JPH09206961A - Manufacture of rolling titanium clad steel plate - Google Patents

Manufacture of rolling titanium clad steel plate

Info

Publication number
JPH09206961A
JPH09206961A JP1443996A JP1443996A JPH09206961A JP H09206961 A JPH09206961 A JP H09206961A JP 1443996 A JP1443996 A JP 1443996A JP 1443996 A JP1443996 A JP 1443996A JP H09206961 A JPH09206961 A JP H09206961A
Authority
JP
Japan
Prior art keywords
titanium
rolling
clad steel
slab
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1443996A
Other languages
Japanese (ja)
Inventor
Hideaki Fukai
英明 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1443996A priority Critical patent/JPH09206961A/en
Publication of JPH09206961A publication Critical patent/JPH09206961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture of a wide or thick rolling titanium clad steel plate having a superior joining strength using present equipment without spending excessive equipment cost. SOLUTION: A slab is constituted by inserting, between a base stock consisting of a carbon steel and a material to be laminated consisting of titanium or titanium alloy, as an intermediate material, an extra-low carbon steel plate containing 0.001-0.01wt.% C on the base stock side and a pure titanium plate containing Fe of 0.25wt.% or less and O of 0.15wt.% or above on the side of the material to be laminated; a titanium clad steel plate is obtained by rolling such slab.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、優れた接合特性を
有する広幅または厚肉の圧延型チタンクラッド鋼板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wide-width or thick-rolled titanium clad steel sheet having excellent joining characteristics.

【0002】[0002]

【従来の技術】従来、圧延型チタンクラッド鋼板では、
その製造過程において、母材である炭素鋼と合せ材との
間に、Cu,Cu合金、Ni,Ni合金、極低炭素鋼、
あるいはこれらを組み合わせたものを中間材として用い
ている。
2. Description of the Related Art Conventionally, in rolling type titanium clad steel plates,
In the manufacturing process, Cu, Cu alloy, Ni, Ni alloy, ultra-low carbon steel, between the base carbon steel and the composite material,
Alternatively, a combination of these is used as an intermediate material.

【0003】これらの中間材は、母材および合せ材中に
含有される元素が拡散し、相手材との界面で脆化相ある
いは低融点相を形成することを抑制している。例えば、
チタンクラッド鋼板における極低炭素鋼の中間材は、母
材中に含有される炭素のチタン材への拡散を阻害し、T
iC等の化合物形成を抑制して接合界面での脆化を防
ぎ、優れた接合性を達成する効果を有している。
These intermediate materials prevent the elements contained in the base material and the composite material from diffusing and forming an embrittlement phase or a low melting point phase at the interface with the mating material. For example,
The intermediate material of the ultra-low carbon steel in the titanium clad steel plate inhibits the diffusion of carbon contained in the base material into the titanium material,
It has the effect of suppressing the formation of compounds such as iC to prevent embrittlement at the bonding interface and achieving excellent bondability.

【0004】例えば、特公昭57−55514号、特開
昭62−89588号、特開昭62−158584号、
特開昭62−197285号、特開昭62−22758
6号、特開昭63−56370号、特公平6−7596
4号等の公報に、その製造過程において母材である炭素
鋼と合わせ材との間に、Cu、Cu合金、Ni、Ni合
金、極低炭素鋼、あるいはこれらを組み合わせたものを
中間材として適用し、スラブ組み立て、加熱、圧延を行
う方法が開示されている。
For example, JP-B-57-55514, JP-A-62-895588, JP-A-62-158584,
JP-A-62-197285, JP-A-62-22758
6, JP-A-63-56370, JP-B-6-7596
No. 4, etc. discloses that Cu, Cu alloy, Ni, Ni alloy, ultra-low carbon steel, or a combination thereof is used as an intermediate material between the carbon steel as a base material and the laminated material in the manufacturing process. A method of applying, slab assembling, heating and rolling is disclosed.

【0005】さらに、特開平1−309791号公報に
は、母材側にフェライト系ステンレス鋼、マルテンサイ
ト系ステンレス鋼、Nb、Ta、Fe、Mo、Cr、V
およびNiのうち1種または2種以上を介在させ、合せ
材側にα型チタン合金またはα+β型チタン合金を介在
させることにより、接合性の優れたクラッド鋼板を製造
する方法が開示されている。これは、チタンのα安定化
元素を中間材に含有させることにより、母材側の中間材
に含有されるCr、Nb、Ta、Mo、V等のβ安定化
元素が合せ材に拡散して、合せ材界面近傍でβ相を増加
させ、圧延後の冷却過程でβ相が脆弱なω相に変態して
接合性の劣化を招くことを抑制することを意図するもの
であり、これにより接合性の低下を防止しようとするも
のである。
Further, in Japanese Patent Laid-Open No. 1-309791, ferritic stainless steel, martensitic stainless steel, Nb, Ta, Fe, Mo, Cr, V on the base metal side.
Also disclosed is a method for producing a clad steel sheet having excellent bondability by interposing one or more of Ni and Ni, and interposing an α-type titanium alloy or an α + β-type titanium alloy on the side of the bonding material. This is because when the α-stabilizing element of titanium is contained in the intermediate material, the β-stabilizing elements such as Cr, Nb, Ta, Mo and V contained in the intermediate material on the base metal side are diffused in the composite material. , It is intended to increase the β phase in the vicinity of the interface of the laminated material and suppress the transformation of the β phase into the fragile ω phase in the cooling process after rolling, resulting in deterioration of the bondability. It is intended to prevent deterioration of sex.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
中間材を用いることで化合物形成を抑制して優れた接合
強度を得る技術においても、その圧延時のスラブ加熱温
度に制限があって、比較的低温の圧延加熱温度とならざ
るを得ない。このため、チタンクラッド鋼板において
は、通常製造している3600mm幅材や50mm厚材
ですらスラブ加熱温度が低いために圧延機に対する負荷
が大きくなるという不都合が生じており、このため40
00mm幅を越えるような幅広材や70mmを越えるよ
うな厚肉のチタンクラッド鋼板の製造においては、圧延
機の能力およびスラブ素材の変形抵抗等の観点から現用
設備での製造は困難である。
However, even in the technique of suppressing the compound formation by using these intermediate materials to obtain excellent bonding strength, the slab heating temperature during rolling is limited, and the temperature is relatively low. There is no choice but to use the rolling heating temperature. For this reason, in the titanium clad steel plate, even the normally manufactured 3600 mm wide material and 50 mm thick material have a disadvantage that the load on the rolling mill becomes large because the slab heating temperature is low.
In the production of a wide material having a width of more than 00 mm and a titanium clad steel sheet having a thickness of more than 70 mm, it is difficult to produce it with the existing equipment from the viewpoint of the rolling mill capacity and the deformation resistance of the slab material.

【0007】つまり、現状の圧延設備を採用してチタン
クラッド鋼板を製造するに際して、Cuを中間材として
採用した場合には、圧延加熱温度が890℃以上である
とTiとCuとにより液相が形成され、圧延時に溶融が
前面および側面から飛散するという不都合が発生する。
また、Niを中間材として使用した場合には、TiとN
iとから構成される脆い金属間化合物が形成され、接合
強度を低下させる不都合がある。さらに、極低炭素鋼を
中間材として採用した場合には、当該中間材にも極微量
ではあるが炭素が含まれているので、圧延加熱温度をチ
タン材のβ変態点以上にすると、チタン材はより炭素の
拡散の速いBCC構造となり、TiCが形成されて接合
強度の低下につながることとなるため、β変態点温度未
満の圧延加熱温度にしなければならない。
That is, when Cu is used as an intermediate material in the production of a titanium clad steel sheet using the current rolling equipment, if Ti and Cu have a heating temperature of 890 ° C. or higher, a liquid phase is formed by Ti and Cu. It is formed, and there is an inconvenience that the melt is scattered from the front surface and the side surface during rolling.
Also, when Ni is used as an intermediate material, Ti and N
There is a disadvantage that a brittle intermetallic compound composed of i is formed and the joint strength is lowered. Furthermore, when ultra-low carbon steel is used as an intermediate material, the intermediate material also contains a small amount of carbon, so if the rolling heating temperature is set to the β transformation point of the titanium material or higher, the titanium material Has a BCC structure in which carbon diffuses more rapidly, TiC is formed, and this leads to a decrease in bonding strength. Therefore, the rolling heating temperature must be lower than the β transformation temperature.

【0008】また、合せ材側にα型チタン合金またはα
+β型チタン合金を介在させる方法においては、α型チ
タン合金の場合には不純物として含有されるFeのため
に圧延加熱温度を高温化した際にはβ相が多量に形成さ
れそのβ相の部分で、α+β型チタン合金の場合にはβ
相を含んでいるのでβ相の部分でC等の拡散により脆化
相が形成され接合特性の低下を招くという不都合が生じ
る。
Further, α-type titanium alloy or α is provided on the side of the mating material.
In the method of interposing + β-type titanium alloy, in the case of α-type titanium alloy, a large amount of β-phase is formed when the rolling heating temperature is raised due to Fe contained as an impurity, and the β-phase part is formed. And β for α + β type titanium alloys
Since it contains a phase, there is a disadvantage that the embrittlement phase is formed due to the diffusion of C and the like in the β phase portion and the bonding characteristics are deteriorated.

【0009】つまり、このような2重に中間材を挿入す
る方法においても、圧延加熱温度上昇によるβ相の体積
分率増加によって、脆化相をより多く形成するので、圧
延加熱温度に制限がある。
That is, even in the method of double-inserting the intermediate material, the embrittlement phase is formed more due to the increase in the volume fraction of the β phase due to the increase in the rolling heating temperature, so that the rolling heating temperature is limited. is there.

【0010】一方で、広幅あるいは厚肉のクラッド鋼板
を製造することは、溶接の省略や歩留まりの向上などの
メリットがある。しかしながら、上述したように現在の
スラブ加熱温度では、広幅化および厚肉化による圧延時
の変形抵抗の上昇による圧延荷重の増大により、現用の
圧延設備では製造不可能となる。また、たとえ圧延がで
きたとしても、各パスにおいて十分な圧下を加えること
ができず、圧延応力が低く合せ材が十分に塑性変形せ
ず、満足な接合強度が得られない不都合も生じる。
On the other hand, manufacturing a wide or thick clad steel plate has advantages such as omission of welding and improvement of yield. However, as described above, at the current slab heating temperature, the rolling load increases due to the increase in deformation resistance during rolling due to the widening and thickening, so that it cannot be manufactured with the current rolling equipment. Further, even if rolling can be performed, sufficient reduction cannot be applied in each pass, rolling stress is low, and the laminated material does not plastically deform sufficiently, resulting in inconvenience that satisfactory joining strength cannot be obtained.

【0011】本発明はかかる事情に鑑みてなされたもの
であって、過大な設備負担なく現有設備にて優れた接合
強度を有する広幅または厚肉の圧延チタンクラッド鋼板
が得られる圧延型チタンクラッド鋼板の製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and a rolled titanium clad steel plate capable of obtaining a wide or thick rolled titanium clad steel plate having excellent bonding strength with existing equipment without excessive equipment burden. It aims at providing the manufacturing method of.

【0012】[0012]

【課題を解決するための手段】本発明者らは、優れた接
合強度を有する広幅または厚肉のチタンクラッド鋼板の
製造において、圧延機を改造することなく現用の圧延能
力でこれらを製造することが可能な方法について詳細な
検討を重ねた結果、中間材として母材である炭素鋼側に
C含有量を制御した極低炭素鋼板を、合わ材であるチタ
ン側にFeおよびOの含有量を制御して合せ材より高い
変態点を有する純チタン板を母材と合せ材との間に挿入
してスラブを組み立てることにより、圧延加熱温度を従
来より高くしても脆化相等の接合強度に悪影響を及ぼす
ような相が厚く形成されることを抑制することができ、
かつ圧延加熱温度が高温化されることにより変形抵抗を
低下させて圧延することが可能なことを見出した。
DISCLOSURE OF THE INVENTION In the production of wide or thick titanium clad steel sheets having excellent joint strength, the inventors of the present invention can produce these with current rolling capacity without modifying the rolling mill. As a result of repeated detailed studies on possible methods, an ultra-low carbon steel sheet with controlled C content on the carbon steel side as a base material and an Fe and O content on the titanium side as a composite material were used as intermediate materials. By controlling and inserting a pure titanium plate having a transformation point higher than that of the laminated material between the base material and the laminated material to assemble the slab, the joining strength of the embrittlement phase etc. can be maintained even if the rolling heating temperature is higher than before. It is possible to suppress the formation of a thick phase that adversely affects,
Moreover, it has been found that it is possible to reduce the deformation resistance and perform rolling by raising the rolling heating temperature.

【0013】本発明はこのような知見に基づいてなされ
たものであり、炭素鋼からなる母材とチタンまたはチタ
ン合金からなる合せ材との間に、中間材として、母材側
にC:0.001〜0.01重量%を含む極低炭素鋼板
を、合せ材側にFe:0.25重量%以下、O:0.1
5重量%以上を含む純チタン板を挿入してスラブを組み
立て、圧延することを特徴とするチタンクラッドクラッ
ド鋼板の製造方法を提供するものである。
The present invention has been made on the basis of such findings, and C: 0 is provided on the base material side as an intermediate material between the base material made of carbon steel and the composite material made of titanium or titanium alloy. Ultra low carbon steel sheet containing 0.001 to 0.01% by weight of Fe: 0.25% by weight or less and O: 0.1
The present invention provides a method for producing a titanium clad clad steel plate, which comprises assembling a slab by inserting a pure titanium plate containing 5% by weight or more and rolling the slab.

【0014】また、本発明は、上記方法において、スラ
ブ加熱温度T℃を、890≦T≦890+150[O]
−20[Fe](ただし、[O]、[Fe]はそれぞれ
O含有量、Fe含有量を示す。)の温度域として圧延す
ることを特徴とするチタンクラッド鋼板の製造方法を提
供するものである。
Further, according to the present invention, in the above method, the slab heating temperature T ° C. is 890 ≦ T ≦ 890 + 150 [O]
A method for producing a titanium clad steel sheet, which comprises rolling in a temperature range of -20 [Fe] (where [O] and [Fe] represent O content and Fe content, respectively). is there.

【0015】さらに、上記方法において、中間材とし
て、母材側にC:0.001〜0.01重量%を含む極
低炭素鋼板を、合せ材側にFe:0.10重量%未満、
O:0.15重量%以上を含む純チタン板を用いること
を特徴とするチタンクラッド鋼板の製造方法を提供する
ものである。
Further, in the above method, as an intermediate material, an ultra low carbon steel sheet containing C: 0.001 to 0.01% by weight on the base material side and Fe: less than 0.10% by weight on the bonding material side,
The present invention provides a method for producing a titanium clad steel plate, which comprises using a pure titanium plate containing O: 0.15 wt% or more.

【0016】[0016]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明の圧延型チタンクラッド鋼板は、炭素鋼
からなる母材とチタンまたはチタン合金からなる合せ材
との間に、中間材として、母材側にC:0.001〜
0.01重量%を含む極低炭素鋼板を、合せ材側にF
e:0.25重量%以下、O:0.15重量%以上を含
む純チタン板を挿入してスラブを組み立て、圧延するこ
とにより得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The rolled titanium clad steel sheet of the present invention has C: 0.001 to 0.001 on the base material side as an intermediate material between the base material made of carbon steel and the composite material made of titanium or titanium alloy.
Ultra low carbon steel sheet containing 0.01% by weight of F
It is obtained by inserting a pure titanium plate containing e: 0.25% by weight or less and O: 0.15% by weight or more to assemble a slab and rolling.

【0017】中間材として母材である炭素鋼側にC:
0.001〜0.01重量%を含む極低炭素鋼板を用い
ることは、もう一つの中間材および合せ材に対する、厚
く脆化相を形成する多量のCの拡散を抑制し、かつ特性
劣化を招かない程度の極薄のTiCの形成によって、同
じく接合特性を低下させる脆化相であるTiFeの形成
を抑制する効果を有する。
C: on the carbon steel side as a base material as an intermediate material:
The use of an ultra-low carbon steel sheet containing 0.001 to 0.01% by weight suppresses the diffusion of a large amount of C forming a thick embrittlement phase to another intermediate material and a laminated material, and also causes deterioration of characteristics. The formation of an extremely thin TiC that does not invite it has the effect of suppressing the formation of TiFe, which is an embrittlement phase that also deteriorates the bonding characteristics.

【0018】もう一つの中間材として合せ材側にFe:
0.25重量%以下、O:0.15重量%以上を含む純
チタンを用いることは、この材料が合せ材より高い変態
点を有しているので、圧延加熱温度を高温化した際に合
せ材が変態点を越えてCの拡散の速い結晶構造(この場
合にはBCC構造)に変態した場合にも、該中間材はそ
の変態点を越えずに接合強度に悪影響を及ぼす元素の拡
散速度の遅い細密重点の結晶構造(この場合にはHCP
構造)のままであり、接合特性の低下につながるCが合
せ材および合せ材側の中間材へ拡散することを防止し、
圧延加熱温度の高温化の場合にも接合界面での脆化相形
成を抑制し、優れた接合特性を達成する効果を有する。
As another intermediate material, Fe:
The use of pure titanium containing 0.25% by weight or less and O: 0.15% by weight or more means that this material has a transformation point higher than that of the composite material. Even if the material transforms into a crystal structure (BCC structure in this case) in which C diffuses rapidly beyond the transformation point, the intermediate material does not exceed the transformation point and the diffusion rate of the element that adversely affects the bonding strength Slow and dense crystal structure (in this case HCP
Structure) and prevents C from diffusing to the joining characteristics from diffusing into the bonding material and the intermediate material on the bonding material side,
Even when the heating temperature for rolling is increased, it has the effect of suppressing the formation of an embrittled phase at the joint interface and achieving excellent joint characteristics.

【0019】この場合、極低炭素鋼の中間材のC含有量
が0.01重量%より大であるともう一つの中間材との
界面に脆弱なTiC相を厚く形成し、0.001重量%
未満であるとTiCによるTiFe形成抑制効果が発揮
されず、TiFeの形成によって接合特性の低下を招
く。
In this case, if the C content of the intermediate material of the ultra-low carbon steel is more than 0.01% by weight, a brittle TiC phase is formed thickly at the interface with another intermediate material, and 0.001% by weight is formed. %
If the amount is less than this, the effect of suppressing TiFe formation by TiC is not exerted, and the formation of TiFe causes deterioration of the bonding characteristics.

【0020】また、もう一つの中間材を構成する純チタ
ンのFe含有量が0.25重量%より大であると、β相
を生成し始める温度を低下させ、圧延加熱温度を高温化
した際に多量のβ相が生成される。このため、Cの拡散
が促進されてTiCが厚く形成され、接合特性の低下を
招く。また、O含有量が0.15重量%未満であると、
合せ材側に挿入する中間材の変態点を充分に高温化する
ことができず、広幅材あるいは厚肉材を製造するために
加熱温度を高温化した際に、その中間材がCの拡散の速
いBCC構造になるため、TiCが厚く形成されて接合
特性の低下を招く。
When the Fe content of pure titanium constituting the other intermediate material is more than 0.25% by weight, the temperature at which β phase starts to be generated is lowered, and the rolling heating temperature is increased. A large amount of β phase is generated in the. Therefore, diffusion of C is promoted and TiC is thickly formed, resulting in deterioration of bonding characteristics. Further, when the O content is less than 0.15% by weight,
The transformation point of the intermediate material to be inserted on the side of the laminated material cannot be sufficiently raised, and when the heating temperature is raised to manufacture a wide material or a thick material, the intermediate material is Since the BCC structure is fast, TiC is formed thick and the bonding characteristics are deteriorated.

【0021】このため、極低炭素鋼の中間材のC含有量
を0.001〜0.01重量%、純チタンの中間材のF
e含有量を0.25重量%以下、O含有量を0.15重
量%以上とする。また、純チタンの中間材のFe含有量
が0.10重量%未満であると一層接合特性が改善され
る。なお、工業用純チタンの中間材のO含有量は0.4
重量%程度が実質的な上限となる。
Therefore, the C content of the intermediate material of ultra-low carbon steel is 0.001 to 0.01% by weight, and the F content of the intermediate material of pure titanium is F.
The e content is 0.25 wt% or less, and the O content is 0.15 wt% or more. Further, when the Fe content of the intermediate material of pure titanium is less than 0.10% by weight, the joining characteristics are further improved. The O content of the intermediate material of industrial pure titanium is 0.4.
The practical upper limit is about% by weight.

【0022】また、スラブ加熱温度T℃を、890≦T
≦150[O]−20[Fe](ただし、[O]、[F
e]はそれぞれO含有量、Fe含有量を示す。)に設定
することにより、従来よりも高温に制御することとな
り、脆化相の生成を抑制しつつ、圧延時の変形抵抗を低
下させて圧延時における圧延機の負荷を軽減することを
可能にするとともに、さらに1パスで素材に大圧下を加
えることを可能とし、これによって、より接合特性を改
善する効果がある。
The slab heating temperature T ° C. is 890 ≦ T
≦ 150 [O] -20 [Fe] (however, [O], [F
e] indicates the O content and the Fe content, respectively. ), The temperature will be controlled to a higher temperature than before, making it possible to reduce the deformation resistance during rolling and reduce the load on the rolling mill during rolling while suppressing the formation of the embrittlement phase. In addition, it is possible to apply a large reduction to the material in a single pass, which has the effect of further improving the joining characteristics.

【0023】スラブ加熱温度が890℃未満では圧延時
の変形抵抗を十分荷軽減することができず、また(89
0+150[O]−20[Fe])℃より高温である
と、合せ材側に挿入する純チタンも変態点を超えて、C
の拡散の速いBCC構造となるため、TiCが界面に厚
く形成されて、接合性の低下を招く。このため、スラブ
加熱温度T℃は、890≦T≦890+150[O]−
20[Fe]の範囲であることが好ましい。
If the slab heating temperature is less than 890 ° C., the deformation resistance during rolling cannot be sufficiently reduced, and (89
When the temperature is higher than 0 + 150 [O] -20 [Fe]) ° C, the pure titanium to be inserted on the side of the laminated material also exceeds the transformation point, and C
Since it has a BCC structure with fast diffusion of TiC, TiC is formed thick at the interface, leading to a decrease in bondability. Therefore, the slab heating temperature T ° C. is 890 ≦ T ≦ 890 + 150 [O] −
It is preferably in the range of 20 [Fe].

【0024】[0024]

【実施例】以下、本発明の具体的な実施例について説明
する。 (実施例1)表1に示す符号Aの化学組成を有し、厚さ
350mmの炭素鋼を母材とし、表2に示す符号Dの化
学組成を有し、厚さ50mmのチタン材を合せ材として
用いた。また母材側の中間材として表1に示す符号B1
〜B5の組成のうちB3の組成を有する厚さ1mmのも
のを用い、合せ材側の中間材として表2に示す符号C1
〜C7の組成のうちC3の組成を有する厚さ1mmのも
のを用いた。これら母材、合せ材および中間材を用い
て、1800mm幅×1800mm長、4500幅×1
800mm長、および1800mm幅×3600mm長
のスラブを組立て、これらスラブから(35+5)mm
厚×4200mm幅×7000mm長および17800
mm長、ならびに(70+10)mm厚×4200幅×
7000mm長のクラッド鋼板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. (Example 1) A carbon material having a symbol A shown in Table 1 and a carbon steel having a thickness of 350 mm was used as a base material, a chemical composition having a symbol D shown in Table 2 was used, and a titanium material having a thickness of 50 mm was combined. Used as a material. Further, as the intermediate material on the base material side, reference numeral B1 shown in Table 1
Of the composition B3 to B5 having a thickness of 1 mm, the reference numeral C1 shown in Table 2 is used as the intermediate material on the side of the laminated material.
.About.C7 having a thickness of 1 mm having a composition of C3 was used. 1800 mm width × 1800 mm length, 4500 width × 1 using these base material, laminated material and intermediate material
Assemble 800 mm long and 1800 mm wide x 3600 mm long slabs and (35 + 5) mm from these slabs
Thickness x 4200mm width x 7000mm length and 17800
mm length, and (70 + 10) mm thickness x 4200 width x
A clad steel plate having a length of 7,000 mm was manufactured.

【0025】また、合せ材側の高変態点を有する中間材
の有効性を確認するために、中間材を極低炭素鋼のみと
して、1800mm幅×1800mm長および1800
mm幅×3600mm長のスラブから、それぞれ(35
+5)mm厚×4200mm幅×7000mm長および
(70+10)mm厚×4200幅×7000mm長の
クラッド鋼板を製造した。
Further, in order to confirm the effectiveness of the intermediate material having a high transformation point on the side of the laminated material, only the ultra-low carbon steel is used as the intermediate material, and the width is 1800 mm width × 1800 mm length and 1800 mm.
From the slab of mm width x 3600 mm length, each (35
+5) mm thickness × 4200 mm width × 7000 mm length and (70 + 10) mm thickness × 4200 width × 7000 mm length of clad steel plate were manufactured.

【0026】さらに、圧延時の荷重の比較のために、従
来からの方法にて1800mm幅×1800mm長のス
ラブから(35+5)mm厚×3200mm幅×850
0mm長のクラッド鋼板を製造した。
Further, in order to compare the loads during rolling, a slab of 1800 mm width × 1800 mm length was used to measure (35 + 5) mm thickness × 3200 mm width × 850 by a conventional method.
A 0 mm long clad steel plate was produced.

【0027】スラブの組立寸法、スラブ寸法、スラブ加
熱温度およびクラッド鋼板の寸法を表3に示す。このと
きの予定したパススケジュールでの圧延の可否、接合特
性を劣化させるTiC相の圧延まま状態での厚さ、圧延
まま状態での剪断強度、およびR/t=1における側曲
げならびに裏曲げをした際の接合界面でのクラックの発
生の有無を表4に示す。
Table 3 shows the slab assembly dimensions, slab dimensions, slab heating temperature and clad steel sheet dimensions. At this time, whether or not rolling is possible according to the planned pass schedule, the thickness of the TiC phase that deteriorates the joining characteristics in the as-rolled state, the shear strength in the as-rolled state, and the side bending and back-bending at R / t = 1 are determined. Table 4 shows whether or not cracks were generated at the joint interface during the heating.

【0028】これらの表に示すように、本発明内の成分
組成を有する中間材を用い、本発明に従って製造され、
かつ好ましいスラブ加熱温度に設定した場合には、圧延
により4000mm幅超えおよび70mm厚超えのチタ
ンクラッド鋼板が製造可能であった。また、TiC層厚
は薄く、剪断強度は20kgf/mm2 以上と高く、曲
げ試験においても割れの発生はなく、4000mm幅超
えおよび70mm厚超えのチタンクラッド鋼板の接合特
性は、どの評価方法においても良好なものであった。
As shown in these tables, using an intermediate material having the component composition within the present invention, manufactured according to the present invention,
Further, when the preferable slab heating temperature was set, it was possible to manufacture a titanium clad steel sheet having a width exceeding 4000 mm and a thickness exceeding 70 mm by rolling. In addition, the TiC layer thickness is thin, the shear strength is as high as 20 kgf / mm 2 or more, cracks do not occur even in the bending test, and the joining characteristics of the titanium clad steel sheet over 4000 mm width and over 70 mm thickness are evaluated by any evaluation method. It was good.

【0029】(実施例2)表1に示す符号Aの化学組成
を有し、厚さ350mmの炭素鋼を母材とし、表2に示
す符号Dの化学組成を有し、厚さ50mmのチタン材を
クラッド材として用いた。また、母材側の中間材として
表1に示す符号B1〜B5の組成を有する厚さ1mmの
ものを用い、合せ材側の中間材として表2に示す符号C
1〜C7の組成を有する厚さ1mmのものを用いた。表
5に示す条件でスラブを組立て、スラブ加熱温度を90
0℃として、1800mm幅×1800mm長のスラブ
から(35+5)mm厚×4200mm幅×7200m
m長のクラッド鋼板を製造した。この際に、圧延加熱温
度を高温化したため、どの条件においても変形抵抗が低
く、圧延可能であった。
(Example 2) Titanium having a chemical composition of symbol A shown in Table 1 and using carbon steel having a thickness of 350 mm as a base material, having the chemical composition of symbol D shown in Table 2 and having a thickness of 50 mm The material was used as a clad material. Further, as the intermediate material on the base material side, one having a thickness of 1 mm having the composition of reference numerals B1 to B5 shown in Table 1 was used, and as the intermediate material on the mating material side, reference numeral C shown in Table 2 was used.
A 1 mm thick film having a composition of 1 to C7 was used. Assemble the slab under the conditions shown in Table 5, and set the slab heating temperature to 90.
At 0 ° C., from a slab with a width of 1800 mm and a length of 1800 mm, a thickness of (35 + 5) mm, a width of 4200 mm, and a width of 7200 m
An m-length clad steel plate was manufactured. At this time, since the rolling heating temperature was raised, the deformation resistance was low under any condition and rolling was possible.

【0030】この際における、接合特性を劣化させるT
iC相の圧延まま状態での厚さ、圧延まま状態での剪断
強度、R/t=1における側曲げおよび裏曲げをした際
の接合界面でのクラックの発生の有無を表5にあわせて
示す。
At this time, T which deteriorates the joining characteristics
Table 5 also shows the thickness of the iC phase in the as-rolled state, the shear strength in the as-rolled state, and the presence or absence of cracks at the joint interface when side bending and back bending at R / t = 1. .

【0031】表5に示すように、本発明内の成分組成を
有する中間材を用い、本発明に従って製造した場合に
は、TiC層厚は薄く、剪断強度は20kgf/mm2
以上と高く、曲げ試験においても割れの発生はなく、4
000mm幅超えおよび70mm厚超えのチタンクラッ
ド鋼板の接合特性は、どの評価方法においても良好なも
のであった。また、合せ材側の中間材のFe濃度が0.
10重量%未満であると、剪断強度は25kgf/mm
2 以上となり、一層接合特性が改善されることが確認さ
れた。以上の結果から明らかなように、本発明の条件内
であれば、現用の設備にて接合特性が優れた広幅および
厚肉のクラッド鋼板の製造が可能となる。
As shown in Table 5, when an intermediate material having the component composition within the present invention was used and produced according to the present invention, the TiC layer thickness was thin and the shear strength was 20 kgf / mm 2.
High as above, no cracks occurred in the bending test, and 4
The joining characteristics of the titanium clad steel plates having a width of more than 000 mm and a thickness of more than 70 mm were good in any evaluation method. Further, the Fe concentration of the intermediate material on the side of the laminated material is 0.
If it is less than 10% by weight, the shear strength is 25 kgf / mm.
It was confirmed that it was 2 or more, and the bonding characteristics were further improved. As is clear from the above results, within the conditions of the present invention, it is possible to manufacture a wide-width and thick-walled clad steel plate with excellent joining characteristics using the current equipment.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】なお、上述の890≦T≦890+150
[O]−20[Fe]式は、成分組成と変態点との関係
を詳細に検討した結果から得られた経験的な式である。
また、上記実施例では合せ材として純チタンを用いた
が、これに限るものではなく、Grade7やTi−6
Al−4VのようなTi合金を用いることができる。
The above-mentioned 890 ≦ T ≦ 890 + 150
The [O] -20 [Fe] formula is an empirical formula obtained from the result of detailed study of the relationship between the component composition and the transformation point.
In addition, although pure titanium was used as the bonding material in the above-mentioned examples, it is not limited to this, and Grade 7 or Ti-6 is used.
A Ti alloy such as Al-4V can be used.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
過大な設備負担なく現有設備にて優れた接合強度を有す
る広幅または厚肉の圧延チタンクラッド鋼板を製造する
ことができる。
As described above, according to the present invention,
It is possible to produce a wide or thick rolled titanium clad steel sheet having excellent bonding strength with existing equipment without excessive equipment burden.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 9/00 101 9352−4K C21D 9/00 101A C22C 14/00 C22C 14/00 Z 38/00 301 38/00 301Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C21D 9/00 101 9352-4K C21D 9/00 101A C22C 14/00 C22C 14/00 Z 38/00 301 38/00 301Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素鋼からなる母材とチタンまたはチタ
ン合金からなる合せ材との間に、中間材として、母材側
にC:0.001〜0.01重量%を含む極低炭素鋼板
を、合わ材側にFe:0.25重量%以下、O:0.1
5重量%以上を含む純チタン板を挿入してスラブを組み
立て、圧延することを特徴とするチタンクラッドクラッ
ド鋼板の製造方法。
1. An ultra low carbon steel sheet containing C: 0.001 to 0.01% by weight on the base material side as an intermediate material between a base material made of carbon steel and a composite material made of titanium or a titanium alloy. On the composite material side, Fe: 0.25 wt% or less, O: 0.1
A method for producing a titanium clad clad steel sheet, comprising inserting a pure titanium plate containing 5% by weight or more to assemble a slab and rolling the slab.
【請求項2】 スラブ加熱温度T℃を、890≦T≦8
90+150[O]−20[Fe](ただし、[O]、
[Fe]はそれぞれO含有量、Fe含有量を示す。)の
温度域として圧延することを特徴とする請求項1に記載
のチタンクラッド鋼板の製造方法。
2. The slab heating temperature T ° C. is 890 ≦ T ≦ 8
90 + 150 [O] -20 [Fe] (however, [O],
[Fe] indicates the O content and the Fe content, respectively. ) Rolling is carried out as a temperature range of 2), The manufacturing method of the titanium clad steel plate of Claim 1 characterized by the above-mentioned.
【請求項3】 中間材として、母材側にC:0.001
〜0.01重量%wo含む極低炭素鋼板を、合せ材側に
Fe:0.10重量%未満、O:0.15重量%以上を
含む純チタン板を用いることを特徴とする請求項1また
は請求項2に記載のチタンクラッド鋼板の製造方法。
3. An intermediate material, C: 0.001 on the base material side.
An ultra low carbon steel sheet containing .about.0.01 wt% wo, and a pure titanium plate containing Fe: less than 0.10 wt% and O: 0.15 wt% or more are used on the side of the laminated material. Or the manufacturing method of the titanium clad steel plate according to claim 2.
JP1443996A 1996-01-30 1996-01-30 Manufacture of rolling titanium clad steel plate Pending JPH09206961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1443996A JPH09206961A (en) 1996-01-30 1996-01-30 Manufacture of rolling titanium clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1443996A JPH09206961A (en) 1996-01-30 1996-01-30 Manufacture of rolling titanium clad steel plate

Publications (1)

Publication Number Publication Date
JPH09206961A true JPH09206961A (en) 1997-08-12

Family

ID=11861065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1443996A Pending JPH09206961A (en) 1996-01-30 1996-01-30 Manufacture of rolling titanium clad steel plate

Country Status (1)

Country Link
JP (1) JPH09206961A (en)

Similar Documents

Publication Publication Date Title
EP1790737B1 (en) A high strength steel excellent in uniform elongation properties and method of manufacturing the same
US9580766B2 (en) Low-density steel having good drawability
EP1264910B1 (en) Steel pipe having excellent formability and method for production thereof
EP1990430B1 (en) High-strength hot rolled steel plate and manufacturing method thereof
EP1726670A1 (en) Heat resistant titanium alloy sheet excelling in cold workability and process for producing the same
EP1726675A2 (en) Base material for a clad steel and method for the production of clad steel from same
WO1997046347A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
JP3699077B2 (en) Base material for clad steel plate excellent in low temperature toughness of weld heat affected zone and method for producing the clad steel plate
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
JP2001220641A (en) High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor
JP3297027B2 (en) High strength and high ductility α + β type titanium alloy
KR20000023754A (en) Alloy foil for liquid-phase diffusion bonding bondable in oxidizing atmosphere
JP3357226B2 (en) Fe-Cr alloy with excellent ridging resistance and surface properties
EP3831597A1 (en) Low-density clad steel sheet having excellent formability and fatigue property and manufacturing method therefor
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2008081758A (en) Ferrite-based stainless steel sheet having high spot-welding coupling hardness, and manufacturing method therefor
EP0269994A2 (en) Titanium-clad steel and method for the manufacture thereof
JP5070866B2 (en) Hot-rolled steel sheet and spot welded member
AU741094B2 (en) High-strength steel plate reduced in softening in weld heat-affected zone
JPH09206961A (en) Manufacture of rolling titanium clad steel plate
JP5012194B2 (en) Ferritic stainless steel sheet for water heater with high welded joint strength and manufacturing method thereof
JP3209081B2 (en) Manufacturing method of rolled titanium clad steel sheet
JPH09262687A (en) Manufacture of rolled titanium clad steel plate
JP2022038084A (en) Clad steel sheet and manufacturing method for the same and welded structure
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate