JPS62227597A - Thin two-phase stainless steel strip for solid phase joining - Google Patents

Thin two-phase stainless steel strip for solid phase joining

Info

Publication number
JPS62227597A
JPS62227597A JP7038186A JP7038186A JPS62227597A JP S62227597 A JPS62227597 A JP S62227597A JP 7038186 A JP7038186 A JP 7038186A JP 7038186 A JP7038186 A JP 7038186A JP S62227597 A JPS62227597 A JP S62227597A
Authority
JP
Japan
Prior art keywords
phase
stainless steel
joining
equiv
thin strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7038186A
Other languages
Japanese (ja)
Other versions
JPH0524980B2 (en
Inventor
Yasuhiro Maehara
泰裕 前原
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7038186A priority Critical patent/JPS62227597A/en
Publication of JPS62227597A publication Critical patent/JPS62227597A/en
Publication of JPH0524980B2 publication Critical patent/JPH0524980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Abstract

PURPOSE:To reduce the cost of joining by incorporating Fe, Cr and Ni as essential components into a thin strip and specifying Cr equiv. and Ni equiv. so as to satisfy the specific formulas and providing respectively prescribed % of solid soln. N content and alpha phase fraction to said strip. CONSTITUTION:The melt of the two-phase stainless steel contg. Fe, Cr and Ni as the essential components is so prepd. that the Cr equiv. and Ni equiv. expressed by formula I satisfies the condition formula expressed by formula II. The thin strip of the finely crystalline stainless steel is formed from such melt by quick cooling by a cooling roll method, etc. The solid soln. N content is specified to >=0.01% and the alpha phase fraction to >=80% in this stage. Such thin strip is held in place between joining stocks as cast or after cold rolling and the materials are pressurized and joined under heating in a gaseous N2 atmosphere. The superplasticity of the thin strip is easily obtd. by such method and therefore, the joint strength is improved and the cost of joining is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、2相系ステンレス鋼を用いた固相接合用薄帯
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ribbon for solid phase bonding using duplex stainless steel.

(従来の技術) 超塑性材料を使った固相接合についてはすでに良く知ら
れている〔例えば、([超塑性と金属加工技術」:超望
性研究会編(1980)、日刊工業新聞社、p、 15
1)参照〕。
(Prior art) Solid phase bonding using superplastic materials is already well known [for example, ([Superplasticity and metal processing technology], edited by Superplastic Research Group (1980), Nikkan Kogyo Shimbun, Inc., p. 15
See 1)].

しかしながら、−aに、超塑性材料は通常の加工におい
ては難加工性を示すものが多いので、その薄帯をサンド
インチ状にはさんだ固相接合のアイデアはあっても(特
開昭52−45567号)その実用化は困難であった。
However, in -a, many superplastic materials are difficult to process in normal processing, so even though there is an idea for solid-phase bonding in which thin strips are sandwiched in a sandwich-like manner (Japanese Patent Application Laid-Open No. 1983-1999-1), No. 45567) Its practical application was difficult.

固相接合の場合、厚さ数ミリの薄帯に成形しなければな
らず、工業的なコストで従来公知の超塑性材料をそのよ
うに加工することはできなかった。
In the case of solid phase bonding, the material must be formed into a thin strip several millimeters thick, and conventionally known superplastic materials could not be processed in this manner at industrial cost.

(発明が解決しようとする問題点) 本発明の目的は、上述のような従来技術の諸欠点を解消
した、超塑性を示ず固相接合用ステンレス鋼薄帯を従供
することである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a stainless steel ribbon for solid phase welding that does not exhibit superplasticity and eliminates the drawbacks of the prior art as described above.

(問題点を解決するための手段) かくして、本発明者は固相接合用の材料について種々検
討を重ねたところ、2相系ステンレス鋼で超塑性を示す
ものが、特にすぐれていることを知り、さらに研究を重
ね、その合金組成を特定化するとともに、加工性に難点
がある場合には、溶湯からの直接の成形によって薄帯と
することで、効果的な超塑性化とともに成形が行われる
ことを知り、本発明を完成した。
(Means for Solving the Problems) Thus, after conducting various studies on materials for solid phase bonding, the present inventor found that duplex stainless steel exhibiting superplasticity was particularly excellent. Through further research, the alloy composition was specified, and if there were problems with workability, it was formed into a thin strip by direct forming from the molten metal, resulting in effective superplasticity and forming. Knowing this, he completed the present invention.

ここに、本発明の要旨とするところは、Fe5CrsN
iを主成分として含有し、Cr eq =Cr+Mo+
1.5Si、 Ni eq =Nt+o、s Mn+3
00+25Nで示されるCr eqおよびNi eqが
次式を満足し、0.32 Cr eq−5≦N1eq≦
0.79 Cr eq  8.616≦Cr eq≦3
5 かつ、固溶N量が0.01%以上であって、α相分率が
80%以上の固相接合用2相系ステンレス鋼薄帯である
Here, the gist of the present invention is that Fe5CrsN
Contains i as a main component, Cr eq = Cr + Mo +
1.5Si, Ni eq = Nt+o, s Mn+3
Cr eq and Ni eq represented by 00+25N satisfy the following formula, and 0.32 Cr eq-5≦N1eq≦
0.79 Cr eq 8.616≦Cr eq≦3
5. The present invention is a two-phase stainless steel ribbon for solid phase bonding, in which the amount of solid solute N is 0.01% or more and the α phase fraction is 80% or more.

本発明の1態様によれば、前記薄帯は溶湯から好ましく
は急冷凝固により直接に成形されたものである。前記薄
帯の厚さは、薄い方が冷却速度を上げられ、かつ接合上
効率的であるので、好ましくは、その上限は2mmとす
る。下限は特にないが急冷薄帯製造上の理由により20
μmとなる。
According to one aspect of the invention, the ribbon is formed directly from the molten metal, preferably by rapid solidification. The upper limit of the thickness of the thin ribbon is preferably 2 mm, since the thinner the thinner the thinner the cooling rate, the more efficient the bonding will be. There is no particular lower limit, but for reasons of manufacturing the quenched ribbon, it is 20.
It becomes μm.

急冷凝固によれば、厚さ21以下という薄帯も問題なく
製造できる。しかも、急冷凝固ということで微細結晶質
とすることにより超塑性も一層有利に発現される。急冷
凝固法による場合は、得られる2相ステンレス鋼のα相
分率を80体積%以上とするように、その冷却速度を調
整する必要がある。なお、平衡状態ではα相分率は、2
0〜80%である。
According to rapid solidification, ribbons with a thickness of 21 mm or less can be produced without any problem. Moreover, superplasticity is more advantageously expressed by making the material microcrystalline due to rapid solidification. When using the rapid solidification method, it is necessary to adjust the cooling rate so that the α phase fraction of the resulting duplex stainless steel is 80% by volume or more. In addition, in the equilibrium state, the α phase fraction is 2
It is 0-80%.

このように、本発明は、好ましくは、急冷凝固によって
溶湯から直接に製造した超塑性に優れた薄帯であって、
これを使うことにより、その効果的超塑性に基づく優れ
た肉塊れにより密着性を一層改善し、接合の際必要とさ
れる拡散距離を極めて短いものとした拡散接合方法が可
能となるのである。
As described above, the present invention preferably provides a ribbon with excellent superplasticity produced directly from a molten metal by rapid solidification,
By using this, it is possible to further improve adhesion due to the excellent lump formation based on its effective superplasticity, and to enable a diffusion bonding method in which the diffusion distance required for bonding is extremely short. .

(作用) 次に、本発明において、合金組成を上述のように限定し
た理由を述べる。
(Function) Next, the reason why the alloy composition is limited as described above in the present invention will be described.

まず、上述のように限定されたNi eqおよびCre
qは750〜1200℃という固相接合条件下の平衡状
態でα/(α+γ)の比が0.2〜0.8となる範囲を
規定するものであって、そのような条件を満足する限り
、個々の具体的組成に係わらすα/(α+γ) =0.
2〜0.8が満足され、超塑性を実現される。好ましく
は、0.4 Cr eq −4≦N1eq ≦0.6 
Cr eq−7であって、Cr eq −20〜30で
ある。
First, Ni eq and Cre limited as described above
q defines the range in which the ratio of α/(α+γ) is 0.2 to 0.8 in an equilibrium state under solid phase bonding conditions of 750 to 1200°C, and as long as such conditions are satisfied, , α/(α+γ) = 0.
2 to 0.8 is satisfied, and superplasticity is achieved. Preferably, 0.4 Cr eq −4≦N1eq ≦0.6
Cr eq-7, and Cr eq -20 to 30.

Cr eqおよびNi eqをまず上述のように定義し
たのは、すでに述べたところからも明らかなように、そ
れぞれフェライト生成元素のCr換算当量、およびオー
ステナイト生成元素のNi換算当量を得るためである。
The reason why Cr eq and Ni eq are first defined as described above is to obtain the Cr-equivalent equivalent of the ferrite-forming element and the Ni-equivalent equivalent of the austenite-forming element, respectively, as is clear from what has already been said.

本発明の場合、CrおよびNiのより2相組織を調整す
るためそれぞれについて上述のように定義するのである
In the case of the present invention, each of Cr and Ni is defined as described above in order to adjust the two-phase structure.

また、それらを上述の範囲に限定したのは、その範囲で
α相とT相との2相組織となり、固相接合時の平衡状態
でα相の割合が0.2〜0.8となって優れた超塑性が
得られるからである。好ましくは、このα相分率は、5
0〜75体禎%である。
In addition, the reason why they are limited to the above-mentioned range is that within this range, the structure becomes a two-phase structure of α phase and T phase, and the ratio of α phase is 0.2 to 0.8 in the equilibrium state during solid phase bonding. This is because excellent superplasticity can be obtained. Preferably, this alpha phase fraction is 5
0-75% body weight.

本発明において利用する2相ステンレス鋼の主成分をF
es Cr、およびNiと限定したのは、他の元素を用
いた組合せでもα相とT相と2相混合組織を得ることが
できるけれども、それによって得られる材料の性質とコ
ストを考慮した場合に、Fe、Cr、 Niの3元素を
主成分とする方が有利となるからであり、好ましくは、
本発明で対象となる2相ステンレス鋼には、重量%でN
i:3〜18%、Cr:15〜35%であって、これら
の成分の他に、必要に応じて、MoS2.0%、Cu≦
1.0%、Ti≦0.5%、ZrS2.5%、Nb50
.5%、V 60.5%、w ≦t、o%、Co≦0.
5%、およびC50,1%の少なくとも1種を含有し、
あるいはさらに、SiS2.0%およびMnS2.0%
のうちの1種以上を含有したものや、また少量のRe、
 Ce、 La、もしくはCaを含んだものも包含され
る。残部はFeおよび不可避不純物である。
The main component of the duplex stainless steel used in the present invention is F
es Cr and Ni were selected because although it is possible to obtain a two-phase mixed structure of α phase and T phase by combining other elements, considering the properties and cost of the resulting material. This is because it is more advantageous to have three elements as main components: , Fe, Cr, and Ni, and preferably,
The duplex stainless steel targeted by the present invention contains N by weight%.
i: 3 to 18%, Cr: 15 to 35%, and in addition to these components, if necessary, MoS 2.0%, Cu≦
1.0%, Ti≦0.5%, ZrS2.5%, Nb50
.. 5%, V 60.5%, w≦t, o%, Co≦0.
5%, and at least one of C50.1%,
Or furthermore, SiS2.0% and MnS2.0%
Those containing one or more of the following, or a small amount of Re,
Those containing Ce, La, or Ca are also included. The remainder is Fe and unavoidable impurities.

なお、超塑性を発現させるためには、固溶N含有量が高
い方が好ましく 、Ti、 Zr等を添加した場合は、
実質的に固?8N≧0.01%と制限するのが好ましい
、その理由は、固相接合中に超塑性を発現させるために
はオーステナイト生成元素であり、拡散しゃすいNの量
を多くしないと、γ相の球状均一分散が生じ難く、その
下限が0.01%であるからである。
In addition, in order to express superplasticity, it is preferable that the solid solution N content is high, and when Ti, Zr, etc. are added,
Practically solid? It is preferable to limit 8N≧0.01% because it is an austenite-forming element in order to develop superplasticity during solid phase bonding, and unless the amount of diffused N is increased, the γ phase will This is because uniform spherical dispersion is difficult to occur and the lower limit is 0.01%.

Cについては特に制限されないが、炭化物を生成して製
品の性質を害するので極力低減するのがよい。好ましく
は、C50,05%とする。
C is not particularly limited, but it is best to reduce it as much as possible since it generates carbides and impairs the properties of the product. Preferably it is C50.05%.

さらに好ましくは、本発明において使用する2相系ステ
ンレス鋼は、重量%で、Ni:3.5〜9.0%、Cr
:17〜27%、Mo:1.0〜4.0%、N:0.0
5〜0.25%、および脱酸剤として0.5〜1.5%
程度の少量のStおよび/またはMn、ならびに残部F
eおよび不可避不純物から成る組成を有するが、要求さ
れる耐食性その他の性質によってはStやMnを積極的
にそれ以上添加してもよい。
More preferably, the duplex stainless steel used in the present invention has Ni: 3.5 to 9.0%, Cr
:17~27%, Mo:1.0~4.0%, N:0.0
5-0.25% and 0.5-1.5% as deoxidizer
a small amount of St and/or Mn, and the balance F
Although the composition consists of E and unavoidable impurities, more St or Mn may be actively added depending on the required corrosion resistance and other properties.

しかしながら、以上のように本発明にあっては、接合時
に平衡状態でα相分率20〜80%を呈するα+γ型2
相m織を呈する限りにおいてそのすぐれた超塑性現象を
利用できるのであって、上述の各種添加元素を加えても
実質上α+γ型2相組織は何ら変更を受けないことが確
認されている。
However, as described above, in the present invention, the α+γ type 2 exhibits an α phase fraction of 20 to 80% in an equilibrium state during bonding.
As long as it exhibits a phase-m weave, its excellent superplasticity phenomenon can be utilized, and it has been confirmed that the addition of the various additive elements described above does not substantially change the α+γ type two-phase structure.

このように調製した鋼を、本発明の好適例によれば、溶
湯から急冷して薄帯とする。
According to a preferred embodiment of the invention, the steel thus prepared is rapidly cooled from a molten metal into a ribbon.

本発明にかかる薄帯の製造方法は特に問わないが、一般
に2相系が難加工材であることを考えると、急冷凝固に
よるのが好ましく、通常の片ロール、双ロールもしくは
、その他の方法が適用できる。冷却速度は特に限定され
ないが!I織が、微細°になったほうが、後の超塑性変
形能を向上させるため、急冷後のα相量を80体積%以
上とするのが好ましいため、100℃/sec以上が好
ましい。より好ましくは103℃/sec以上である。
The method of manufacturing the ribbon according to the present invention is not particularly limited, but considering that two-phase materials are generally difficult to process, rapid solidification is preferred, and ordinary single roll, double roll or other methods are preferred. Applicable. Although the cooling rate is not particularly limited! If the I-weave becomes fine, the subsequent superplastic deformability will be improved, so it is preferable that the amount of α phase after quenching be 80% by volume or more, and therefore the cooling rate is preferably 100°C/sec or more. More preferably, it is 103° C./sec or higher.

冷却速度を上げる程α相の量は増加するので、冷却速度
の目安となる。このように急冷後に体積%でα相量を8
0%以上とするのは、接合温度に加熱したときに細かい
γ粒を多数析出せしめて超塑性を発現しやすくするため
であり、γ相が20%超存在するとそれらが粗大化して
超塑性に有害となるからである。
Since the amount of α phase increases as the cooling rate increases, it can be used as a guideline for the cooling rate. In this way, after quenching, the amount of α phase in volume% was reduced to 8
The reason why it is set to 0% or more is to make it easier to develop superplasticity by precipitating a large number of fine γ grains when heated to the bonding temperature.If the γ phase is present in excess of 20%, they will become coarse and become superplastic. This is because it is harmful.

このようにして得られた薄帯はそのまま固相接合に利用
することも可能であるが、板表面性状の改善およびさら
に後工程で組織を微細にするため、冷間加工等を施して
も良い。これらの処理は固相接合時に再結晶によって組
織を著しく微細化し、超塑性を向上させるが、それには
圧下率で20%以上の冷間加工を加えることが好ましい
The thin strip obtained in this way can be used as is for solid phase bonding, but it may also be subjected to cold working etc. in order to improve the plate surface properties and further refine the structure in the subsequent process. . These treatments significantly refine the structure through recrystallization during solid phase welding and improve superplasticity, but it is preferable to apply cold working at a reduction rate of 20% or more.

本発明により得られた固相接合用薄帯を使って同相接合
する場合、まず接合面を清浄面としてから750〜12
00℃に加熱し、例えば、0.5 kgf/m+m”以
上の加圧力をかけながら接合を行えばよい。
When performing in-phase welding using the solid-phase welding ribbon obtained according to the present invention, first make the joining surface a clean surface, and then
Bonding may be performed while heating to 00° C. and applying a pressure of, for example, 0.5 kgf/m+m” or more.

温度を750〜1200℃に限定する理由は、この範囲
で2相ステンレス鋼の超塑性が得やすいからであり、か
つ固相接合素材の組織が粗くなったすせず、本来の性質
を損なわないからである。より好ましくは900〜11
00℃とするのがよい。
The reason why the temperature is limited to 750 to 1200°C is that it is easy to obtain the superplasticity of duplex stainless steel in this range, and the structure of the solid phase joining material will not become coarse and its original properties will not be impaired. It is from. More preferably 900-11
It is preferable to set the temperature to 00°C.

加熱は、そのような方法であっても良いが、スケール防
止のため、2相系ステンレス鋼中に多量に含有される窒
素を多く含有するNtガス雰囲気中で加熱することが好
ましい。
The heating may be performed by such a method, but in order to prevent scaling, it is preferable to perform heating in an Nt gas atmosphere containing a large amount of nitrogen, which is contained in a large amount in two-phase stainless steel.

接合のための圧縮力は、例えば0.5 kgf/nm”
以上であるが、余り大きすぎると座屈、変形が大きくな
るため、10kgf/mm”以下にとどめるのが望まし
い。
The compressive force for bonding is, for example, 0.5 kgf/nm"
As mentioned above, if it is too large, buckling and deformation will increase, so it is desirable to keep it below 10 kgf/mm''.

加熱、加圧により接合された2相系ステンレス鋼は、そ
のまま冷却されるが、冷却中にシグマ相などの金属間化
合物が生成するとその後の靭性を著しく害するため、5
℃/min以上の冷却速度で冷却し、できれば1000
〜1200℃近傍で加工後急冷すれば溶体化処理を施し
たのと実質的に同じとなるため好ましい。
Duplex stainless steel that has been joined by heating and pressurization is cooled as is, but if intermetallic compounds such as sigma phase are formed during cooling, the subsequent toughness will be significantly impaired.
Cool at a cooling rate of ℃/min or higher, preferably 1000℃
It is preferable to rapidly cool the material after processing at around 1200 DEG C., since this is substantially the same as solution treatment.

接合に供する素材としては特に限定されないが、拡散接
合性が良く異種元素間の拡散速度の著しい差によって生
ずるカーケンダルボイド等を生じにくい鉄基合金が好ま
しく、低合金鋼、オーステナイト系、フェライト系ステ
ンレス鋼が適用でき、Ni基合金にも適用が可能である
The material used for bonding is not particularly limited, but iron-based alloys that have good diffusion bonding properties and are less likely to produce Kirkendall voids caused by significant differences in diffusion rates between different elements are preferred, such as low-alloy steel, austenitic stainless steel, and ferritic stainless steel. Steel can be applied, and Ni-based alloys can also be applied.

次に、実施例によって本発明をさらに詳述するが、それ
らは単に本発明の例として示すもので、それによって本
発明が不当に制限されるものではない。
Next, the present invention will be explained in further detail with reference to Examples, but these are merely shown as examples of the present invention, and the present invention is not unduly limited thereby.

実施例 第1表に示す化学組成の溶湯を20〜200Orpmで
回転する直径3001III11の超硬合金製双ロール
、または直径400mmのCu製単ロール表面上に0.
5 X 15mm口径のノズルより噴射し、50〜30
0 μm厚、幅15mmの急冷薄帯を作製した。鋳造ま
ま、もしくはそれらのいくつかについては冷間圧延を行
った後、直径15mmの端面をエメリー紙でl600仕
上げとした種々の接合素材で上記薄帯をはさみN2ガス
雰囲気中で局部的に間周波加熱し、所定の温度に昇温し
てから、所定の加圧力で所定の時間加圧し放冷した。そ
の後、1000℃未満の温度で圧接したものについては
所定の熱処理を施した。
EXAMPLE A molten metal having the chemical composition shown in Table 1 was deposited on the surface of two cemented carbide rolls with a diameter of 3001III11 or a single roll made of Cu with a diameter of 400 mm rotating at 20 to 200 rpm.
Sprayed from a nozzle with a diameter of 5 x 15 mm, 50 to 30
A quenched ribbon with a thickness of 0 μm and a width of 15 mm was produced. Either as cast or after cold rolling for some of them, the above thin strips are sandwiched between various bonding materials with 15 mm diameter end faces finished with l600 emery paper and locally interfrequency applied in an N2 gas atmosphere. After heating and raising the temperature to a predetermined temperature, it was pressurized at a predetermined pressure for a predetermined time and allowed to cool. Thereafter, those bonded under pressure at a temperature of less than 1000°C were subjected to a prescribed heat treatment.

これらより、平行部の直径10m5、長さ40mo+の
引張試験片を切り出し、常温にて引張試験を行った。
From these, a tensile test piece with a parallel part diameter of 10 m5 and a length of 40 mo+ was cut out and subjected to a tensile test at room temperature.

それぞれの条件と試験結果とを第2表にまとめて示すが
、本発明によって容易に固相接合が行われることが分か
る。
The respective conditions and test results are summarized in Table 2, and it can be seen that solid phase bonding is easily performed according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)Fe、Cr、Niを主成分として含有し、Cre
q=Cr+Mo+1.5Si、Nieq=Ni+0.5
Mn+30C+25Nで示されるCreqおよびNie
qが次式を満足し、0.32Creq−5≦Nieq≦
0.79Creq−8.616≦Creq≦35 かつ、固溶N量が0.01%以上であって、α相分率が
80%以上の固相接合用2相系ステンレス鋼薄帯。
(1) Contains Fe, Cr, and Ni as main components, and contains Cre
q=Cr+Mo+1.5Si, Nieq=Ni+0.5
Creq and Nie denoted by Mn+30C+25N
q satisfies the following formula, 0.32Creq-5≦Nieq≦
0.79Creq-8.616≦Creq≦35 A two-phase stainless steel ribbon for solid phase bonding, which has a solid solution N content of 0.01% or more and an α phase fraction of 80% or more.
(2)溶湯から直接に薄帯に成形された、特許請求の範
囲第1項記載の固相接合用2相系ステンレス鋼薄帯。
(2) A two-phase stainless steel ribbon for solid-phase bonding according to claim 1, which is formed into a ribbon directly from a molten metal.
(3)厚さが2mm以下である、特許請求の範囲第1項
または第2項記載の固相接合用2相系ステンレス鋼薄帯
(3) The two-phase stainless steel ribbon for solid phase bonding according to claim 1 or 2, which has a thickness of 2 mm or less.
JP7038186A 1986-03-28 1986-03-28 Thin two-phase stainless steel strip for solid phase joining Granted JPS62227597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7038186A JPS62227597A (en) 1986-03-28 1986-03-28 Thin two-phase stainless steel strip for solid phase joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7038186A JPS62227597A (en) 1986-03-28 1986-03-28 Thin two-phase stainless steel strip for solid phase joining

Publications (2)

Publication Number Publication Date
JPS62227597A true JPS62227597A (en) 1987-10-06
JPH0524980B2 JPH0524980B2 (en) 1993-04-09

Family

ID=13429805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7038186A Granted JPS62227597A (en) 1986-03-28 1986-03-28 Thin two-phase stainless steel strip for solid phase joining

Country Status (1)

Country Link
JP (1) JPS62227597A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271991A (en) * 1993-03-18 1994-09-27 Nippon Yakin Kogyo Co Ltd Superplastic dual phase stainless steel minimal in deformation resistance at low temperature and excellent in elongation characteristic
WO2008129622A1 (en) * 2007-04-09 2008-10-30 Toshiaki Kitazawa Method of bonding steel members, method of enhancing bond strength of bonded object comprising steel members, and steel product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
JP2014190664A (en) * 2013-03-28 2014-10-06 Nisshin Steel Co Ltd Stainless steel heat exchanger component and manufacturing method therefor
WO2014184890A1 (en) * 2013-05-15 2014-11-20 日新製鋼株式会社 Process for producing stainless steel diffusion-joined product
JP2016513184A (en) * 2013-02-26 2016-05-12 エイティーアイ・プロパティーズ・インコーポレーテッド Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143055A (en) * 1983-02-03 1984-08-16 ハンチントン,アロイス,インコ−ポレ−テツド Soldering alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143055A (en) * 1983-02-03 1984-08-16 ハンチントン,アロイス,インコ−ポレ−テツド Soldering alloy

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271991A (en) * 1993-03-18 1994-09-27 Nippon Yakin Kogyo Co Ltd Superplastic dual phase stainless steel minimal in deformation resistance at low temperature and excellent in elongation characteristic
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
WO2008129622A1 (en) * 2007-04-09 2008-10-30 Toshiaki Kitazawa Method of bonding steel members, method of enhancing bond strength of bonded object comprising steel members, and steel product
JP5208106B2 (en) * 2007-04-09 2013-06-12 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, and steel products
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
JP5198458B2 (en) * 2007-09-14 2013-05-15 セイコーエプソン株式会社 Method for joining steel members, method for strengthening joining force in joined bodies composed of steel members, steel products and die-cast products
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
JP2016513184A (en) * 2013-02-26 2016-05-12 エイティーアイ・プロパティーズ・インコーポレーテッド Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
JP2014190664A (en) * 2013-03-28 2014-10-06 Nisshin Steel Co Ltd Stainless steel heat exchanger component and manufacturing method therefor
WO2014184890A1 (en) * 2013-05-15 2014-11-20 日新製鋼株式会社 Process for producing stainless steel diffusion-joined product
US9987706B2 (en) 2013-05-15 2018-06-05 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Also Published As

Publication number Publication date
JPH0524980B2 (en) 1993-04-09

Similar Documents

Publication Publication Date Title
JPS62227597A (en) Thin two-phase stainless steel strip for solid phase joining
JP5728547B2 (en) Low density steel with good stamping performance
JP2733016B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
US3250611A (en) Corrosion-resisting steel and method of processing
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPS59162254A (en) Fe alloy material of superior workability
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3812488B2 (en) High-strength steel with excellent workability and material uniformity and method for producing the same
JPH1030122A (en) Production of hot rolled steel strip with high strength and high toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH0314899B2 (en)
JPS62227598A (en) Thin fe alloy strip for solid phase joining
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JPH02151377A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JPH0317244A (en) High strength hot rolled steel plate high having excellent workability and weldability and its manufacture
JPS6337177B2 (en)
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JP3051274B2 (en) Clad steel and method for manufacturing clad steel
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JP2590600B2 (en) Method for producing rolled nickel-base alloy clad steel sheet
JPS5855529A (en) Preparation of thick high-tensile strength hot-rolled steel sheet excellent in low-temperature toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees