JP2691456B2 - Manufacturing method of composite type damping steel sheet - Google Patents

Manufacturing method of composite type damping steel sheet

Info

Publication number
JP2691456B2
JP2691456B2 JP1216066A JP21606689A JP2691456B2 JP 2691456 B2 JP2691456 B2 JP 2691456B2 JP 1216066 A JP1216066 A JP 1216066A JP 21606689 A JP21606689 A JP 21606689A JP 2691456 B2 JP2691456 B2 JP 2691456B2
Authority
JP
Japan
Prior art keywords
steel
insert metal
steel sheet
manufacturing
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1216066A
Other languages
Japanese (ja)
Other versions
JPH0381137A (en
Inventor
千恵人 松本
研一 篠田
裕一 肥後
知明 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1216066A priority Critical patent/JP2691456B2/en
Publication of JPH0381137A publication Critical patent/JPH0381137A/en
Application granted granted Critical
Publication of JP2691456B2 publication Critical patent/JP2691456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼板と鋼板との間に挟んだインサートメタ
ルを焼鈍により両鋼板に拡散接合させるときに与える面
圧を余り大きくする必要のない複合型制振鋼板の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention does not need to increase the surface pressure applied when diffusion-bonding an insert metal sandwiched between steel sheets to both steel sheets by annealing. The present invention relates to a method for manufacturing a composite type vibration damping steel plate.

〔従来の技術〕[Conventional technology]

近年、騒音公害の問題や静粛な環境を求める要求から
制振材料に対する関心が高まり、その適用範囲も拡大し
つつある。
In recent years, due to the problem of noise pollution and the demand for a quiet environment, interest in vibration damping materials has increased, and its application range is expanding.

このような状況において、優れた耐熱性や溶接性を具
備し、また熱処理も可能で高強度部材への適用も可能な
複合型制振鋼板として、重ね合わされた鋼板と鋼板との
間にほぼ均一に分布して存在する微小な幅を有するイン
サートメタルと上記両鋼板との間の拡散による治金学的
な接合を主たる接合要因とする接合部を形成し且つ該接
合部以外は治金学的に接合しない状態で当接しており、
該当接面と同じ平面における接合部の切断面の合計の該
鋼板の面積に対する割合(以下、全接合部断面積の割合
と言うことがある)が0.5〜50%である複合型制振鋼板
が、本出願人によつて提案されており、優れた制振性能
を有すること等が確かめられている(特開昭63−246235
号参照)。そしてこの複合型制振鋼板の製造方法とし
て、鋼板と鋼板との間に微小な幅を有するインサートメ
タルをほぼ均一な分布状態で挟み、鋼板間に面圧を与え
た状態で不活性ガス雰囲気下で各鋼板とインサートメタ
ルとの間で拡散が起こる温度で焼鈍を行う複合型制振鋼
板の製造方法も上記と共に提案されており、充分な接合
強度を有すること等が確かめられている(特開昭63−24
6238号参照)。
In such a situation, as a composite type vibration damping steel plate that has excellent heat resistance and weldability, can be heat treated, and can be applied to high-strength members, it is almost uniform between the superposed steel plates. A metallurgical bond formed mainly by a metallurgical bond due to diffusion between the insert metal having a minute width and distributed between the two steel plates and the metallurgical part except the metallurgical bond. Abuts without joining to
A composite vibration-damping steel sheet in which the ratio of the total of the cut surfaces of the joints on the same plane as the contact surface to the area of the steel sheet (hereinafter sometimes referred to as the proportion of the total cross-sectional area of the joint) is 0.5 to 50% Have been proposed by the present applicant and confirmed to have excellent vibration damping performance (Japanese Patent Laid-Open No. 63-246235).
No.). As a method for manufacturing this composite type vibration-damping steel sheet, insert metal with a small width is sandwiched between the steel sheets in a substantially uniform distribution state, and a surface pressure is applied between the steel sheets under an inert gas atmosphere. In the above, a method for manufacturing a composite vibration-damping steel sheet in which annealing is performed at a temperature at which diffusion occurs between each steel sheet and the insert metal has been proposed together with the above, and it has been confirmed that the steel sheet has sufficient bonding strength (JP 63-24
See 6238).

上記の複合型制振鋼板の製造方法においては、インサ
ートメタルの種類として、脆い合金等を生成せず拡散に
よつて鋼板と接合し得るCu,Ni,Ag等の非鉄金属の選択が
良いとされているが特に限定されておらず、実状におい
てはコスト面やスクラツプ処理の面からして、鋼が最も
使い易い金属であつた。そして、その鋼の種類として
は、安価でインサートメタルの形状である薄い形状に加
工し易い軟鋼、例えば低炭素アルミキルド鋼やチタンキ
ルド鋼等が用いられていた。
In the method of manufacturing the composite vibration-damping steel plate, as the type of insert metal, it is considered that nonferrous metal such as Cu, Ni, Ag or the like that can be joined to the steel plate by diffusion without generating brittle alloy etc. is good. However, it is not particularly limited, and in reality, steel is the most easy-to-use metal in terms of cost and scraping. As the type of the steel, a mild steel which is inexpensive and can be easily processed into a thin shape which is the shape of insert metal, such as low carbon aluminum killed steel or titanium killed steel, has been used.

しかし、上記の低炭素アルミキルド鋼やチタンキルド
鋼等の軟鋼をインサートメタルとして用いた場合、充分
な接合強度を得るためには大きな面圧を必要とし、その
ため次のように製造し難い面があつた。即ち、先に述べ
た製造方法の如く、鋼板面に面圧を付与しながら焼鈍を
行つてインサートメタルと鋼板との間に拡散を生じさせ
て接合するのであるが、工業的規模で生産を行う場合に
は大きな面圧を付与するための加圧装置を含む製造設備
の大型化を必要としたり、或は設備が小型なままの場合
には接合強度が不充分なものになつたり、長時間の焼鈍
を必要とする等の欠点があつた。
However, when using mild steel such as the above-mentioned low carbon aluminum killed steel and titanium killed steel as the insert metal, a large surface pressure is required to obtain sufficient bonding strength, so that there is a surface that is difficult to manufacture as follows. . That is, as in the manufacturing method described above, annealing is performed while applying surface pressure to the steel sheet surface to cause diffusion between the insert metal and the steel sheet to join, but production is performed on an industrial scale. In some cases, it may be necessary to increase the size of the manufacturing equipment including a pressurizing device to apply a large surface pressure, or if the equipment remains small, the bonding strength may become insufficient, and it may take a long time. However, there are drawbacks such as requiring annealing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、上記従来技術の欠点を解消し、鋼板と鋼板
との間に挟んだインサートメタルを焼鈍により両鋼板に
拡散接合させて複合型制振鋼板を製造する際に、焼鈍時
に与える面圧を余り大きくする必要がないようにするこ
とを課題とする。
The present invention eliminates the above-mentioned drawbacks of the prior art, and when an insert metal sandwiched between steel plates is diffuse-bonded to both steel plates by annealing to produce a composite vibration-damping steel plate, a surface pressure applied during annealing. The problem is to make it not necessary to make it too large.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等が上記課題を解決するために行つた検討の
過程と共に本発明を説明する。
The present invention will be described together with the process of investigations conducted by the present inventors to solve the above problems.

先ず、加圧しながら焼鈍する工程におけるインサート
メタルと鋼板との挙動を詳細に調査考察した。その結
果、次のような知見が得られた。
First, the behavior of the insert metal and the steel sheet in the step of annealing while pressurizing was investigated in detail. As a result, the following findings were obtained.

加圧しながら焼鈍すると、先ず初期においてインサー
トメタルと鋼板との界面において、双方に塑性変形が生
じて表面の凹凸が潰され、界面に存在する間隙が小さく
なつて密着度合いが増して行く。更に焼鈍が進むと、双
方の金属原子が相手側に拡散すると共に、上記の如く小
さくなつた間隙が次第に埋まり、遂には間隙が消滅して
インサートメタルと鋼板とは完全に接合する。ここで言
う表面の凹凸とは、インサートメタルや鋼板のマクロな
変形によるものだけでなく、表面粗さと同じレベルのミ
クロな凹凸も含むものであり、工業的に得られる殆んど
の材料のどれにも存在するものである。
When annealed while applying pressure, first, at the interface between the insert metal and the steel sheet, plastic deformation occurs in both of them, the unevenness of the surface is crushed, the gaps existing at the interface are reduced, and the degree of adhesion increases. As the annealing further progresses, both metal atoms diffuse to the other side, and the small gap as described above gradually fills, and finally the gap disappears and the insert metal and the steel plate are completely joined. The surface irregularities referred to here include not only those caused by macroscopic deformation of insert metal and steel plates, but also microscopic irregularities at the same level as the surface roughness. Is also present.

このような知見からすれば、インサートメタルと鋼板
との接合をより強固で確実なものにするためには、充分
な拡散が生じるよう例えば極めて長時間焼鈍を行うこと
が先ず考えられるが、これは生産性の低下を招くため、
むしろ表面の凹凸の塑性変形を促進して密着度合いを高
めることが肝要であると考えられる。このように凹凸の
変形を促進するための方法の一つは面圧を高めることで
あるが、これは先に述べたように製造設備の大型化等を
招くこととなり、課題の解決にはならない。
From such knowledge, in order to make the joining of the insert metal and the steel plate stronger and more reliable, first, for example, annealing for an extremely long time may be considered so that sufficient diffusion occurs. Because it causes a decrease in productivity,
Rather, it is considered important to promote plastic deformation of surface irregularities and increase the degree of adhesion. Thus, one of the methods for promoting the deformation of the unevenness is to increase the surface pressure, but this leads to an increase in the size of the manufacturing equipment as described above, which does not solve the problem. .

従つて前記課題を解決するためには、鋼板及び/又は
インサートメタルとして塑性変形して凹凸が潰され易い
材料を選定することが重要になる。ところが鋼板の種類
は複合型制振鋼板の用途等により決定されるものであつ
て、上記観点だけで選定することは実際上難しい。従つ
て、残るインサートメタルの材質を適正なもの、即ち熱
間での変形応力が小さなものに選ぶことが、前記課題を
解決するための極めて効果的手段であるとの考えに到達
した。
Therefore, in order to solve the above-mentioned problems, it is important to select a material such as a steel plate and / or an insert metal that is likely to be plastically deformed so that the unevenness is easily crushed. However, the type of steel plate is determined by the application of the composite type vibration damping steel plate, etc., and it is practically difficult to select it from the above viewpoint alone. Therefore, it has been considered that selecting an appropriate material for the remaining insert metal, that is, one having a small deformation stress during hot working is an extremely effective means for solving the above problems.

本発明は、以上に述べた考察に基づいて更に検討を重
ねて適正な材質となるようにインサートメタルの組成を
究明して成されたものである。
The present invention has been made through further studies based on the above-described considerations and investigating the composition of the insert metal so as to obtain an appropriate material.

本発明においても、鋼板と鋼板との間に微小な幅を有
するインサートメタルを全接合部断面積の割合が所定割
合となるようにほぼ均一な分布状態で挟み、鋼板間に面
圧を与えた状態で不活性雰囲気下に各鋼板とインサート
メタルとの間で拡散が起こる温度で焼鈍を行う点は、従
来の複合型制振鋼板の製造方法と同様である。
Also in the present invention, the insert metal having a minute width is sandwiched between the steel plates in a substantially uniform distribution state so that the ratio of the cross-sectional area of the entire joint is a predetermined ratio, and the surface pressure is applied between the steel plates. In this state, annealing is performed in an inert atmosphere at a temperature at which diffusion occurs between each steel sheet and the insert metal, as in the conventional method for manufacturing a composite vibration-damping steel sheet.

本発明の特徴は、インサートメタルとして、重量%で
C≦0.010%,Si≦0.01%,Mn≦0.15%,P≦0.01%,S≦0.0
1%,N≦0.010%であつて且つC+N≦0.012%であり、
残部がFe及び不可避的不純物から成る鋼のインサートメ
タルを用いる点にある。
The feature of the present invention is that, as an insert metal, in weight%, C ≦ 0.010%, Si ≦ 0.01%, Mn ≦ 0.15%, P ≦ 0.01%, S ≦ 0.0.
1%, N ≦ 0.010% and C + N ≦ 0.012%,
The balance is the use of steel insert metal consisting of Fe and unavoidable impurities.

以下に、インサートメタルとして用いられる鋼として
上記に示した組成の限定理由を述べる。
The reasons for limiting the composition shown above as steel used as insert metal will be described below.

Cは侵入型固溶元素であり、高温における変形応力の
増大に最も影響する元素の一つである。このため、Cの
含有量を出来るだけ低めることが有効であり、高温にお
ける変形応力を充分低下させるためには、0.010%以下
にする必要がある。
C is an interstitial solid solution element, and is one of the elements that most affects the increase in deformation stress at high temperatures. Therefore, it is effective to reduce the content of C as much as possible, and in order to sufficiently reduce the deformation stress at high temperature, it is necessary to set it to 0.010% or less.

Nは鋼を溶製するときに大気より混入する1種の不純
物であるが、Cと同様に微量の含有量で変形応力を増大
させる元素である。このため、Nの含有量を出来るだけ
低めることが有効であり、高温における変形応力を充分
に低下させるためには、0.010%以下にする必要があ
る。
N is one kind of impurities mixed in from the atmosphere when steel is melted, but, like C, it is an element that increases the deformation stress with a small amount of content. Therefore, it is effective to reduce the content of N as much as possible, and in order to sufficiently reduce the deformation stress at high temperature, it is necessary to set it to 0.010% or less.

ここにおいて、CとNは同等の影響を及ぼす元素であ
るため、どちらか一方の含有量を低下させただけでは、
充分に変形応力を低めることは出来ない。このため、C
+Nの含有量は0.012%以下とする必要がある。
Here, since C and N are elements having the same influence, if the content of either one is lowered,
It is not possible to sufficiently reduce the deformation stress. Therefore, C
The content of + N must be 0.012% or less.

PとSとは、通常鋼に含まれる不純物であり、これら
の元素も変形応力を高める。このため、出来るだけ含有
量を低めることが望ましく、それぞれ0.01%以下にする
必要がある。
P and S are impurities usually contained in steel, and these elements also increase the deformation stress. Therefore, it is desirable to reduce the content as much as possible, and it is necessary to make the content 0.01% or less.

Siは、変形応力を増加させる元素であるばかりでなく
酸化し易い元素であるため、焼鈍においてインサートメ
タルと鋼板との界面に酸化物を形成して元素拡散の障害
となつて接合性を低下させる。このため、出来るだけ含
有量を低めることが望ましく、0.01%以下にする必要が
ある。
Since Si is an element that not only increases the deformation stress but also easily oxidizes, it forms an oxide at the interface between the insert metal and the steel sheet during annealing, which impedes element diffusion and reduces the bondability. . Therefore, it is desirable to reduce the content as much as possible, and it is necessary to set it to 0.01% or less.

Mnも、変形応力を増加させる元素であるが、Siよりそ
の影響は小さいため、Siほど低含有量に規制する必要は
ないが、変形応力を低めて接合性を向上させるために
は、0.15%以下にする必要がある。
Mn is also an element that increases the deformation stress, but its effect is smaller than Si, so it is not necessary to restrict it to a lower content than Si, but 0.15% is required to reduce the deformation stress and improve the bondability. Must be:

その他、鋼中に含まれる元素についても出来るだけ含
有量を低めることが望ましいが、通常の製鋼において含
有される程度であれば、特に限定する必要はない。
In addition, although it is desirable to reduce the content of elements contained in steel as much as possible, it is not particularly limited as long as it is contained in ordinary steelmaking.

〔実施例〕〔Example〕

以下に実施例,比較例を挙げて本発明に係る複合型制
振鋼板の製造方法を更に具体的に説明する。
Hereinafter, the method for manufacturing the composite vibration-damping steel sheet according to the present invention will be described more specifically with reference to Examples and Comparative Examples.

高周波溶解炉で第1表に示す化学組成の鋼5種を溶製
してそれぞれ30kgの鋼塊とした後、熱間鍛造,熱間圧
延,冷間圧延の各工程を通して、板厚0.2mmの薄板5種
を製造した。この各薄板を切断して2.0mm角のチツプ状
の薄片を作り、これをそれぞれインサートメタルとし
た。第1表に示すNo.の鋼のうち、IIIは(C+N)の含
有量の点で、IVはC,Si,Mn及び(C+N)の含有量の点
で、VはTi混入の点で、それぞれ本発明法において規定
するインサートメタルの組成外のものである。
In a high-frequency melting furnace, five types of steel with the chemical composition shown in Table 1 were melted into 30 kg ingots, respectively, and then hot forged, hot rolled, and cold rolled through the steps of 0.2 mm in thickness. Five types of thin plates were manufactured. Each thin plate was cut into 2.0 mm square chip-shaped thin pieces, which were used as insert metals. Among the No. steels shown in Table 1, III is the content of (C + N), IV is the content of C, Si, Mn and (C + N), V is the content of Ti, Each is outside the composition of the insert metal specified in the method of the present invention.

一方、転炉にて第2表に示す化学組成の低炭素鋼,炭
素工具鋼の2種の鋼を溶製し、連続鋳造にてスラブとし
た後、それぞれを熱間圧延,冷間圧延,剪断の各工程を
通して、板厚1.0mm,幅600mm,長さ1000mmの鋼板2種を製
造した。
On the other hand, two types of steel, low carbon steel and carbon tool steel having the chemical compositions shown in Table 2 were melted in a converter and made into slabs by continuous casting, and then hot rolling, cold rolling, Two types of steel plates having a plate thickness of 1.0 mm, a width of 600 mm and a length of 1000 mm were manufactured through the respective shearing steps.

上記の鋼板の表面を脱脂洗浄した後、この鋼板の上に
先に述べたNo.Iの鋼のインサートメタルを1m2当り約20
00個の割合でほぼ均一に分散させて散布し、この上に脱
脂洗浄した上記と同種の鋼板を重ねて一組の未接合の複
合制振鋼板積層体(以下、未接合積層体と言う)を得
た。このようにして各インサートメタルを用いて低炭素
鋼板及び炭素工具鋼板の各種毎に5組、合計10組の未接
合積層体を重ね、焼鈍炉内で最上組の鋼板の上に3500kg
の重錘を載せて面圧(1m2当り5833kg)を付与しながら
焼鈍した。この焼鈍は約150℃/時間の昇温速度,900℃
×5時間の均熱加熱,約50℃/時間の冷却の熱履歴で行
つた(このような場合、従来は通常1m2当り8750kgの重
錘を使用するか、加熱時間を10時間にしていた)。また
焼鈍雰囲気は5%H2+95%N2とした。以上のような条件
で、面圧を付与しながら焼鈍を行うことで、インサート
メタルと各鋼板との間の拡散接合を行つた。
After degreasing and cleaning the surface of the above steel sheet, insert metal of No. I steel mentioned above on this steel sheet at about 20 per 1 m 2.
A set of unbonded composite vibration-damping steel plate laminates (hereinafter referred to as unbonded laminates) by stacking the above-mentioned types of steel plates that have been degreased and washed on top of this Got In this way, using each insert metal, 5 sets for each type of low carbon steel plate and carbon tool steel plate, a total of 10 sets of unbonded laminates were stacked, and 3500 kg was placed on the top set of steel plates in the annealing furnace.
Was annealed while applying a surface pressure (5833 kg per 1 m 2 ) with the weight of No. 3 placed. This annealing is about 150 ℃ / hour, 900 ℃
× 5 hours of soaking and heating at a heating history of about 50 ° C / hour (In such a case, conventionally, a weight of 8750 kg per 1 m 2 was used or heating time was 10 hours. ). The annealing atmosphere was 5% H 2 + 95% N 2 . Diffusion bonding between the insert metal and each steel sheet was performed by annealing while applying surface pressure under the above conditions.

上記の工程で得られた複合型制振鋼板(以下、単に複
合鋼板と言うことがある)について、接合の度合いを評
価するため第1図(イ),(ロ)に示す幅25mmのT字型
試験片を用いた引張試験法により、接合強度を測定し
た。その結果を第3表に示す。なお、接合強度の測定に
際してはインサートメタル1個当りの接合強度が測定で
きるようにした。
Regarding the composite vibration-damping steel plate obtained in the above process (hereinafter sometimes simply referred to as composite steel plate), a T-shape with a width of 25 mm shown in Fig. 1 (a) and (b) to evaluate the degree of joining The bonding strength was measured by a tensile test method using a mold test piece. Table 3 shows the results. When measuring the joining strength, the joining strength per insert metal was measured.

この結果から明らかなように、従来の低炭素アルミキ
ルド鋼や、低炭素チタンキルド鋼をインサートメタルに
用いたものに比べて、本発明法のインサートメタルを用
いた実施例では、明らかに接合強度が高いことが判る。
As is clear from this result, in comparison with the conventional low carbon aluminum killed steel or the one using low carbon titanium killed steel as the insert metal, in the example using the insert metal of the present invention method, the joining strength is obviously higher. I understand.

なお、これらの実施例,比較例において得られた複合
鋼板の制振性については、第2図に示す装置の支柱フレ
ーム1に制振性測定対象物2を糸3で懸垂保持しておい
て回転自在なハンマー4を水平状態から回転落下させて
その打撃音をマイクロホン5で受音しアンプ6で音圧レ
ベルを測定した結果も第3表に示すが、鋼板の材質毎に
実施例と比較例とを音圧レベルで比較すると両者間には
差は殆んどない。そして、参考例1,2として示した単一
の鋼板に比べて本発明法で得られた複合制振鋼板の音圧
レベルは著しく低く、制振鋼板としての性能も充分に有
していることが確認された。
Regarding the vibration damping properties of the composite steel plates obtained in these Examples and Comparative Examples, the vibration damping property measurement object 2 was suspended and held by the thread 3 on the column frame 1 of the device shown in FIG. Table 3 also shows the sound pressure level measured by the microphone 6 by receiving the impact sound of the rotatable hammer 4 by rotating and dropping it from the horizontal state, and comparing it with the example for each material of the steel plate. Comparing the example with the sound pressure level, there is almost no difference between the two. The sound pressure level of the composite vibration-damping steel plate obtained by the method of the present invention is significantly lower than that of the single steel plate shown as Reference Examples 1 and 2, and has sufficient performance as the vibration-damping steel plate. Was confirmed.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く本発明に係る複合型制振鋼板の製造
方法よれば、インサートメタルとして特定組成の鋼を用
いることにより、鋼板と鋼板との間にインサートメタル
を挟んで焼鈍して拡散接合させるときに、大きな面圧を
付与したり、極めて長時間の焼鈍を行うなどの必要がな
く、強固で確実な接合を行うことが出来る。このような
本発明は、工業的規模で複合制振鋼板を製造する上で極
めて有用なものである。
As described above in detail, according to the method for manufacturing the composite type vibration-damping steel sheet according to the present invention, by using the steel having the specific composition as the insert metal, the insert metal is sandwiched between the steel sheets and annealed for diffusion bonding. At times, it is not necessary to apply a large surface pressure or anneal for an extremely long time, and strong and reliable joining can be performed. The present invention as described above is extremely useful for producing a composite vibration-damping steel sheet on an industrial scale.

【図面の簡単な説明】[Brief description of the drawings]

第1図は複合鋼板の接合強度を測定するための試験片の
形状を示す図であり、(イ)は正面図で(ロ)は側面
図、第2図は打音の音圧レベルを測定する装置の斜視図
である。 図面中 1……支柱 2……制振性測定対象物 3……糸 4……ハンマー 5……マイクロホン 6……アンプ
FIG. 1 is a diagram showing the shape of a test piece for measuring the bonding strength of a composite steel sheet, (a) is a front view, (b) is a side view, and FIG. 2 is a sound pressure level of tapping sound. It is a perspective view of the apparatus which does. In the drawing 1 ... Support post 2 ... Vibration damping measurement object 3 ... Thread 4 ... Hammer 5 ... Microphone 6 ... Amplifier

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼板と鋼板との間に微小な幅を有するイン
サートメタルをほぼ均一な分布状態で挟み、鋼板間に面
圧を与えた状態で不活性ガス雰囲気下で各鋼板とインサ
ートメタルとの間で拡散が起こる温度で焼鈍を行つて複
合型制振鋼板を製造するに当り、インサートメタルとし
て、重量%でC≦0.010%,Si≦0.01%,Mn≦0.15%,P≦
0.01%,S≦0.01%,N≦0.010%であつて且つC+N≦0.0
12%であり、残部がFe及び不可避的不純物から成る鋼の
インサートメタルを用いることを特徴とする複合型制振
鋼板の製造方法。
1. An insert metal having a small width is sandwiched between steel sheets in a substantially uniform distribution state, and each steel sheet and the insert metal are placed under an inert gas atmosphere in a state where a surface pressure is applied between the steel sheets. When manufacturing a composite vibration-damping steel sheet by annealing at a temperature at which diffusion occurs between C, 0.0%, C ≦ 0.010%, Si ≦ 0.01%, Mn ≦ 0.15% and P ≦ as insert metal.
0.01%, S ≦ 0.01%, N ≦ 0.010% and C + N ≦ 0.0
A method for producing a composite vibration-damping steel sheet, characterized by using an insert metal of steel containing 12% and the balance being Fe and inevitable impurities.
JP1216066A 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet Expired - Lifetime JP2691456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216066A JP2691456B2 (en) 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216066A JP2691456B2 (en) 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet

Publications (2)

Publication Number Publication Date
JPH0381137A JPH0381137A (en) 1991-04-05
JP2691456B2 true JP2691456B2 (en) 1997-12-17

Family

ID=16682740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216066A Expired - Lifetime JP2691456B2 (en) 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet

Country Status (1)

Country Link
JP (1) JP2691456B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325716A (en) * 2005-05-24 2006-12-07 Aso Seiyaku Kk Adhesive plaster with magnet
JP6015557B2 (en) * 2013-05-21 2016-10-26 株式会社豊田中央研究所 Bonding material, manufacturing method thereof, and member bonding method

Also Published As

Publication number Publication date
JPH0381137A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
JP6586012B2 (en) Cold rolled steel sheet for enamel and enamel products
CA2916206A1 (en) Clad alloy substrates and method for making same
US6413651B1 (en) Composite metal coil or plate and its manufacturing method
WO2006068948A1 (en) Titanium braze foil with a zirconium layer
JP2004522582A (en) Composite aluminum sheet
JP2691456B2 (en) Manufacturing method of composite type damping steel sheet
JP2681395B2 (en) Manufacturing method of composite type damping steel sheet
JPH0765131B2 (en) Heat-resistant copper alloy for heat exchangers with excellent hard brazing properties
TWI626093B (en) Titanium composite and titanium for hot rolling
JP3798219B2 (en) Joined body and joining method of iron-based alloy members
JP3017236B2 (en) Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
JP6848991B2 (en) Titanium material for hot rolling
JP2649590B2 (en) Manufacturing method of Fe-Al alloy thin plate
JP3209081B2 (en) Manufacturing method of rolled titanium clad steel sheet
JP2844136B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
JP2005264316A (en) Aluminum alloy sheet for laminated metal mold
JP2639876B2 (en) Clad steel sheet, method for producing the same, and safe made of clad steel sheet
JPS63243225A (en) Production of cold rolled steel sheet having excellent resistance to cracking by brazing
RU2080973C1 (en) Nickel-base alloy for manufacture of welding wire
JP3256360B2 (en) Ni alloy clad stainless steel sheet
JP3358680B2 (en) Method for producing wire rod of Ni-Ti alloy
JPS63246238A (en) Vibration-damping metallic plate and manufacture thereof
JPH0814013B2 (en) Copper-plated steel sheet with excellent weld crack resistance and its manufacturing method
JPH0135915B2 (en)
JPH0557458A (en) Manufacture of composite damping metallic plate