% by weight or less. Further, when the Fe content of the intermediate material of the α-type titanium alloy is less than 0.10% by weight, the joining characteristics are further improved. The contents of O, N and C in the intermediate material of the α-type titanium alloy are each preferably about 0.4% by weight or less.

【0023】また、スラブ加熱温度T℃を、890≦T
≦885+150[O]+160[C]+300[N]
+20[Al]−20[Fe](ただし、[Fe]はF
e含有量を示す。)に設定することにより、従来よりも
高温に制御することとなり、脆化相の生成を抑制しつ
つ、圧延時の変形抵抗を低下させて圧延時における圧延
機の負荷を軽減することを可能にするとともに、さらに
1パスで素材に大圧下を加えることを可能とし、これに
よって、より接合特性を改善する効果がある。
The slab heating temperature T ° C. is 890 ≦ T
≦ 885 + 150 [O] +160 [C] +300 [N]
+20 [Al] -20 [Fe] (where [Fe] is F
e content is shown. ), The temperature will be controlled to a higher temperature than before, making it possible to reduce the deformation resistance during rolling and reduce the load on the rolling mill during rolling while suppressing the formation of the embrittlement phase. In addition, it is possible to apply a large reduction to the material in a single pass, which has the effect of further improving the joining characteristics.

【0024】スラブ加熱温度が890℃未満では圧延時
の変形抵抗を十分荷軽減することができず、また(88
5+150[O]+160[C]+300[N]+20
[Al]−20[Fe])℃より高温であると、合せ材
側に挿入するα型チタン合金も変態点を超えて、Cの拡
散の速いBCC構造となるため、TiCが界面に厚く形
成されて、接合性の低下を招く。
If the slab heating temperature is less than 890 ° C., the deformation resistance during rolling cannot be sufficiently reduced, and (88
5 + 150 [O] +160 [C] +300 [N] +20
When the temperature is higher than [Al] -20 [Fe]) ° C, the α-type titanium alloy inserted on the side of the laminated material also exceeds the transformation point and has a BCC structure in which C diffuses quickly, so that TiC is formed thick at the interface. As a result, the bondability is deteriorated.

【0025】このため、スラブ加熱温度T℃は、890
≦T≦885+150[O]+160[C]+300
[N]+20[Al]−20[Fe]の範囲であること
が好ましい。
Therefore, the slab heating temperature T ° C. is 890
≦ T ≦ 885 + 150 [O] +160 [C] +300
It is preferably in the range of [N] +20 [Al] -20 [Fe].

【0026】合せ材側に設置される中間材の厚さをtm
m、母材、前記2種類の中間材、および合せ材合計の厚
さをTmmとした場合に、t/Tが0.01より大であ
ると、中間材として挿入されるα型チタン合金が比較的
加工性が低いので、クラッド鋼板自体の加工性が低下す
る。このためt/T≦0.01とすることが好ましい。
The thickness of the intermediate material installed on the side of the laminated material is tm
When the total thickness of m, the base material, the above two kinds of intermediate materials, and the combined material is Tmm, and t / T is larger than 0.01, the α-type titanium alloy inserted as the intermediate material is Since the workability is relatively low, the workability of the clad steel plate itself is reduced. Therefore, it is preferable that t / T ≦ 0.01.

【0027】[0027]

【実施例】以下、本発明の具体的な実施例について説明
する。 (実施例1)表1に示す符号Aの化学組成を有し、厚さ
350mmの炭素鋼を母材とし、表2に示す符号Dの化
学組成を有し、厚さ50mmのチタン材を合せ材として
用いた。また母材側の中間材として表1に示す符号B1
〜B5の組成のうちB3の組成を有する厚さ1mmのも
のを用い、合せ材側の中間材として表2に示す符号C1
〜C7の組成のうちC3の組成を有する厚さ1mmのも
のを用いた。これら母材、合せ材および中間材を用い
て、1800mm幅×1800mm長、4500幅×1
800mm長、および1800mm幅×3600mm長
のスラブを組立て、これらスラブから(35+5)mm
厚×4200mm幅×7000mm長および17800
mm長、ならびに(70+10)mm厚×4200幅×
7000mm長のクラッド鋼板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. (Example 1) A carbon material having a symbol A shown in Table 1 and a carbon steel having a thickness of 350 mm was used as a base material, a chemical composition having a symbol D shown in Table 2 was used, and a titanium material having a thickness of 50 mm was combined. Used as a material. Further, as the intermediate material on the base material side, reference numeral B1 shown in Table 1
Of the composition B3 to B5 having a thickness of 1 mm, the reference numeral C1 shown in Table 2 is used as the intermediate material on the side of the laminated material.
.About.C7 having a thickness of 1 mm having a composition of C3 was used. 1800 mm width × 1800 mm length, 4500 width × 1 using these base material, laminated material and intermediate material
Assemble 800 mm long and 1800 mm wide x 3600 mm long slabs and (35 + 5) mm from these slabs
Thickness x 4200mm width x 7000mm length and 17800
mm length, and (70 + 10) mm thickness x 4200 width x
A clad steel plate having a length of 7,000 mm was manufactured.

【0028】また、合せ材側の高変態点を有する中間材
の有効性を確認するために、中間材を極低炭素鋼のみと
して、1800mm幅×1800mm長および1800
mm幅×3600mm長のスラブから、それぞれ(35
+5)mm厚×4200mm幅×7000mm長および
(70+10)mm厚×4200幅×7000mm長の
クラッド鋼板を製造した。
Further, in order to confirm the effectiveness of the intermediate material having a high transformation point on the side of the laminated material, only the ultra-low carbon steel is used as the intermediate material and the width is 1800 mm width × 1800 mm length and 1800 mm.
From the slab of mm width x 3600 mm length, each (35
+5) mm thickness × 4200 mm width × 7000 mm length and (70 + 10) mm thickness × 4200 width × 7000 mm length of clad steel plate were manufactured.

【0029】さらに、圧延時の荷重の比較のために、従
来からの方法にて1800mm幅×1800mm長のス
ラブから(35+5)mm厚×3200mm幅×850
0mm長のクラッド鋼板を製造した。
Further, in order to compare the loads during rolling, a slab of 1800 mm width × 1800 mm length was used to measure (35 + 5) mm thickness × 3200 mm width × 850 by a conventional method.
A 0 mm long clad steel plate was produced.

【0030】スラブの組立方法、スラブ寸法、スラブ加
熱温度およびクラッド鋼板の寸法を表3に示す。このと
きの予定したパススケジュールでの圧延の可否、接合特
性を劣化させるTiC層の圧延まま状態での厚さ、圧延
まま状態での剪断強度、およびR/t=1に側曲げなら
びに裏曲げをした際の接合界面でのクラックの発生の有
無を表4に示す。
Table 3 shows the method of assembling the slab, the slab size, the slab heating temperature and the size of the clad steel plate. At this time, it is possible to perform rolling according to the planned pass schedule, the thickness of the TiC layer that deteriorates the joining characteristics in the as-rolled state, the shear strength in the as-rolled state, and side bending and back-bending at R / t = 1. Table 4 shows whether or not cracks were generated at the joint interface during the heating.

【0031】これらの表に示すように、本発明内の成分
組成を有する中間材を用い、本発明に従って製造され、
かつ好ましいスラブ加熱温度に設定した場合には、圧延
により4000mm幅超えおよび70mm厚超えのチタ
ンクラッド鋼板が製造可能であった。また、TiC層厚
は薄く、剪断強度は20kgf/mm2 以上と高く、曲
げ試験においても割れの発生はなく、4000mm幅超
えおよび70mm厚超えのチタンクラッド鋼板の接合特
性は、どの評価方法においても良好なものであった。
As shown in these tables, using an intermediate material having the component composition within the present invention, manufactured according to the present invention,
Further, when the preferable slab heating temperature was set, it was possible to manufacture a titanium clad steel sheet having a width exceeding 4000 mm and a thickness exceeding 70 mm by rolling. In addition, the TiC layer thickness is thin, the shear strength is as high as 20 kgf / mm 2 or more, cracks do not occur even in the bending test, and the joining characteristics of the titanium clad steel sheet over 4000 mm width and over 70 mm thickness are evaluated by any evaluation method. It was good.

【0032】(実施例2)表1に示す符号Aの化学組成
を有し、厚さ350mmの炭素鋼を母材とし、表2に示
す符号Dの化学組成を有し、厚さ50mmのチタン材を
合せ材として用いた。また、母材側の中間材として表1
に示す符号B1〜B5の組成を有する厚さ1mmのもの
を用い、合せ材側の中間材として表2に示す符号C1〜
C7の組成を有する厚さ1mmのものを用いた。表5に
示す条件でスラブを組立て、スラブ加熱温度を920℃
として、1800mm幅×1800mm長のスラブから
(35+5)mm厚×4200mm幅×7200mm長
のクラッド鋼板を製造した。この際に、圧延加熱温度を
高温化したため、どの条件においても変形抵抗が低く、
圧延可能であった。
Example 2 Titanium having a thickness of 50 mm and a chemical composition of A shown in Table 1 and using carbon steel having a thickness of 350 mm as a base material and having a chemical composition of D shown in Table 2 The material was used as a laminated material. In addition, as an intermediate material on the base material side, Table 1
1 to 1 mm in thickness having a composition of B1 to B5 shown in FIG.
A 1 mm thick one having a composition of C7 was used. Assemble the slab under the conditions shown in Table 5, and set the slab heating temperature to 920 ° C.
As a result, a clad steel plate having a (35 + 5) mm thickness × 4200 mm width × 7200 mm length was manufactured from a 1800 mm width × 1800 mm length slab. At this time, since the rolling heating temperature was raised, the deformation resistance was low under all conditions,
It could be rolled.

【0033】この際における、接合特性を劣化させるT
iC層の圧延まま状態での厚さ、圧延まま状態での剪断
強度、R/t=1における側曲げおよび裏曲げをした際
の接合界面でのクラックの発生の有無を表5にあわせて
示す。
At this time, T which deteriorates the joining characteristics
Table 5 also shows the thickness of the iC layer in the as-rolled state, the shear strength in the as-rolled state, and the presence or absence of cracks at the joint interface when side bending and back bending at R / t = 1. .

【0034】表5に示すように、本発明内の成分組成を
有する中間材を用い、本発明に従って製造した場合に
は、TiC層厚は薄く、剪断強度は20kgf/mm2
以上と高く、曲げ試験においても割れの発生はなく、4
000mm幅超えおよび70mm厚超えのチタンクラッ
ド鋼板の接合特性は、どの評価方法においても良好なも
のであった。また、合せ材側の中間材のFe濃度が0.
10重量%未満であると、剪断強度は25kgf/mm
2 以上となり、一層接合特性が改善されることが確認さ
れた。
As shown in Table 5, when an intermediate material having the component composition within the present invention was used and produced according to the present invention, the TiC layer thickness was thin and the shear strength was 20 kgf / mm 2.
High as above, no cracks occurred in the bending test, and 4
The joining characteristics of the titanium clad steel plates having a width of more than 000 mm and a thickness of more than 70 mm were good in any evaluation method. Further, the Fe concentration of the intermediate material on the side of the laminated material is 0.
If it is less than 10% by weight, the shear strength is 25 kgf / mm.
It was confirmed that it was 2 or more, and the bonding characteristics were further improved.

【0035】(実施例3)表1に示す符号Aの化学組成
を有し、厚さ350mmの炭素鋼を母材とし、表2に示
す符号Dの化学組成を有し、厚さ50mmのチタン材を
クラッド材として用いた。また母材側の中間材として表
1に示す符号B3の組成を有する厚さ1mmのものを用
い、合せ材側の中間材として表2に示す符号C3の組成
を有するものを用いた。これら母材、合せ材および中間
材を用いてスラブを組立て、圧延加熱温度を920℃と
して、1800mm幅×1800mm長のスラブから
(35+5)mm厚×4200mm幅×7200mm長
のクラッド鋼板を製造した。このときα型チタンの中間
材の厚さを1mm、3mm、5mm、10mmとして、
その厚さとクラッド鋼板の加工性との関係を、R/t=
1における側曲げならびに裏曲げをした際の接合界面で
のクラックの発生の有無、およびクラッド鋼板の加工時
の接合強度評価方法である第45回塑性加工連合講演会
にて報告されたスリット付き表曲げ試験によって調査し
た。その結果を表6に示す。なお、圧延に関しては圧延
加熱温度を高温化したため、どの条件においても変形抵
抗が低く、予定した圧延パススケジュールにて圧延可能
であった。
(Embodiment 3) Titanium having a chemical composition of code A shown in Table 1, a carbon steel having a thickness of 350 mm as a base material, having a chemical composition of code D shown in Table 2 and having a thickness of 50 mm. The material was used as a clad material. Further, as the intermediate material on the base material side, the one having a thickness of 1 mm having the composition of the code B3 shown in Table 1 was used, and as the intermediate material on the side of the laminated material, the one having the composition of the code C3 shown in Table 2 was used. A slab was assembled using the base material, the laminated material, and the intermediate material, and the rolling heating temperature was set to 920 ° C. to produce a (35 + 5) mm thickness × 4200 mm width × 7200 mm long clad steel plate from a 1800 mm width × 1800 mm length slab. At this time, the thickness of the intermediate material of α-type titanium is set to 1 mm, 3 mm, 5 mm and 10 mm,
The relation between the thickness and the workability of the clad steel plate is R / t =
The presence or absence of cracks at the joint interface during side bending and back bending in No. 1 and the table with slits reported at the 45th Plastic Working Union Lecture Meeting, which is a joint strength evaluation method during processing of clad steel sheets. It was investigated by a bending test. Table 6 shows the results. Regarding rolling, since the rolling heating temperature was raised, the deformation resistance was low under all conditions, and rolling was possible with the planned rolling pass schedule.

【0036】表6から明らかなように、合せ材側に設置
される中間材の厚さをtmm、母材、2種類の中間材、
および合せ材合計の厚さをTmmとした場合に、t/T
≦0.01であれば、製造されたクラッド鋼板の加工性
は、側曲げ、裏曲げおよびスリット付き表曲げ試験いず
れの評価方法においても良好であった。以上の結果から
明らかなように、本発明の条件内であれば、現用の設備
にて接合特性がに優れた広幅および厚肉のクラッド鋼板
の製造が可能となる。
As is clear from Table 6, the thickness of the intermediate material installed on the side of the laminated material is tmm, the base material, two kinds of intermediate materials,
And when the total thickness of the laminated materials is Tmm, t / T
If ≦ 0.01, the workability of the manufactured clad steel sheet was good in any of the evaluation methods of side bending, back bending, and front bending test with slit. As is clear from the above results, within the conditions of the present invention, it is possible to manufacture a wide-width and thick-walled clad steel plate with excellent joining characteristics using the current equipment.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】なお、上述の885+150[O]+16
0[C]+300[N]+20[Al]−20[Fe]
式は、成分組成と変態点との関係を詳細に検討した結果
から得られた経験的な式である。また、[O]+1.1
[C]+2.0[N]+0.1[Al]で0.15重量
%以上という条件についても同様にして得られたもので
ある。さらに上記実施例では合せ材として純チタンを用
いたが、これに限るものではなく、Grade7やTi
−6Al−4VのようなTi合金を用いることができ
る。
The above-mentioned 885 + 150 [O] +16
0 [C] +300 [N] +20 [Al] -20 [Fe]
The formula is an empirical formula obtained from the result of detailed examination of the relationship between the component composition and the transformation point. Also, [O] +1.1
The same was obtained under the condition of [C] +2.0 [N] +0.1 [Al] and 0.15 wt% or more. Further, although pure titanium is used as the bonding material in the above-mentioned embodiment, it is not limited to this, and Grade 7 or Ti may be used.
A Ti alloy such as -6Al-4V can be used.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
過大な設備負担なく現有設備にて優れた接合強度を有す
る広幅または厚肉の圧延チタンクラッド鋼板を製造する
ことができる。
As described above, according to the present invention,
It is possible to produce a wide or thick rolled titanium clad steel sheet having excellent bonding strength with existing equipment without excessive equipment burden.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素鋼からなる母材とチタンまたはチタ
ン合金からなる合せ材との間に、中間材として、母材側
にC含有量が0.001〜0.01重量%の極低炭素鋼
板を、合せ材側にFe含有量が0.25重量%以下でか
つO、N、CおよびAlの含有量が[O]+1.1
[C]+2.0[N]+0.1[Al](ただし、
[O]、[C]、[N]、[Al]はそれぞれO含有
量、C含有量、N含有量,Alの含有量を示す)で0.
15重量%以上かつAl含有量が3.0重量%以下であ
るα型チタン合金板を挿入してスラブを組み立て、圧延
することを特徴とするチタンクラッドクラッド鋼板の製
造方法。
1. An ultra-low carbon having a C content of 0.001 to 0.01% by weight on the base material side as an intermediate material between a base material made of carbon steel and a composite material made of titanium or a titanium alloy. The steel sheet has a Fe content of 0.25% by weight or less and a content of O, N, C and Al of [O] +1.1 on the side of the laminated material.
[C] +2.0 [N] +0.1 [Al] (however,
[O], [C], [N], and [Al] represent O content, C content, N content, and Al content, respectively.
A method for producing a titanium clad clad steel sheet, comprising inserting an α-type titanium alloy plate having an Al content of 15% by weight or more and an Al content of 3.0% by weight or less to assemble a slab and roll the slab.
【請求項2】 スラブ加熱温度T℃を、890≦T≦8
85+150[O]+160[C]+300[N]+2
0[Al]−20[Fe](ただし、[Fe]はFe含
有量を示す。)の温度域として圧延することを特徴とす
る請求項1に記載のチタンクラッド鋼板の製造方法。
2. The slab heating temperature T ° C. is 890 ≦ T ≦ 8
85 + 150 [O] +160 [C] +300 [N] +2
The method for producing a titanium clad steel sheet according to claim 1, wherein the rolling is performed in a temperature range of 0 [Al] -20 [Fe] (where [Fe] represents the Fe content).
【請求項3】 中間材として、母材側にC含有量が0.
001〜0.01重量%の極低炭素鋼板を、合せ材側に
Fe含有量が0.10重量%未満でかつO、N、Cおよ
びAlの含有量が[O]+1.1[C]+2.0[N]
+0.1[Al](ただし、[O]、[C]、[N]、
[Al]はそれぞれO含有量、C含有量、N含有量,A
lの含有量を示す)で0.15重量%以上かつAl含有
量が3.0重量%以下であるα型チタン合金板を用いる
ことを特徴とする請求項1または請求項2に記載のチタ
ンクラッド鋼板の製造方法。
3. An intermediate material having a C content of 0.
The ultra low carbon steel sheet of 001 to 0.01% by weight has a Fe content of less than 0.10% by weight and an O, N, C and Al content of [O] +1.1 [C] on the side of the composite material. +2.0 [N]
+0.1 [Al] (however, [O], [C], [N],
[Al] is O content, C content, N content, A
The titanium according to claim 1 or 2, wherein an α-type titanium alloy plate having an Al content of 0.15 wt% or more and an Al content of 3.0 wt% or less is used. Manufacturing method of clad steel sheet.
【請求項4】 合せ材側に設置される中間材の厚さをt
mm、母材、前記2種類の中間材、および合せ材合計の
厚さをTmmとした場合、t/T≦0.01であること
を特徴とする請求項1ないし請求項3のいずれか1項記
載のチタンクラッド鋼板の製造方法。
4. The thickness of the intermediate material installed on the side of the laminated material is t
mm, the base material, the two kinds of intermediate materials, and the total thickness of the laminated materials are Tmm, t / T ≦ 0.01. 4. A method for manufacturing a titanium clad steel sheet according to the item.
JP7423796A 1996-03-28 1996-03-28 Manufacture of rolled titanium clad steel plate Pending JPH09262687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7423796A JPH09262687A (en) 1996-03-28 1996-03-28 Manufacture of rolled titanium clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7423796A JPH09262687A (en) 1996-03-28 1996-03-28 Manufacture of rolled titanium clad steel plate

Publications (1)

Publication Number Publication Date
JPH09262687A true JPH09262687A (en) 1997-10-07

Family

ID=13541363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7423796A Pending JPH09262687A (en) 1996-03-28 1996-03-28 Manufacture of rolled titanium clad steel plate

Country Status (1)

Country Link
JP (1) JPH09262687A (en)

Similar Documents

Publication Publication Date Title
US9765415B2 (en) Low density steel having good drawability
EP1790737B1 (en) A high strength steel excellent in uniform elongation properties and method of manufacturing the same
EP4276206A1 (en) Welded joint and automobile component
EP4144471A1 (en) Projection weld joint and projection welding method
EP3851550A1 (en) Ferritic stainless steel sheet, method for producing same and al plated stainless steel sheet
WO1997046347A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
EP4276216A1 (en) Welding joint and automobile component
JPS62227597A (en) Thin two-phase stainless steel strip for solid phase joining
KR20000023754A (en) Alloy foil for liquid-phase diffusion bonding bondable in oxidizing atmosphere
JP3357226B2 (en) Fe-Cr alloy with excellent ridging resistance and surface properties
JP2000204425A (en) High strength and high ductility alpha + beta type titanium alloy
EP3831597A1 (en) Low-density clad steel sheet having excellent formability and fatigue property and manufacturing method therefor
JP4905024B2 (en) Ferritic stainless steel sheet with high strength of spot welded joint and method for producing the same
JP3511272B2 (en) Manufacturing method of high Young&#39;s modulus steel sheet
JP3209081B2 (en) Manufacturing method of rolled titanium clad steel sheet
JPH09262687A (en) Manufacture of rolled titanium clad steel plate
JP5070866B2 (en) Hot-rolled steel sheet and spot welded member
JPH09206961A (en) Manufacture of rolling titanium clad steel plate
JPH0694579B2 (en) Corrosion resistant Ni-Cr alloy with excellent bending workability
JP2003138349A (en) Ferritic stainless steel sheet having excellent deep drawability, and production method therefor
JP2691456B2 (en) Manufacturing method of composite type damping steel sheet
JP3355199B2 (en) Arc spraying wire
EP3929322A1 (en) Ferrite stainless steel sheet, production method for same, and stainless steel sheet having al vapor-deposited layer
JP2737819B2 (en) Fe-Cr alloy with excellent ridging resistance
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability