JP2681395B2 - Manufacturing method of composite type damping steel sheet - Google Patents

Manufacturing method of composite type damping steel sheet

Info

Publication number
JP2681395B2
JP2681395B2 JP1216067A JP21606789A JP2681395B2 JP 2681395 B2 JP2681395 B2 JP 2681395B2 JP 1216067 A JP1216067 A JP 1216067A JP 21606789 A JP21606789 A JP 21606789A JP 2681395 B2 JP2681395 B2 JP 2681395B2
Authority
JP
Japan
Prior art keywords
steel
insert metal
steel sheet
temperature
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1216067A
Other languages
Japanese (ja)
Other versions
JPH0381138A (en
Inventor
千恵人 松本
研一 篠田
裕一 肥後
知明 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1216067A priority Critical patent/JP2681395B2/en
Publication of JPH0381138A publication Critical patent/JPH0381138A/en
Application granted granted Critical
Publication of JP2681395B2 publication Critical patent/JP2681395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、重ね合わされた鋼板と鋼板とがその間にほ
ぼ均一に分布したインサートメタルとの間の拡散により
冶金学的に接合されて成る複合型制振鋼板を、それが加
工時に熱処理(焼入れ焼戻し)を受けた後も充分な接着
強度を有するように製造することの出来る複合型制振鋼
板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a composite in which metal sheets are metallurgically bonded by diffusion between superposed steel sheets and insert metal in which the steel sheets are substantially evenly distributed therebetween. The present invention relates to a method for producing a composite type vibration-damping steel plate capable of producing a type vibration-damping steel plate so as to have sufficient adhesive strength even after being subjected to heat treatment (quenching and tempering) during processing.

〔従来の技術〕[Conventional technology]

近年、騒音公害の問題や静粛な環境を求める要求から
制振材料に対する関心が高まり、その適用範囲も拡大し
つつある。
In recent years, due to the problem of noise pollution and the demand for a quiet environment, interest in vibration damping materials has increased, and its application range is expanding.

このような状況において、優れた耐熱性や溶接性を具
備し、また熱処理も可能で高強度部材への適用も可能な
複合型制振鋼板として、重ね合わされた鋼板と鋼板との
間にほぼ均一に分布して存在する微小な幅を有するイン
サートメタルと上記両鋼板との間の拡散による冶金学的
な接合を主たる接合要因とする接合部を形成し且つ該接
合部以外は冶金学的に接合しない状態で当接しており、
該当接面と同じ平面における接合部の切断面の合計が該
鋼板の面積に対する割合(以下、全接合部断面積の割合
と言うことがある)が0.5〜50%である複合型制振鋼板
が、本出願人によつて提案されており、優れた制振性能
を有する等ことが確かめられている(特開昭63−246235
号参照)。そしてこの複合型制振鋼板の製造法として、
鋼板と鋼板との間に微小な幅を有するインサートメタル
をほぼ均一な分布状態で挟み、鋼板間に面圧を与えた状
態で不活性ガス雰囲気下に各鋼板とインサートメタルと
の間で拡散が起こる温度で焼鈍を行う複合型制振鋼板の
製造法も上記と共に提案されており、充分な接合強度を
有する等のことが確かめられている(特開昭63−246238
号参照)。そしてこの複合型制振鋼板は熱処理が可能で
あるため、鋼板として特殊鋼を用いるとダイヤモンドカ
ツターやチツプソーなどの台金,歯車類等の制振性と同
時に強靭性をも要求される用途に適用可能である特徴を
有している。
In such a situation, as a composite type vibration damping steel plate that has excellent heat resistance and weldability, can be heat treated, and can be applied to high-strength members, it is almost uniform between the superposed steel plates. Forming a joint having a metallurgical joint as a main joining factor due to diffusion between the insert metal having a minute width and distributed in the above and the above-mentioned steel plates, and joining other than the joint by metallurgical joining Abutting without
A composite vibration-damping steel sheet in which the sum of the cut surfaces of the joint on the same plane as the contact surface is 0.5 to 50% in the ratio (hereinafter, may be referred to as the ratio of the total cross-sectional area of the joint) to the area of the steel Have been proposed by the applicant of the present invention and confirmed to have excellent vibration damping performance (Japanese Patent Laid-Open No. 246235/1988).
No.). And as a manufacturing method of this composite type vibration damping steel plate,
The insert metal with a small width is sandwiched between the steel sheets in a substantially uniform distribution state, and diffusion occurs between each steel sheet and the insert metal under an inert gas atmosphere with a surface pressure applied between the steel sheets. A method for manufacturing a composite type vibration-damping steel sheet, which is annealed at a temperature that occurs, has been proposed together with the above, and it has been confirmed that it has sufficient bonding strength (JP-A-63-246238).
No.). Since this composite type vibration damping steel plate can be heat treated, if special steel is used as the steel plate, it can be used for applications that require damping as well as base metal such as diamond cutters and chipsaws, and gears. It has applicable features.

上記の複合型制振鋼板の製造法においては、インサー
トメタルの種類として、脆い合金等を生成せず拡散によ
つて鋼板と接合し得るCu,Ni,Ag等の非鉄金属の選択が良
いとされているが特に限定されておらず、実状において
はコスト面やスクラツプ処理の面からして、鋼が最も使
い易い金属であつた。そして、その鋼の種類としては、
安価でインサートメタルの形状である薄い形状に加工し
易い軟鋼、例えば低炭素アルミキルド鋼やチタンキルド
鋼等が用いられていた。
In the method for manufacturing the composite vibration-damping steel plate described above, as the type of insert metal, nonferrous metals such as Cu, Ni, and Ag that can be joined to the steel plate by diffusion without generating brittle alloys are considered to be good choices. However, it is not particularly limited, and in reality, steel is the most easy-to-use metal in terms of cost and scraping. And as for the type of steel,
Mild steel, such as low carbon aluminum killed steel or titanium killed steel, which is inexpensive and easy to be processed into a thin shape which is the shape of insert metal, has been used.

しかし、インサートメタルとして上記の低炭素アルミ
キルド鋼やチタンキルド鋼等の軟鋼を、また鋼板として
炭素鋼や低合金鋼の特殊鋼をそれぞれ用いて得られた複
合型制振鋼板を熱処理(焼入れ焼戻し)した場合、焼入
れの条件等が過酷であると熱処理時に接合部が剥離する
という問題があつた。即ち、熱処理による熱歪みや変態
歪みによる応力がインサートメタルと鋼板の間の接合強
度より大きくなつて、接合部が剥離する現象が生じてい
た。接合部に剥離が生じると構造部材として使用出来な
いばかりでなく、制振性も大幅に失われるといつた問題
が生じた。このように従来の製造法には、得られた複合
型制振鋼板が熱処理により問題を起こす欠点があつた。
However, heat treatment (quenching and tempering) was performed on the composite type damping steel sheet obtained by using the above-mentioned mild steel such as low carbon aluminum killed steel and titanium killed steel as the insert metal and the special steel such as carbon steel and low alloy steel as the steel sheet. In this case, if the conditions for quenching are harsh, there is a problem that the joint portion is peeled off during the heat treatment. That is, the stress caused by the heat distortion or transformation distortion caused by the heat treatment becomes larger than the bonding strength between the insert metal and the steel plate, and the phenomenon of peeling of the bonded portion occurs. If peeling occurs at the joint, it cannot be used as a structural member, and if vibration damping property is significantly lost, a problem arises. As described above, the conventional manufacturing method has a drawback in that the obtained composite vibration-damping steel plate causes a problem due to heat treatment.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は上記従来技術の欠点を解消し、熱処理を受け
た後も充分な接合強度と制振性とを有する複合型制振鋼
板の製造を可能とさせることを課題とする。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to enable the production of a composite type vibration damping steel sheet having sufficient bonding strength and vibration damping property even after being subjected to heat treatment.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等が上記課題を解決するために行つた検討の
過程と共に本発明を説明する。
The present invention will be described together with the process of investigations conducted by the present inventors to solve the above problems.

本発明者等はインサートメタルとして用いる金属の種
類や焼鈍条件を検討した。
The present inventors examined the type of metal used as the insert metal and the annealing conditions.

先ず、インサートメタルに低炭素アルミキルド鋼を、
また鋼板に低合金工具鋼SKS5をそれぞれ用いた複合型制
振鋼板(以下、複合鋼板と略称することがある)を焼入
れ処理し、それによつて鋼板が剥離したものについて予
めその複合鋼板の製造過程において採取しておいた焼鈍
前後の試料及び上記剥離試料の金属組織を観察した。イ
ンサートメタルは焼鈍前において低Cのフエライト組織
であつたが、焼鈍中に鋼板よりCが拡散して焼鈍後の組
織は高Cのパーライト組織を呈していた。これを焼入れ
処理し組織を観察したところ、鋼板の方は均一なマルテ
ンサイト組織であるのに対し、インサートメタルはトル
ースタイトを含む不完全焼入れ組織であつた。これは、
インサートメタルではC含有量は高くなつたものの、焼
入れ性を高める合金元素がほとんど含有されていないた
め、焼入れ性が低く均一なマルテンサイト組織が得られ
なかつたものである。このような焼入れ処理時のインサ
ートメタルと鋼板の組織の差異が、剥離を生じせしめる
ような応力を発生させたものと推察される。
First, low carbon aluminum killed steel is used for the insert metal.
In addition, a composite type vibration damping steel plate (hereinafter sometimes referred to as a composite steel plate) that uses low alloy tool steel SKS5 for each steel plate is subjected to quenching treatment, and the steel plate is peeled off by the quenching process. The metallographic structures of the samples before and after annealing and the peeled samples that were sampled in 1. were observed. The insert metal had a low C ferrite structure before annealing, but C diffused from the steel sheet during annealing and the structure after annealing exhibited a high C pearlite structure. When this was quenched and the structure was observed, the steel sheet had a more uniform martensite structure, while the insert metal had an incompletely hardened structure containing troostite. this is,
Although the insert metal has a high C content, it contains almost no alloying element that enhances the hardenability, so that the hardenability is low and a uniform martensitic structure cannot be obtained. It is presumed that such a difference in the structure between the insert metal and the steel plate during the quenching treatment caused a stress causing peeling.

上記の知見からすると、インサートメタルも鋼板と同
一成分の鋼を用いれば良いことになる。しかし、インサ
ートメタルを高Cで焼入れ性を高める合金元素を含有さ
せた鋼とすると、高温における変形応力が増加し、イン
サートメタルと鋼板を拡散接合させるための焼鈍におい
てインサートメタルと鋼板との密着性が低下して接合強
度が低下することになる。また酸化し易い合金元素の場
合、インサートメタルと鋼板との界面に酸化物を形成し
て原子拡散の障害となり、これも接合強度低下の一因と
なる。
From the above knowledge, it is only necessary to use steel having the same composition as the steel sheet for the insert metal. However, when the insert metal is steel containing high C and an alloying element that enhances hardenability, the deformation stress at high temperature increases, and the adhesion between the insert metal and the steel plate during annealing for diffusion bonding the insert metal and the steel plate Will decrease and the bonding strength will decrease. Further, in the case of an alloy element that easily oxidizes, an oxide is formed at the interface between the insert metal and the steel sheet, which becomes an obstacle to atomic diffusion, which also contributes to a decrease in bonding strength.

即ち、高温での変形応力の増加を出来るだけ抑え且つ
拡散の障害となるような酸化物生成を抑えながら焼入れ
性を高めるような鋼をインサートメタルに用いる必要が
ある。
That is, it is necessary to use, as the insert metal, steel that suppresses the increase of deformation stress at high temperature as much as possible and suppresses the formation of oxides that hinder the diffusion while enhancing the hardenability.

更には、合金元素が添加されたことにより変形応力が
増加してインサートメタルと鋼板との密着性は低下する
方向にあるから、これを補うような焼鈍方法も採用する
必要がある。
Further, since the addition of the alloying element tends to increase the deformation stress and decrease the adhesion between the insert metal and the steel sheet, it is necessary to adopt an annealing method to compensate for this.

本発明は以上に述べた考え方に従つて更に検討を重ね
た結果到達したものである。
The present invention has been achieved as a result of further studies in accordance with the concept described above.

本発明においても、鋼板と鋼板との間に微小な幅を有
するインサートメタルを全接合部断面積の割合が所定割
合となるようにほぼ均一な分布状態で挟み、鋼板間に面
圧を与えた状態で不活性ガス雰囲気下に各鋼板とインサ
ートメタルとの間で拡散が起こる温度で焼鈍を行う点
は、従来の複合型制振鋼板の製造法と同様である。
Also in the present invention, the insert metal having a minute width is sandwiched between the steel plates in a substantially uniform distribution state so that the ratio of the cross-sectional area of the entire joint is a predetermined ratio, and the surface pressure is applied between the steel plates. In this state, annealing is performed in an inert gas atmosphere at a temperature at which diffusion occurs between each steel sheet and the insert metal, as in the conventional method for manufacturing a composite vibration-damping steel sheet.

本発明の特徴は、鋼板として炭素鋼又は低合金鋼であ
つてC含有量が0.3〜1.0%のものを用いる点,インサー
トメタルとして重量%でC≦0.010%,Si≦0.01%,Mn≦
0.15%,P≦0.01%,S≦0.01%,0.5%≦Ni≦3.0%,Cr≦0.
2%,N≦0.010%であつてC+N≦0.012%であり、残部
がFe及び不可避的不純物から成る鋼のインサートメタル
を用いる点,及び不活性ガス雰囲気下で各鋼板とインサ
ートメタルとの間で拡散が起こる温度で行う焼鈍におい
て焼鈍温度に昇温する途中でインサートメタルとして用
いる鋼の(Ac1点−50℃)〜Ac1点の温度領域で30分以上
のステツプ加熱を行つた後にオーステナイト領域の温度
に昇温して焼鈍する点にある。
The features of the present invention are that a carbon steel or a low alloy steel having a C content of 0.3 to 1.0% is used as the steel plate, and C ≦ 0.010%, Si ≦ 0.01%, Mn ≦ as the insert metal in% by weight.
0.15%, P ≦ 0.01%, S ≦ 0.01%, 0.5% ≦ Ni ≦ 3.0%, Cr ≦ 0.
2%, N ≦ 0.010% and C + N ≦ 0.012%, the balance of using insert metal of steel consisting of Fe and unavoidable impurities, and between each steel plate and insert metal under inert gas atmosphere austenite region after having conducted the (Ac 1 point -50 ° C.) to Ac step heating of 30 minutes or more in a temperature region of 1 point of the steel to be used as the insert metal in the course of heating to the annealing temperature in the annealing performed at a temperature at which diffusion occurs The point is that the temperature is raised to the temperature and the annealing is performed.

以下に、本発明における上記各限定の理由を説明す
る。
The reasons for each of the above limitations in the present invention will be described below.

鋼板としての炭素鋼又は低合金鋼のC含有量を0.3〜
1.0%の範囲とした理由は、C含有量が0.3%未満の場合
は複合鋼板の熱処理後の製品強度が充分高くは得られな
いからであり、1.0%を超えると熱処理後の製品強度は
増大するが靭性に乏しいものとなり、実用に供し得ない
からである。
C content of carbon steel or low alloy steel as a steel plate is 0.3 to
The reason for setting the range to 1.0% is that if the C content is less than 0.3%, the product strength after heat treatment of the composite steel sheet cannot be sufficiently high, and if it exceeds 1.0%, the product strength after heat treatment increases. However, it has poor toughness and cannot be put to practical use.

インサートメタルとして用いられる鋼の組成の限定理
由は次の通りである。
The reasons for limiting the composition of the steel used as the insert metal are as follows.

Cはインサートメタルの焼入れ性を高める元素として
有効な元素であり、鋼板と同等の含有量とするのが焼入
れ性の面からは好ましい。しかし、Cは浸入型固溶元素
であり高温におけるインサートメタルの変形応力を大き
く増大させる元素であるため、インサートメタルと鋼板
との密着性の面から出来るだけ低めることが好ましい。
また、インサートメタルと鋼板とが良好に密着すれば、
比較的容易にCは鋼板からインサートメタルに拡散し、
焼鈍前にインサートメタルのC含有量が低い場合でも焼
鈍後のインサートメタルのC濃度は鋼板のC濃度にほぼ
近いものとなる。以上のように、C含有量はインサート
メタルと鋼板との密着性を重視して設定することが望ま
しく、このためC含有量は0.010%以下とした。
C is an element effective as an element that enhances the hardenability of the insert metal, and it is preferable to have the same content as that of the steel sheet from the viewpoint of hardenability. However, since C is an infiltration type solid solution element and is an element that greatly increases the deformation stress of the insert metal at high temperature, it is preferable to reduce it as much as possible in terms of the adhesion between the insert metal and the steel sheet.
Also, if the insert metal and the steel plate are in good contact,
It is relatively easy for C to diffuse from the steel plate to the insert metal,
Even if the C content of the insert metal before annealing is low, the C concentration of the insert metal after annealing is almost close to the C concentration of the steel sheet. As described above, it is desirable to set the C content by placing importance on the adhesiveness between the insert metal and the steel plate, and therefore the C content is set to 0.010% or less.

Nは鋼を溶製するときに大気より混入する一種の不純
物であるが、Cと同様に微量の含有量で変形応力を増大
させる元素である。このため、Nの含有量を出来るだけ
低めることがインサートメタルと鋼板との密着性を高め
るのに有効であり、高温における変形応力を充分に低下
させるためには0.010%以下にする必要がある。
N is a kind of impurity mixed from the atmosphere when steel is melted, but like C, it is an element that increases the deformation stress with a small amount of content. Therefore, it is effective to reduce the content of N as much as possible to enhance the adhesion between the insert metal and the steel sheet, and it is necessary to set it to 0.010% or less in order to sufficiently reduce the deformation stress at high temperature.

ここにおいて、CとNとは同等の影響を及ぼす元素で
あるため、どちらか一方の含有量を低下させただけでは
充分に変形応力を低めることは出来ない。このため、C
+Nの含有量は0.012%以下とする必要がある。
Here, since C and N are elements having the same influence, the deformation stress cannot be sufficiently lowered only by reducing the content of either one. Therefore, C
The content of + N must be 0.012% or less.

PとSとは変形応力を高める元素であり、且つ焼入れ
焼戻し等の熱処理後の靭性を低める元素である。このた
め出来るだけ含有量を低めることが望ましく、それぞれ
0.01%以下にする必要がある。
P and S are elements that increase the deformation stress and reduce the toughness after heat treatment such as quenching and tempering. Therefore, it is desirable to reduce the content as much as possible.
It should be 0.01% or less.

Siは焼入れ性を増大させる元素であるが、その含有量
に対する焼入れ性増加の程度はあまり大きくない。また
変形応力を増加させ且つ酸化し易い元素であるため焼鈍
においてインサートメタルと鋼板との界面に酸化物を形
成して拡散の障害となつて接合性を劣化させる。このた
め出来るだけ含有量を低めることが望ましく、0.01%以
下とした。
Si is an element that increases hardenability, but the degree of increase in hardenability with respect to its content is not so large. Further, since it is an element which increases the deformation stress and is easily oxidized, an oxide is formed at the interface between the insert metal and the steel sheet during annealing, which becomes an obstacle to diffusion and deteriorates the bondability. For this reason, it is desirable to lower the content as much as possible, and it was set to 0.01% or less.

Mnはインサートメタルの焼入れ性を増大させるのに有
効な元素である。しかし一方では変形応力を増加させ、
Feに比べて酸化され易いため、インサートメタルと鋼板
との界面に酸化物を形成して拡散の障害となつて接合性
を劣化させる性質も有する元素である。このためMn含有
量は0.15%以下とした。
Mn is an element effective in increasing the hardenability of insert metal. But on the other hand, increasing the deformation stress,
Since it is more easily oxidized than Fe, it is an element that also has the property of forming an oxide at the interface between the insert metal and the steel sheet, which interferes with diffusion and deteriorates the bondability. Therefore, the Mn content is set to 0.15% or less.

CrはMnと同様に焼入れ性を増加させるためのものであ
るので含有されていることが好ましいが、酸化され易い
元素であるため、0.2%以下とした。
Cr, like Mn, is to be contained because it is to increase the hardenability, but it is an element that is easily oxidized, so it was made 0.2% or less.

Niは本発明法のインサートメタルとしての鋼成分とし
て重要な元素である。MnやCrに比べて、単位含有量当り
の焼入れ性増加の効果は小さいが、インサートメタルの
焼入れ性を増加させるに充分な効果を有する。一方、Mn
やCrに比べると酸化されにくい元素であり、界面への酸
化膜の形成で接合性を劣化させにくい。Niはこのような
特徴を有するため、焼鈍時のインサートメタルと鋼板の
接合性を維持しつつ、熱処理時の焼入れ性を確保して剥
離の発生を防止するのに、極めて有効な元素である。0.
5%未満では焼入れ性を確保するのに充分でなく、3.0%
を超えると焼鈍時の変形応力が高くなつてインサートメ
タルと鋼板の密着性が低下し、また3.0%を超えるほど
の焼入れ性は通常必要としないため、Ni含有量は0.5〜
3.0%とした。
Ni is an important element as a steel component as insert metal in the method of the present invention. Compared to Mn and Cr, the effect of increasing the hardenability per unit content is smaller, but it has a sufficient effect of increasing the hardenability of the insert metal. On the other hand, Mn
It is an element that is less likely to be oxidized than Cr and Cr, and is less likely to deteriorate the bondability by forming an oxide film on the interface. Since Ni has such characteristics, it is an extremely effective element for maintaining the bondability between the insert metal and the steel sheet during annealing and at the same time ensuring the hardenability during heat treatment and preventing the occurrence of peeling. 0.
Less than 5% is not enough to secure hardenability, 3.0%
If the content of Ni exceeds 0.5%, the deformation stress during annealing becomes high and the adhesion between the insert metal and the steel plate decreases, and hardenability of more than 3.0% is not usually required.
It was set to 3.0%.

鋼中に含まれる上記以外の元素については、不可避的
に含有される量とした。これは、変形応力を低めてイン
サートメタルと鋼板との密着性を高めるためには出来る
だけ含有量を低めることが望ましいためである。また、
焼入れ性を増大させる合金元素として例えばMo等を積極
的に添加しないのは、Si,Mn,Cr等と同様にこれらの元素
が酸化し易く、インサートメタルと鋼板との界面で酸化
物となり拡散の障害となつて接合性を劣化させるからで
ある。
The elements other than the above contained in the steel are inevitably contained. This is because it is desirable to reduce the content as much as possible in order to reduce the deformation stress and enhance the adhesion between the insert metal and the steel sheet. Also,
As an alloying element that increases the hardenability, for example, Mo and the like are not positively added, it is easy to oxidize these elements like Si, Mn, Cr, etc., and become oxides at the interface between the insert metal and the steel sheet to diffuse. This is because it becomes an obstacle and deteriorates the bondability.

次に焼鈍におけるステツプ加熱の限定理由を述べる。 Next, the reasons for limiting step heating in annealing will be described.

焼鈍においてインサートメタルと鋼板との密着性を高
めるためには、インサートメタルの焼鈍温度における変
形応力を低めることが有効である。
In order to improve the adhesion between the insert metal and the steel sheet during annealing, it is effective to reduce the deformation stress of the insert metal at the annealing temperature.

本発明法において焼鈍の前にステツプ加熱が採られて
いるのは、上記の変形応力を低めるためである。
In the method of the present invention, the step heating is adopted before the annealing in order to reduce the above-mentioned deformation stress.

焼鈍の熱サイクルにおいて、室温よりオーステナイト
生成温度域に昇温すると、温度の上昇と共に変形応力が
低下していくが、フエライトからオーステナイトが生成
すると変形応力が逆に増加する現象が生じる。これはオ
ーステナイトがフエライトより強度の高い組織のためで
ある。更に高温に昇温するとオーステナイトの変形応力
は低下するから、インサートメタルの鋼板との密着性の
みを考えればこのような高温まで昇温するのが適してい
る。しかし、このような高温に加熱すると結晶粒の粗大
化による材質の劣化等が生じるため、実際的には採用出
来ない。
In the heat cycle of annealing, when the temperature rises from room temperature to the austenite formation temperature range, the deformation stress decreases as the temperature rises, but when austenite is generated from ferrite, the deformation stress conversely increases. This is because austenite has a stronger structure than ferrite. When the temperature is further raised to a higher temperature, the deformation stress of austenite decreases, so it is suitable to raise the temperature to such a high temperature only considering the adhesion of the insert metal to the steel plate. However, heating to such a high temperature causes deterioration of the material due to the coarsening of crystal grains, and therefore cannot be practically adopted.

上記の如き現象からすると、インサートメタルの変形
応力を低くして密着性を向上させるためには、フエライ
トが生成している温度域で且つ出来るだけ高い温度で加
熱することが有効である。即ち、インサートメタルとし
て使用する鋼のAc1点からその直下の(Ac1点−50℃)ま
での温度範囲でステツプ加熱した後に、オーステナイト
温度域まで昇温させるのである。ステツプ加熱域として
(Ac1点−50℃)〜Ac1点の温度範囲を選んだのは、これ
より低温側ではフエライトの変形応力が高く、ステツプ
加熱の効果が得られないからである。また30分以上のス
テツプ加熱時間としたのは、インサートメタルの変形が
クリープ変形的な要素を持つからであり、実用的にも材
料の均熱化を図るためには30分以上の保持が必要である
からである。
From the above-mentioned phenomenon, in order to reduce the deformation stress of the insert metal and improve the adhesiveness, it is effective to heat it in the temperature range where the ferrite is generated and at a temperature as high as possible. That is, the steel used as the insert metal is step-heated in a temperature range from the Ac 1 point to immediately below (Ac 1 point −50 ° C.) and then heated to the austenite temperature range. As step heating zone chose temperature range of (Ac 1 point -50 ° C.) to Ac 1 point, this higher than the deformation stress of ferrite in the low temperature side, since not obtain the effect of the step heating. The reason why the step heating time is set to 30 minutes or more is that the deformation of the insert metal has a creep-deformation element, and it is necessary to hold it for 30 minutes or more in order to evenly heat the material in practical use. Because it is.

なお、ここで言うインサートメタルのAc1点とは、焼
鈍前でのインサートメタルのAc1点を言う。即ち、焼鈍
中にインサートメタルには鋼板からCが拡散してインサ
ートメタルの組成は変化していくが、インサートメタル
と鋼板との密着性が問題となるのは、拡散が生じていな
い焼鈍の初期段階であるから焼鈍前のインサートメタル
のAc1点を基準にして温度を制御すればよい。
It should be noted, Here, the Ac 1 point of the insert metal to say, say the Ac 1 point of the insert metal in front of the annealing. That is, during the annealing, C diffuses from the steel sheet into the insert metal and the composition of the insert metal changes, but the adhesion between the insert metal and the steel sheet becomes a problem because the initial stage of annealing without diffusion occurs. Since this is a stage, the temperature may be controlled with reference to the Ac 1 point of the insert metal before annealing.

〔実施例〕〔Example〕

以下に実施例,比較例を挙げて、本発明法を更に具体
的に説明する。
Hereinafter, the method of the present invention will be described more specifically with reference to Examples and Comparative Examples.

高周波溶解炉で第1表に示す化学組成の鋼6種を溶製
してそれぞれ30kgの鋼塊とした後、熱間鍛造,熱間圧
延,冷間圧延の各工程を通して、板厚0.2mmの薄板6種
を製造した。各鋼のAc1点は第1表に示す通りであつ
た。この各薄板を切断して2.0mm角のチツプ上の薄片を
作り、これをそれぞれインサートメタルとした。第1表
に示す鋼No.のうち、IVはNiが含まれていない点で、V
は鋼No.IVの理由に加えてCが多い点で、VIはNiが含ま
れず且つCrが多い点で、それぞれ本発明において規定す
るインサートメタルの組成外のものである。
In a high-frequency melting furnace, six types of steel with the chemical composition shown in Table 1 were melted into 30 kg ingots, respectively, and then hot forged, hot rolled, and cold rolled through the steps of 0.2 mm in thickness. Six types of thin plates were manufactured. The Ac 1 point of each steel was as shown in Table 1. Each of these thin plates was cut to make thin pieces on a chip of 2.0 mm square, which were respectively used as insert metals. Of the steel Nos. Shown in Table 1, IV is V because it does not contain Ni.
In addition to the reason of Steel No. IV, C is a large amount of C, and VI is a point that does not contain Ni and a large amount of Cr, and is outside the composition of the insert metal specified in the present invention.

一方、転炉にて第2表に示す化学組成の低炭素鋼,炭
素工具鋼,合金炭素工具鋼の3種の鋼を溶製し、連続鋳
造にてスラブとした後、それぞれを熱間圧延,冷間圧
延,剪断の各工程を通して板厚1.0mm,幅600mm,長さ1000
mmの鋼板3種を製造した。
On the other hand, three kinds of steel, low carbon steel, carbon tool steel, and alloy carbon tool steel having the chemical composition shown in Table 2 were melted in a converter and made into slabs by continuous casting, followed by hot rolling. , Cold rolling, shearing process, thickness 1.0mm, width 600mm, length 1000
Three types of mm steel plates were manufactured.

上記の各鋼板の表面を脱脂洗浄した後、この鋼板の上
に先に述べた鋼No.Iのインサートメタルを1m2当り約200
0個の割合でほぼ均一に分散させて散布し、この上に脱
脂洗浄した上記と同種の鋼板を重ねて一組の未接合の複
合制振鋼板積層体(以下、未接合積層体と言う)を得
た。このようにしてインサートメタルの1種につき3種
の鋼板を用いて得た3組の未接合積層体を重ねたもの
(以下これを未接合積層体団と仮称する)をインサート
メタルの種類毎に作つた。そしてこの未接合積層体団を
5%H2+95%N2の不活性ガス雰囲気下の焼鈍炉内で最上
の未接合積層体の鋼板の上に重錘を載せて面圧を付与し
ながら焼鈍することを各未接合積層体団毎に行つた。こ
のとき使用した重錘の重量は3500kgであり、また焼鈍は
次の2種の熱履歴で行つた。即ち、一つは900℃までの
約150℃/時間の昇温速度,900℃×5時間の均熱加熱,
約50℃/時間の冷却の熱履歴である(比較例1〜9)。
他の一つは、約150℃/時間の昇温速度で各インサート
メタルのAc1点から(Ac1点−50℃)までの範囲の温度ま
で昇温したら、上記温度範囲内で1時間のステツプ加熱
を行い、更に約150℃/時間の昇温速度で900℃まで昇温
させ、その後は上記と同様の焼鈍を行う熱履歴である
(実施例1〜9,比較例10〜18)。以上のような条件で面
圧を付与しながら焼鈍を行うことで、インサートメタル
と各鋼板との間の拡散接合を行つた。
After degreasing and cleaning the surface of each of the above steel plates, the above-mentioned insert metal of Steel No. I was applied to this steel plate at approximately 200 per 1 m 2.
A set of unbonded composite vibration-damping steel plate laminates (hereinafter referred to as "unbonded laminates") by stacking the same kind of steel plates that had been degreased and washed, and then sprayed by evenly distributing them at a rate of 0 Got In this way, three sets of unbonded laminated bodies obtained by using three types of steel plates for each type of insert metal (hereinafter referred to as unbonded laminated body group) are prepared for each type of insert metal. I made it. Then, the unbonded laminated body group is annealed in an annealing furnace in an atmosphere of an inert gas of 5% H 2 + 95% N 2 while placing a weight on the steel plate of the uppermost unbonded laminated body while applying surface pressure. This was performed for each unbonded laminated body group. The weight used at this time had a weight of 3500 kg, and the annealing was performed with the following two types of thermal history. That is, one is a heating rate of about 150 ° C / hour up to 900 ° C, a uniform heating of 900 ° C x 5 hours,
It is a thermal history of cooling at about 50 ° C./hour (Comparative Examples 1 to 9).
The other one is that if the temperature of each insert metal is raised from Ac 1 point to (Ac 1 point −50 ° C.) at a heating rate of about 150 ° C./hour, the temperature of the insert metal is kept within the above temperature range for 1 hour. This is a thermal history in which step heating is further performed, the temperature is further raised to 900 ° C. at a heating rate of about 150 ° C./hour, and thereafter the same annealing as described above is performed (Examples 1 to 9 and Comparative Examples 10 to 18). By performing annealing while applying surface pressure under the above conditions, diffusion bonding between the insert metal and each steel plate was performed.

上記の工程で得られた複合鋼板について、接合の程度
を評価するため第1図(イ),(ロ)に示す幅25mmのT
字型試験片を用いた引張試験法により接合強度を測定し
た。その結果を第3表に示す。
Regarding the composite steel sheets obtained in the above process, in order to evaluate the degree of joining, T of 25 mm width shown in Fig. 1 (a) and (b)
The bonding strength was measured by a tensile test method using a letter-shaped test piece. Table 3 shows the results.

なお、接合強度の測定に際してはインサートメタル1
個当りの接合強度が測定出来るようにした。
When measuring the bonding strength, insert metal 1
The bonding strength per piece can be measured.

この結果から明らかなようにインサートメタルとして
の鋼が高C材(鋼No.V)や高Cr含有材(鋼No.VI)等の
場合は、変形応力が高いことや界面の酸化物による拡散
の抑制により、低C材(鋼No.IV)や本発明法で用いた
鋼(鋼No.I〜III)の場合に比べてインサートメタルと
鋼板との接合強度が小さいことが判る。
As is clear from this result, when the steel as insert metal is a high C material (steel No. V) or a high Cr content material (steel No. VI), the deformation stress is high and the diffusion of oxides at the interface It can be seen that by suppressing the above, the joining strength between the insert metal and the steel plate is smaller than that in the case of the low C material (steel No. IV) and the steel used in the method of the present invention (steel No. I to III).

次に上記で得られた複合鋼板から、直径500mmの円板
を切り出し、この円板を用いて熱処理(焼入れ焼戻し処
理)後の接合状態を調べた、この熱処理条件は、予め行
う加熱処理を820℃×10分とし、その後50℃の焼入れ油
中に浸漬して焼入れし、更にその後の焼戻しを500℃×
1時間のプレス焼戻しとした。
Next, a disc with a diameter of 500 mm was cut out from the composite steel sheet obtained above, and the joining state after heat treatment (quenching and tempering treatment) was examined using this disc. ℃ × 10 minutes, then immersed in quenching oil at 50 ℃ to quench, then further tempering 500 ℃ ×
It was press tempered for 1 hour.

熱処理後の円板から第1図に示した試験片を採取して
接合強度を測定した。その結果も第3表に示す。この結
果から判るように、本発明法により焼鈍時にステツプ加
熱をしたもの(実施例1〜9)は、ステツプ加熱なしで
焼鈍したもの(比較例1〜9)に比べて接合強度は大き
く、特に熱処理後においても実用に耐える充分な接合強
度を保持していることが判る。またインサートメタルの
組成が本発明で規定した範囲から外れている場合(比較
例10〜18)は、焼鈍時にステツプ加熱をしても接合強度
は低く、特に熱処理時に殆んどの場合鋼板は剥離して全
く使用に耐えないことか判る。
The test piece shown in FIG. 1 was taken from the disc after the heat treatment to measure the bonding strength. Table 3 also shows the results. As can be seen from these results, the ones which were step-heated at the time of annealing by the method of the present invention (Examples 1 to 9) had a larger bonding strength than the ones which were annealed without step heating (Comparative Examples 1 to 9). It can be seen that even after the heat treatment, the bonding strength is sufficient for practical use. When the composition of the insert metal is out of the range specified in the present invention (Comparative Examples 10 to 18), the joining strength is low even if step heating is performed during annealing, and in most cases during the heat treatment, the steel sheet peels off. I know that it can not be used at all.

なお、これらの実施例1〜9,比較例1〜9において得
られた複合鋼板熱処理後の制振性については、第2図に
示す装置の支柱フレーム1に制振性測定対象物2を糸3
で懸垂保持しておいて回転自在なハンマー4を水平状態
から回転落下させてその打撃音をマイクロホン5で受音
しアンプ6で音圧レベルを測定した結果も第3表に示
す。参考例1〜3として示した単一の鋼板に比べて本発
明法で得られた複合鋼板の音圧レベルは熱処理後でも著
しく低く、制振鋼板としての性能も充分に有しているこ
とが確認された。
Regarding the damping properties after heat treatment of the composite steel plates obtained in Examples 1 to 9 and Comparative Examples 1 to 9, the damping property to be measured 2 was attached to the support frame 1 of the apparatus shown in FIG. Three
Table 3 also shows the results of measuring the sound pressure level by the amplifier 6 while the suspension hammer is held and the rotatable hammer 4 is rotated and dropped from the horizontal state, the impact sound is received by the microphone 5, and the amplifier 6 measures the sound pressure level. The sound pressure level of the composite steel sheet obtained by the method of the present invention is significantly lower than that of the single steel sheets shown as Reference Examples 1 to 3 even after the heat treatment, and the composite steel sheet has sufficient performance as a vibration damping steel sheet. confirmed.

〔発明の効果〕 以上詳述した本発明に係る複合型制振鋼板の製造法よ
れば、鋼板として及びインサートメタルとしてそれぞれ
特定組成のものを用い、且つ焼鈍に当り昇温途中で特定
温度領域でのステツプ加熱を行うことにより、焼入れ焼
戻し等の熱処理を受けた後でも充分に高い接合強度と制
振性とを保持する複合型制振鋼板を製造することが出来
るようになつた。このような本発明は、複合制振鋼板の
用途を拡大する上で極めて有用なものである。
[Advantages of the Invention] According to the method for manufacturing a composite type vibration damping steel sheet according to the present invention described in detail above, a steel sheet and an insert metal having a specific composition are used, respectively, and in annealing, in a specific temperature range during temperature increase during heating. By carrying out the step heating of (1), it becomes possible to manufacture a composite type vibration damping steel sheet which has sufficiently high bonding strength and vibration damping property even after being subjected to heat treatment such as quenching and tempering. The present invention as described above is extremely useful in expanding the applications of the composite vibration-damping steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

第1図は複合鋼板の接合強度を測定するための試験片の
形状を示す図であつて、(イ)は正面図で(ロ)は側面
図、第2図は打音の音圧レベルを測定する装置の斜視図
である。 図面中 1……支柱 2……制振性測定対象物 3……糸 4……ハンマー 5……マクイロホン 6……アンプ
FIG. 1 is a diagram showing the shape of a test piece for measuring the joint strength of a composite steel sheet. (A) is a front view, (b) is a side view, and FIG. 2 is a sound pressure level of hammering sound. It is a perspective view of the apparatus to measure. In the drawing 1 ...... Support 2 ...... Vibration damping measurement target 3 ...... Thread 4 ...... Hammer 5 ...... Maguirophone 6 ...... Amplifier

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼板と鋼板との間に微小な幅を有するイン
サートメタルをほぼ均一な分布状態で挟み、鋼板間に面
圧を与えた状態で不活性ガス雰囲気下で各鋼板とインサ
ートメタルとの間で拡散が起こる温度で焼鈍を行つて複
合型制振鋼板を製造するに当り、鋼板として炭素鋼又は
低合金鋼であつてC含有量が0.3〜1.0%のものを用い、
インサートメタルとして重量%でC≦0.010%,Si≦0.01
%,Mn≦0.15%,P≦0.01%,S≦0.01%,0.5%≦Ni≦3.0
%,Cr≦0.2%,N≦0.010%であつて且つC+N≦0.012%
であり、残部がFe及び不可避的不純物から成る鋼を用
い、焼鈍において焼鈍温度に昇温する途中でインサート
メタルとして用いる鋼の(Ac1点−50℃)〜Ac1点の温度
領域で30分以上のステツプ加熱を行つた後、オーステナ
イト領域の温度に昇温して焼鈍することを特徴とする複
合型制振鋼板の製造法。
1. An insert metal having a small width is sandwiched between steel sheets in a substantially uniform distribution state, and each steel sheet and the insert metal are placed under an inert gas atmosphere in a state where a surface pressure is applied between the steel sheets. In producing a composite type vibration damping steel sheet by annealing at a temperature at which diffusion occurs between carbon steel or a low alloy steel having a C content of 0.3 to 1.0%,
As insert metal, weight% C ≦ 0.010%, Si ≦ 0.01
%, Mn ≦ 0.15%, P ≦ 0.01%, S ≦ 0.01%, 0.5% ≦ Ni ≦ 3.0
%, Cr ≦ 0.2%, N ≦ 0.010% and C + N ≦ 0.012%
, And the use of a steel balance being Fe and unavoidable impurities, 30 minutes in the temperature range of (Ac 1 point -50 ° C.) to Ac 1 point of the steel to be used as a middle inserted metal that heated to the annealing temperature in the annealing After performing the above step heating, the method for producing a composite type vibration-damping steel sheet is characterized in that the temperature is raised to a temperature in the austenite region and annealed.
JP1216067A 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet Expired - Lifetime JP2681395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216067A JP2681395B2 (en) 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216067A JP2681395B2 (en) 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet

Publications (2)

Publication Number Publication Date
JPH0381138A JPH0381138A (en) 1991-04-05
JP2681395B2 true JP2681395B2 (en) 1997-11-26

Family

ID=16682754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216067A Expired - Lifetime JP2681395B2 (en) 1989-08-24 1989-08-24 Manufacturing method of composite type damping steel sheet

Country Status (1)

Country Link
JP (1) JP2681395B2 (en)

Also Published As

Publication number Publication date
JPH0381138A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
JP7253837B2 (en) Method of manufacturing hot stamped component and hot stamped component
JP6475824B2 (en) HPF molded member having excellent peel resistance and method for producing the same
CN111247266B (en) Al-plated welded pipe for quenching, Al-plated hollow member, and method for producing same
US20240133014A1 (en) Method for Manufacturing a Sheet Metal Component from a Flat Steel Product Provided With a Corrosion Protection Coating
JPH0555594B2 (en)
JP2021530621A (en) Low specific density clad steel sheet with excellent formability and fatigue characteristics and its manufacturing method
JP2681395B2 (en) Manufacturing method of composite type damping steel sheet
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JPH0825040B2 (en) Method for producing clad steel sheet having excellent low temperature toughness
JP2691456B2 (en) Manufacturing method of composite type damping steel sheet
JPH0716792B2 (en) Clad steel plate manufacturing method
JP3017237B2 (en) Method for producing Fe-Si-Al alloy soft magnetic thin plate
JP4458610B2 (en) Hot-dip aluminized steel sheet with excellent high-temperature oxidation resistance
JPH0665686A (en) Austenitic stainless steel cast clad steel material excellent in workability and its production
JP3017236B2 (en) Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
JP3551749B2 (en) Manufacturing method of surface hardened parts
JP7417090B2 (en) Steel plates for friction welding, composite parts and automotive parts
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
JP2639876B2 (en) Clad steel sheet, method for producing the same, and safe made of clad steel sheet
JP2844136B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
JP2827740B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JP3051274B2 (en) Clad steel and method for manufacturing clad steel
JPH0621334B2 (en) High strength alloyed hot dip galvanized steel sheet with excellent deep drawability and method for producing the same
JP3520155B2 (en) High-tensile alloyed hot-dip galvanized hot-rolled steel sheet for automobiles having excellent deformation resistance at high strain rates and method for producing the same
JP3166529B2 (en) Steel sheet excellent in brazing resistance and method for producing cold-rolled steel sheet