JP3511272B2 - Manufacturing method of high Young's modulus steel sheet - Google Patents

Manufacturing method of high Young's modulus steel sheet

Info

Publication number
JP3511272B2
JP3511272B2 JP11946895A JP11946895A JP3511272B2 JP 3511272 B2 JP3511272 B2 JP 3511272B2 JP 11946895 A JP11946895 A JP 11946895A JP 11946895 A JP11946895 A JP 11946895A JP 3511272 B2 JP3511272 B2 JP 3511272B2
Authority
JP
Japan
Prior art keywords
rolling
steel
modulus
less
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11946895A
Other languages
Japanese (ja)
Other versions
JPH08311541A (en
Inventor
秀治 岡口
和茂 有持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11946895A priority Critical patent/JP3511272B2/en
Publication of JPH08311541A publication Critical patent/JPH08311541A/en
Application granted granted Critical
Publication of JP3511272B2 publication Critical patent/JP3511272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は建築およびその他の鋼構
造物、または溶接鋼管等に使用するヤング率の高い鋼板
の製造方法に関する。 【0002】 【従来の技術】鉄鋼を用いた構造物や部品において応力
が加わった場合、変形の始まるまでの強度すなわち降伏
強度や、破壊に至るまでの強度すなわち引張り強度ある
いは破断強度が必要であるが、剛性が重要な場合も多
い。鋼材の降伏強度や引張り強度は、合金成分、製造方
法、熱処理等によって向上させることが可能であるのに
対し、この鋼材の剛性の指標であるヤング率は、通常、
その成分や製造方法、あるいは熱履歴によってほとんど
変化せず、 21000〜21500kgf/mm2 程度のほぼ一定値を
示す。したがって、剛性がどうしても必要な構造物や部
品の場合は、その応力の加わる方向に対する垂直断面の
面積を小さくすることができない。例えば同じ外径の鋼
管で作った梁を考えると、そのたわみを小さくするに
は、鋼の強度を高くしても効果がなく、肉厚を厚くせざ
るを得ないのである。しかし、もし鋼材のヤング率を高
めることができれば、使用鋼材のより一層の削減や軽量
化が可能になってくる。 【0003】多くの金属において、その単結晶でヤング
率を調べると <111>結晶軸方向が最高で、 <100>結晶軸
方向が最低の値を示す。鉄の場合も <111>軸方向が 290
00 kgf/mm2 で最高値を示し、 <100>結晶軸方向が最小
の 13500 kgf/mm2 である。 【0004】鋼材は通常微細な金属結晶からできてお
り、その上、一般の製造方法ではその各結晶の方向がラ
ンダム化していているので、鋼材全体としてはほぼ一定
の平均化されたヤング率を示す。このような結晶方位か
ら板面内のヤング率の向上を考えると、鋼板を構成する
各結晶の<111> 軸が、板面と平行であるような優先方位
をもつ集合組織にすることができれば、ヤング率の高い
鋼板になる可能性がある。 【0005】しかしながら、フラットロールを用いて圧
延する通常の鋼板の熱間や冷間の圧延方法においては、
<111> 軸が板面と平行となる集合組織を形成させること
は容易でなく、唯一の可能性のある優先方位としては
112 <110> 方位がある。この方位を発達させることがで
きれば、圧延方向に垂直である幅方向に対して<111>軸
が平行に向いた結晶粒が多くなり、幅方向だけでもヤン
グ率が向上できると考えられる。 【0006】このような特定方向だけでもヤング率の高
い鋼板を得る製造方法に関し、いくつかの発明が提示さ
れている。例えば、特公昭58-14849号公報には、C:0.
20%以下、Si:0.01〜 1.0%以下、Mn:0.3 〜 2.0
%、Al:0.001 〜0.20%の鋼にて、熱間圧延の際Ar
3 点以下のフェライト+オーステナイト2相温度域で5
%以上の圧延を行い、圧延後15℃/s以下の冷却を行っ
た後、 700℃以下の温度域で焼戻す方法が提示されてお
り、また、特開昭 57-2837号公報には、Ar3点が780
℃以下の鋼に対し、780 ℃以下Ar3 点以上で 5%以
上、Ar3 点以下5%未満の熱間圧延と、冷却後の 2%
以上の冷間圧延とを組み合わせる方法の発明が示されて
いる。熱間圧延工程にて冷間圧延相当のフェライト相温
度域の圧延をおこなう方法として、特公昭 62-4448号公
報には、Ar3 点温度以下 600℃以上の温度範囲での累
積圧下率を10〜60%とし、 450〜 720℃で巻取る方法の
発明が提示されている。 【0007】これらの発明は、いずれもフェライト相の
圧延加工により圧延直角方向のヤング率を高めるもの
で、フェライト域圧延での集合組織の優先方位を形成さ
せることによっている。しかし、通常のフェライト域の
圧延である冷間圧延をおこなうと硬化してしまうので焼
鈍が必要となり、その軟化の際の再結晶や粒成長により
ヤング率向上に好ましい集合組織が消失することが多
い。また、熱間圧延工程でフェライト域圧延をおこなう
には、変形抵抗が増大するため潤滑熱延など製造上特別
の処置を必要とする。これに対し、特開平 5-247530 公
報に提示された発明は、C:0.05%以下、Mn: 0.5%
以上で、Nbを0.01〜0.07%含む鋼にて、熱延の加熱温
度を1100℃以上、仕上げ圧延開始温度を 950℃以下と
し、仕上げ圧延終了温度を(Ar3 + 100〜Ar3 −5
0)℃として巻取る方法で、変形抵抗の大きくならない
高温で圧延を完了できるとしている。 【0008】以上のようにこれまでの発明は、いずれも
ホットストリップミルによる薄い鋼板を製造する方法で
あり、熱間圧延とはいえAr3 点以下の低温域での強加
工、またはAr3 点以下の低温域での加工に冷間加工を
加えたものであるため、大型構造材への適用は難しく、
また圧延条件を緩和すればヤング率の向上が期待できな
い。 【0009】 【発明が解決しようとする課題】本発明は、特に大型構
造物や溶接鋼管などに用いられる、厚鋼板や熱延鋼板の
ヤング率を高くすることを目的とし、Ar3 点以下の低
温域圧延や冷間圧延をほとんど施すことなく高ヤング率
鋼板を製造する方法に関する。 【0010】 【課題を解決するための手段】フェライト+オーステナ
イト二相域またはフェライト単相域での圧延は、確かに
圧延直角方向ヤング率が向上するが、板厚が厚くなると
低温域での十分な圧延加工は極めて難しくなる。そこで
本発明者らは鋼板のヤング率におよぼす鋼材成分や圧延
条件の影響に関し、比較的厚い鋼板を対象に、特に低温
域での圧延をできるだけ避けた製造方法の実現の可能性
を種々検討した。 【0011】その結果、Nb、BおよびMoなどがヤン
グ率向上に効果のあることがわかった。そして、これら
の元素は単独で添加した場合、Ar3 点近傍ないしはそ
れ以下の温度域で強加工すればヤング率が向上する効果
はあるが、Ar3 点よりも高い温度域では加工度を大き
くしてもその効果が低下してきた。ところが、含有量を
十分にとり、さらにNb、MoおよびBの2種以上を複
合添加すれば、Ar3点未満よりもAr3 点以上での圧
延の方がより一層ヤング率を向上させ得ることが明らか
になった。 【0012】これらの、圧延方向に直角方向のヤング率
が向上した鋼板の集合組織を調べると、 112 <110> 優
先方位が発達しており、 <111>軸が鋼板の圧延直角方向
に向いた結晶粒が多く生じていることがわかった。これ
はNb、MoおよびBの複合添加によって、Ar3 点以
上のオーステナイト域での圧延集合組織、あるいはその
後の変態集合組織が変化したためと考えられた。 【0013】これら元素の、十分な含有量および複合添
加の効果の例を後出の実施例の図1に示すが、Nbのみ
でしかも含有量が不十分な場合に比し、MoやBをNb
とともに十分に添加した場合は、圧延仕上げ温度をAr
3 点より上の温度とした方がヤング率がすぐれているこ
とがわかる。このような知見から、さらに成分量や圧延
条件の限界、あるいは他の元素添加の効果などを確認の
上、本製造方法の発明に至ったのである。 【0014】本発明の要旨とするところは、重量割合に
て、C:0.02〜0.15%、Mn:0.4〜2.0%、Si:0.80%
以下、Al:0.001〜0.06%、Cu:1.5%以下、Ni:
3.0%以下、Cr:0.60%以下、V:0.10%以下、T
i:0.10%以下、およびCa:0.0050%以下で、さらに
Nb:0.005〜0.10%、Mo:0.05〜0.80%およびB:
0.0003〜0.0030%のうちの2種以上を含有し、かつ、 0.15≦5Nb+Mo+250B+3Ti+1.5V≦1.2 … (1) を満足する残部は不可避不純物およびFeからなる鋼片
を、熱間圧延して鋼板とする際、950℃からAr点の
間の累積圧下率を50%以上、Ar点未満の累積圧下率
を5%以下とすることを特徴とする高ヤング率鋼板の製
造方法である。 【0015】このようにして得られた鋼板は、切断、変
形加工、溶接等により目的とする構造物に適用される
が、鋼管や角管あるいは軽量形鋼など溶接して鋼製品と
する素材に使用すれば、製品の剛性を向上させることが
できる。とくに鋼管の場合、曲げ応力が主な構造用には
元の板の方向と鋼管の軸方向とには関係なく曲げ剛性を
高めることができるが、軸方向に応力の加わる用途には
板の幅方向が鋼管の軸方向となるようにすればすればよ
い。 【0016】 【作用】各成分および製造条件の限定理由は次のとおり
である。 【0017】(1) C Cは鋼板及び鋼管の強度を確保する目的で所要量含有さ
せるが、0.02%未満では構造材として必要とする強度を
確保することが難しく、一方、0.15%を越える含有は、
高いヤング率が得難くなるだけでなく、母材及び溶接部
の靭性が低下してくる。したがって、C含有量は0.02〜
0.15%とするが、安定して高ヤング率を得るにはC量は
0.06%以下が望ましい。 【0018】(2) Si Siは脱酸および強度上昇のために添加する。ただし、
Alを十分添加し脱酸される場合はなくてもよい。ま
た、多すぎると溶接する場合の溶接部靭性を劣化させる
ので添加する場合の含有量は0.80%以下とする。 【0019】(3) Mn MnはSによる熱間脆性防止と強度確保のために含有さ
せる成分であり、その添加量は他の強度向上成分とバラ
ンスをとりつつ制御する。また、本発明では後述のよう
に 950℃からAr3 点の間の累積圧下率を50%以上とす
るが、Mnの含有量を増すとAr3 点が低下するので、
この間の温度域を拡げるのにも有効である。 0.4%未満
の含有量ではこれらの効果が十分現われず、また 2.0%
を越えて含有させると母材、接合部共に靭性低下を招く
ので、Mnの含有量は 0.8〜 2.0%とする。 【0020】(4) Al Alは健全な鋳片を得るための十分な脱酸に必須の元素
である。その含有量が0.001 %未満では脱酸不十分とな
り、0.08%を越えて含有させると、溶接の際、接合部の
靭性を劣化させるので好ましくない。したがってその含
有量は 0.001〜0.08%に規制する。 【0021】(5) Nb、MoおよびB、必要に応じてさ
らにTiおよびV これらの元素はいずれも母材の強度を向上させるだけで
なく、本発明の目的であるヤング率の向上を実現させる
上で重要な元素である。 【0022】特にNb、MoおよびBの3元素は、その
中の2種以上を必ず添加する必要がある。これらの元素
の添加効果が発揮される含有量範囲はそれぞれ異ってお
り、Nbは 0.005〜0.10%、Moは0.05〜0.80%、そし
てBは0.0003〜0.0030%、である。各元素のこれらの規
制含有量範囲未満では添加の効果がなく、一方それらの
範囲を超えると効果が飽和してしまうばかりでなく、靭
性低下などの弊害が現われる。 【0023】TiおよびVも、鋼の強度を上昇させる効
果があり、CやNなどとの結合による析出硬化作用であ
るとされている。したがって、強度が不要の場合は添加
しなくてもよいが、鋼の強度に応じ必要があれば添加す
る。さらに、これらの元素はNb、MoおよびBの複合
添加のヤング率向上効果を補う作用がある。 【0024】TiおよびVの、添加の効果を発揮させる
ために望ましい含有量は、それぞれTiの場合 0.005%
以上、Vの場合0.01%以上である。しかし、どちらの元
素も0.10%を超えて含有させると鋼板やその溶接部の靭
性が劣化してくるので、添加する場合はいずれも0.10%
までの含有量とする。 【0025】以上のヤング率向上に有効な5元素のそれ
ぞれの含有量範囲は、上記のとおりであり、複合含有さ
せ後述の圧延条件にて熱間圧延することによって、圧延
と直角の方向のヤング率を飛躍的に向上させることがで
きる。ただし、各元素の合計の含有量は次の (1)式の範
囲内になければならない。 【0026】 0.15≦ 5Nb+Mo+ 250B+ 3Ti+ 1.5V≦ 1.2 ・・・ (1) この式で規制される範囲未満の含有量では添加の効果が
不十分であり、この範囲を超えると効果が飽和してしま
うばかりでなく、靭性低下などの弊害が現われる。 【0027】(6) Cu、NiおよびCr これらの元素は、強度を要しない場合には添加しなくて
もよいが、適正量を添加することによって強度と靭性の
バランスのすぐれた鋼材を製造することが可能となる。
ただし添加する場合の含有量は、それぞれCuで1.50%
以下、Crで0.60%以下、Niで3.00%以下とすべき
で、これらの値を超えると鋼の強度を過度に高めたり靭
性を損なう結果となる。 【0028】(7) Ca Caは添加しなくてもよいが、少量含有させると鋼中の
酸化物・硫化物系介在物の形態を変え、母材の靭性や耐
食性が改善されるので、必要により添加する。 【0029】この目的を達するためには、0.0002%以上
含有させなければならない。 【0030】添加する場合の望ましい含有量は0.0002%
以上であるが、過剰に添加すると清浄度の低下を招いて
粗大な介在物が多量に形成され、強靭性のみならず、耐
食性も大きく劣化するので、多くても0.0050%以下とす
る。 【0031】(8) P、SおよびN これらの元素はいずれも鋼の不可避的不純物であり、母
材や溶接部の靭性を劣化させるので少なければ少ないほ
どよい。鋼の特性に対し目立った悪影響をおよぼさない
範囲として望ましいのは、Pは0.03%以下、Sは0.02%
以下、そしてNは0.01%以下である。 【0032】(9) 熱間圧延条件 950℃からAr3 点までの温度域における累積圧下率
は、上記に規制した化学組成を有する鋼の鋼板製品のヤ
ング率向上に極めて重要であり、この温度域において、
50%以上必要である。特に 850℃からAr3 点までの温
度域にて十分に加工を加えることができれば、さらに効
果的である。この累積圧下率の上限は温度降下と変形抵
抗の増加から限度はあるが、特に規制はしない。しか
し、累積圧下率が50%未満の場合は、十分に高いヤング
率を得ることができない。 【0033】950℃を超える圧延温度で、50%以上の累
積圧下をおこなってもヤング率の向上が得られないの
は、高温では圧延ロールから離れた直後から始まる加工
歪みの解放および再結晶が速やかに進行してしまい、圧
延加工組織の累積効果がなくなるためと考えられる。圧
延前の鋼片の加熱温度は、 950℃からAr3 点までの温
度域における累積圧下率が50%以上確保される条件が達
成できるなら、特には規制しない。 【0034】本発明で定める化学組成の鋼においては、
Ar3 点未満の二相域またはフェライト単相域の圧延加
工はヤング率の向上に効果がないので、この温度域での
圧延はおこなう必要はない。この温度域の圧延は、変形
抵抗が増し圧延荷重が大きくなることや、ヤング率の低
下をきたすことがあるので、圧延の過程でこの温度域に
かかったとしても、その加工度は多くても 5%までとす
る。 【0035】圧延後の冷却については特に限定しない
が、ヤング率を少しでも高める意味では、望ましいのは
圧延後空冷または徐冷するよりも、板厚中心部の冷却速
度にて15℃/s以上の加速冷却をすることである。ま
た、圧延冷却後に後熱処理をするとすれば 650℃以下、
できれば 300〜 500℃間が望ましい。 【0036】 【実施例】 〔実施例1〕表1に化学組成を示す鋼番号A、Bおよび
Oのスラブを用い、 950℃以下の温度範囲における累計
圧下率を75%とし、仕上げ温度を変え特にに仕上げ温度
に近い温度域での圧下率を大きくして圧延し、10mm厚に
仕上げた。圧延後の鋼板は直ちに約20℃/sの冷却速度
で強制冷却した。この場合、Ar3 点は圧延の変形抵抗
から推定していずれの鋼も約 760℃であった。得られた
鋼板により幅10mm、長さ60mmの試験片を切出し、横振動
法により常温でのヤング率を測定した。 【0037】 【表1】【0038】仕上げ温度に対する鋼板の圧延直角方向の
ヤング率の変化を図1に示す。鋼番号A(0.03Nb−0.25
Mo)および鋼番号B(0.03Nb−0.15Mo 0.0012 )は、
(1)で示されるヤング率向上に有効な成分およびその
量が本発明で定める範囲に入っている鋼であり、鋼番号
O(0.02Nb)は有効成分がNbだけで、しかもその量は
不十分なものである。 【0039】0.02Nbの鋼Oは約 760℃のAr3 点を下
回る温度の圧延にてヤング率が向上している。これに対
し、鋼Aおよび鋼BはAr3 点よりも高い温度で仕上げ
る方がより高いヤング率を示し、 800℃前後の温度にて
最高値を示すことがわかる。 【0040】〔実施例2〕表1に化学組成を示す鋼番号
C〜LおよびP〜Tの鋼スラブを用い、表2に示す条件
で熱間圧延を施し、厚さ10mmの鋼板を製造した。得られ
た鋼板について、実施例1と同じ方法で圧延直角方向の
ヤング率を測定した。結果を併せて表2に示す。 【0041】 【表2】【0042】試作番号16〜18は成分が本発明で定める範
囲に入る試作番号 1〜 4と同じ鋼によるものであるが、
950℃〜Ar3 点の温度域での圧下率が不十分であった
り、Ar3 点未満の温度域における圧下率が大きすぎた
ため、ヤング率は十分向上していない。また、試作番号
19〜23は圧延条件は本発明で定める範囲に入っている
が、鋼組成としては本発明外である。 【0043】このように、本発明で定める成分および圧
延条件で製造された試作番号 1〜15の圧延直角方向のヤ
ング率は、通常の方法で製造された場合に比較して15%
以上向上していることがわかる。 【0044】 【発明の効果】本発明の製造方法によれば、Ar3 点以
下での低温度域での強加工を行うことなく鋼板圧延直角
方向のヤング率を大きく向上することができる。したが
って本発明の方法を利用することにより、高いヤング率
を有する厚鋼板または熱延鋼板を効率的に生産すること
が可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet having a high Young's modulus for use in buildings and other steel structures or welded steel pipes. 2. Description of the Related Art When stress is applied to a structure or a component using steel, strength until deformation starts, ie, yield strength, and strength until fracture, ie, tensile strength or breaking strength, are required. However, rigidity is often important. Yield strength and tensile strength of steel can be improved by alloy components, manufacturing methods, heat treatment, etc., whereas Young's modulus, which is an index of the rigidity of this steel, is usually
It hardly changes due to its components, manufacturing method or heat history, and shows a substantially constant value of about 21000 to 21500 kgf / mm 2 . Therefore, in the case of a structure or a component that absolutely requires rigidity, the area of a cross section perpendicular to the direction in which the stress is applied cannot be reduced. For example, considering a beam made of steel pipes having the same outer diameter, increasing the strength of the steel has no effect in reducing the deflection, and the thickness must be increased. However, if the Young's modulus of the steel material can be increased, it is possible to further reduce the weight of the steel material used. In many metals, when the Young's modulus of a single crystal is examined, the <111> crystal axis direction shows the highest value and the <100> crystal axis direction shows the lowest value. For iron, the <111> axis direction is 290
The highest value is shown at 00 kgf / mm 2 , and the <100> crystal axis direction is the smallest at 13500 kgf / mm 2 . [0004] A steel material is usually made of fine metal crystals, and furthermore, in a general manufacturing method, the direction of each crystal is randomized, so that the steel material as a whole has a substantially constant averaged Young's modulus. Show. Considering the improvement of the in-plane Young's modulus from such a crystal orientation, if the <111> axis of each crystal constituting the steel plate can be made to have a texture with a preferred orientation such that it is parallel to the plate surface , The steel sheet may have a high Young's modulus. [0005] However, in a normal hot or cold rolling method of a steel sheet rolled using a flat roll,
It is not easy to form a texture with the <111> axis parallel to the plate surface, and the only possible preferred orientation is
There are 112 <110> directions. If this orientation can be developed, it is considered that the number of crystal grains whose <111> axis is parallel to the width direction perpendicular to the rolling direction increases, and the Young's modulus can be improved only in the width direction. Several inventions have been proposed for a method of producing a steel sheet having a high Young's modulus only in a specific direction. For example, Japanese Patent Publication No. 58-14849 discloses that C: 0.
20% or less, Si: 0.01 to 1.0% or less, Mn: 0.3 to 2.0
%, Al: 0.001 to 0.20% steel, hot rolling Ar
5 in ferrite + austenite two-phase temperature range of 3 points or less
% Rolling, cooling at a rate of 15 ° C./s or less after rolling, and then tempering in a temperature range of 700 ° C. or less. Japanese Patent Application Laid-Open No. 57-2837 discloses a method. Ar 3 points 780
° C. to less steel, at 780 ° C. or less Ar 3 point or more than 5%, and the hot rolling of less than Ar 3 point or less 5%, 2% after cooling
An invention of a method combining the above-mentioned cold rolling is shown. As a method of performing rolling in the ferrite phase temperature range equivalent to cold rolling in the hot rolling step, Japanese Patent Publication No. Sho 62-4448 discloses that the cumulative rolling reduction in the temperature range of 600 ° C. or lower at an Ar three- point temperature or lower is 10%. An invention of a method of winding at 450 to 720 ° C. with a temperature of up to 60% is proposed. In each of these inventions, the Young's modulus in the direction perpendicular to the rolling direction is increased by rolling the ferrite phase, and the preferred orientation of the texture in the ferrite region rolling is formed. However, since cold rolling, which is rolling in the normal ferrite region, hardens when it is performed, annealing is necessary, and a favorable texture for improving Young's modulus due to recrystallization or grain growth during softening often disappears. . In addition, in order to perform the ferrite region rolling in the hot rolling step, a special treatment is required in manufacturing such as lubricating hot rolling because deformation resistance increases. On the other hand, the invention presented in Japanese Patent Application Laid-Open No. 5-247530 discloses that C: 0.05% or less and Mn: 0.5%.
As described above, in steel containing 0.01 to 0.07% of Nb, the heating temperature of hot rolling is 1100 ° C. or more, the finish rolling start temperature is 950 ° C. or less, and the finish rolling end temperature is (Ar 3 +100 to Ar 3 −5).
0) It is stated that rolling can be completed at a high temperature at which deformation resistance does not increase by winding at a temperature of ° C. [0008] As described above, the above inventions are all methods for producing a thin steel plate by a hot strip mill. Although hot rolling is performed, strong working in a low temperature range of 3 points or less of Ar or 3 points of Ar is performed. Because it is a cold working process in addition to working in the following low temperature range, it is difficult to apply it to large structural materials,
Further, if the rolling conditions are relaxed, an improvement in the Young's modulus cannot be expected. An object of the present invention is to increase the Young's modulus of a thick steel plate or a hot-rolled steel plate particularly used for a large-sized structure or a welded steel pipe, and has an Ar of 3 or less. The present invention relates to a method for producing a high Young's modulus steel sheet with almost no low-temperature rolling or cold rolling. [0010] Rolling in the ferrite + austenite two-phase region or the ferrite single-phase region certainly improves the Young's modulus in the direction perpendicular to the rolling, but when the plate thickness is increased, it is insufficient in the low-temperature region. Rolling becomes extremely difficult. In view of the above, the present inventors have conducted various studies on the effect of the steel composition and rolling conditions on the Young's modulus of the steel sheet, with respect to relatively thick steel sheets, and in particular, investigated the feasibility of realizing a manufacturing method in which rolling in a low-temperature region was avoided as much as possible. . As a result, it was found that Nb, B, Mo and the like are effective in improving the Young's modulus. Then, these elements when added alone, are effective to increase the Young's modulus if high deformation at Ar 3 point near or below the temperature range, but a large reduction ratio in the temperature range higher than the Ar 3 point Even so, the effect has been reduced. However, taking a sufficient amount, be further Nb, if combined addition of two or more kinds of Mo and B, the direction of rolling at Ar 3 point or more than Ar less than three points may more to further improve the Young's modulus It was revealed. Examination of the texture of the steel sheet having an improved Young's modulus in the direction perpendicular to the rolling direction reveals that a preferred orientation of 112 <110> has been developed and the <111> axis has been oriented in the direction perpendicular to the rolling direction of the steel sheet. It was found that many crystal grains were generated. This is considered to be because the rolling texture in the austenite region at the Ar 3 point or higher or the transformation texture after that was changed by the combined addition of Nb, Mo, and B. An example of the sufficient content of these elements and the effect of the composite addition is shown in FIG. 1 of the embodiment described below. Compared to the case where only Nb is used and the content is insufficient, Mo and B are not so effective. Nb
If the rolling finish temperature is Ar
It can be seen that the Young's modulus is better when the temperature is higher than 3 points. From such knowledge, the inventors of the present invention have come to the invention of the present production method after confirming the limits of the amounts of components and rolling conditions, and the effects of the addition of other elements. The gist of the present invention is that, by weight, C: 0.02 to 0.15%, Mn: 0.4 to 2.0%, Si: 0.80%
Hereinafter, Al: 0.001 to 0.06%, Cu: 1.5% or less, Ni:
3.0% or less, Cr: 0.60% or less, V: 0.10% or less, T
i: 0.10% or less, Ca: 0.0050% or less, Nb: 0.005 to 0.10%, Mo: 0.05 to 0.80%, and B:
A steel slab which contains two or more of 0.0003 to 0.0030%, and which satisfies 0.15 ≦ 5Nb + Mo + 250B + 3Ti + 1.5V ≦ 1.2 (1) is made of a slab consisting of unavoidable impurities and Fe, and hot-rolled into a steel sheet. In this case, there is provided a method for producing a steel sheet having a high Young's modulus, wherein the cumulative draft between 950 ° C. and three points of Ar is 50% or more, and the cumulative draft of less than three points of Ar is 5% or less. The steel sheet thus obtained is applied to a target structure by cutting, deforming, welding, or the like. If used, the rigidity of the product can be improved. In the case of steel pipes in particular, the bending stiffness can be increased regardless of the original plate direction and the axial direction of the steel pipe for structures where bending stress is mainly applied. What is necessary is just to make it a direction be the axial direction of a steel pipe. The reasons for limiting each component and the manufacturing conditions are as follows. (1) C C is contained in a required amount for the purpose of securing the strength of the steel sheet and the steel pipe. However, if the content is less than 0.02%, it is difficult to secure the strength required as a structural material, while the content exceeds 0.15%. Is
Not only does it become difficult to obtain a high Young's modulus, but also the toughness of the base metal and the welded part decreases. Therefore, the C content is from 0.02 to
0.15%, but to obtain a high Young's modulus stably, the C content is
0.06% or less is desirable. (2) Si Si is added for deoxidation and strength enhancement. However,
It may not be necessary to add Al sufficiently to be deoxidized. On the other hand, if the content is too large, the toughness of the welded portion in the case of welding is deteriorated. (3) Mn Mn is a component contained for the purpose of preventing hot brittleness by S and ensuring strength, and the amount of addition is controlled while maintaining a balance with other strength improving components. Further, in the present invention, the cumulative draft between 950 ° C. and the Ar 3 point is set to 50% or more as described later. However, when the content of Mn is increased, the Ar 3 point is decreased.
It is also effective in expanding the temperature range during this period. If the content is less than 0.4%, these effects are not fully exhibited, and 2.0%
If Mn is contained in excess of Mn, the toughness of both the base material and the joint is reduced, so the Mn content is set to 0.8 to 2.0%. (4) Al Al is an element essential for sufficient deoxidation to obtain a sound slab. If the content is less than 0.001%, deoxidation becomes insufficient, and if the content exceeds 0.08%, the toughness of the joint is deteriorated during welding, which is not preferable. Therefore, its content is restricted to 0.001 to 0.08%. (5) Nb, Mo and B, and if necessary, Ti and V These elements not only improve the strength of the base material but also realize the improvement of the Young's modulus which is the object of the present invention. Is an important element. In particular, it is necessary to add at least two of the three elements Nb, Mo and B. The content ranges in which the effects of adding these elements are exhibited are different from each other, with Nb being 0.005 to 0.10%, Mo being 0.05 to 0.80%, and B being 0.0003 to 0.0030%. If the content of each element is less than these regulated content ranges, the effect of addition will be ineffective. If the content exceeds these ranges, not only the effect will be saturated, but also adverse effects such as a decrease in toughness will appear. [0023] Ti and V also have the effect of increasing the strength of steel, and are said to have a precipitation hardening effect by bonding with C and N. Therefore, if the strength is not required, it is not necessary to add it, but if necessary, it is added according to the strength of the steel. Further, these elements have an effect of supplementing the effect of improving the Young's modulus of the composite addition of Nb, Mo and B. Desirable contents of Ti and V for exhibiting the effect of addition are 0.005% for Ti, respectively.
As described above, V is 0.01% or more. However, if both elements are contained in excess of 0.10%, the toughness of the steel sheet and its welded part deteriorates.
Content. The respective content ranges of the five elements effective for improving the Young's modulus are as described above, and the composite is contained and hot-rolled under the rolling conditions described below to obtain a Young's material in a direction perpendicular to the rolling direction. The rate can be dramatically improved. However, the total content of each element must be within the range of the following equation (1). 0.15 ≦ 5Nb + Mo + 250B + 3Ti + 1.5V ≦ 1.2 (1) If the content is less than the range regulated by this formula, the effect of addition is insufficient, and if it exceeds this range, the effect is saturated. In addition, adverse effects such as a decrease in toughness appear. (6) Cu, Ni and Cr These elements do not need to be added when strength is not required, but by adding an appropriate amount, a steel material having a good balance between strength and toughness is manufactured. It becomes possible.
However, when added, the content is 1.50% by Cu, respectively.
Hereinafter, the content of Cr should be 0.60% or less and the content of Ni should be 3.00% or less. Exceeding these values results in excessively increasing the strength of the steel or impairing the toughness. (7) Ca Ca may not be added, but if Ca is contained in a small amount, the form of oxide / sulfide inclusions in the steel is changed, and the toughness and corrosion resistance of the base material are improved. Add by In order to achieve this object, the content must be 0.0002% or more. Desirable content when added is 0.0002%
As described above, an excessive addition causes a decrease in cleanliness and a large amount of coarse inclusions formed, which significantly deteriorates not only toughness but also corrosion resistance. Therefore, the content is at most 0.0050% or less. (8) P, S and N These elements are all inevitable impurities in steel, and degrade the toughness of the base metal and the welded portion. P is preferably 0.03% or less and S is 0.02% as a range that does not have a noticeable adverse effect on the properties of the steel.
And N is less than 0.01%. (9) Hot Rolling Conditions The cumulative rolling reduction in the temperature range from 950 ° C. to the three Ar points is extremely important for improving the Young's modulus of steel sheet products having the above-defined chemical composition. In the area
50% or more is required. In particular, it is more effective if the processing can be sufficiently performed in a temperature range from 850 ° C. to three Ar points. The upper limit of the cumulative rolling reduction is limited by the temperature drop and the increase in deformation resistance, but is not particularly limited. However, when the cumulative draft is less than 50%, a sufficiently high Young's modulus cannot be obtained. The reason why the Young's modulus cannot be improved even when the cumulative reduction is 50% or more at the rolling temperature exceeding 950 ° C. is that at a high temperature, the release of the processing strain and the recrystallization which starts immediately after leaving the rolling roll are difficult. This is considered to be due to the rapid progress and the cumulative effect of the rolled structure being lost. The heating temperature of the steel slab before rolling is not particularly limited as long as the condition that the cumulative draft in the temperature range from 950 ° C. to the three Ar points is 50% or more can be achieved. In the steel having the chemical composition specified in the present invention,
Since rolling in a two-phase region or a ferrite single-phase region having less than three Ar points has no effect on improving the Young's modulus, it is not necessary to perform rolling in this temperature region. Rolling in this temperature range may increase the deformation resistance and increase the rolling load, and may cause a decrease in Young's modulus. Up to 5%. The cooling after rolling is not particularly limited. However, in order to increase the Young's modulus even slightly, it is preferable that the cooling rate at the center of the sheet thickness be 15 ° C./s or more, rather than air cooling or slow cooling after rolling. Is to accelerate cooling. If post-heat treatment is performed after rolling and cooling,
Preferably between 300 and 500 ° C. EXAMPLES Example 1 Using slabs of steel numbers A, B and O whose chemical compositions are shown in Table 1, the cumulative rolling reduction in a temperature range of 950 ° C. or less was 75%, and the finishing temperature was changed. In particular, rolling was performed with a large reduction ratio in a temperature range close to the finishing temperature, and finished to a thickness of 10 mm. The rolled steel sheet was immediately forcibly cooled at a cooling rate of about 20 ° C./s. In this case, the Ar 3 point was about 760 ° C. for all steels estimated from the deformation resistance of rolling. A test piece having a width of 10 mm and a length of 60 mm was cut out from the obtained steel sheet, and the Young's modulus at room temperature was measured by a transverse vibration method. [Table 1] FIG. 1 shows the change in the Young's modulus in the direction perpendicular to the rolling direction of the steel sheet with respect to the finishing temperature. Steel number A (0.03Nb−0.25
Mo) and steel numbers B (0.03Nb- 0.15Mo - 0.0012 B) is
The steel having a component and its amount effective for improving the Young's modulus represented by the formula (1) is within the range defined by the present invention, and steel No. O (0.02Nb) has only Nb as the active ingredient, and its amount is Insufficient. The Young's modulus of steel O of 0.02 Nb is improved by rolling at a temperature lower than the Ar 3 point of about 760 ° C. In contrast, it can be seen that steel A and steel B show higher Young's modulus when finished at a temperature higher than the Ar 3 point, and show the highest value at a temperature around 800 ° C. Example 2 A steel sheet having a chemical composition shown in Table 1 was subjected to hot rolling under the conditions shown in Table 2 by using steel slabs of steel numbers C to L and P to T to produce a steel sheet having a thickness of 10 mm. . With respect to the obtained steel sheet, the Young's modulus in the direction perpendicular to the rolling direction was measured in the same manner as in Example 1. Table 2 also shows the results. [Table 2] Prototype Nos. 16 to 18 are made of the same steel as Prototype Nos. 1 to 4 whose components fall within the range defined by the present invention.
Since the rolling reduction in the temperature range from 950 ° C. to the Ar 3 point is insufficient, or the rolling reduction in the temperature range below the Ar 3 point is too large, the Young's modulus is not sufficiently improved. Also, the prototype number
Rolling conditions 19 to 23 fall within the range defined by the present invention, but the steel composition is outside the present invention. As described above, the Young's modulus in the direction perpendicular to the rolling direction of the prototypes Nos. 1 to 15 manufactured under the components and rolling conditions specified in the present invention is 15% as compared with the case of manufacturing by the ordinary method.
It turns out that it has improved above. According to the production method of the present invention, the Young's modulus in the direction perpendicular to the rolling direction of the steel sheet can be greatly improved without performing strong working in a low temperature region at three or less Ar. Therefore, by using the method of the present invention, it becomes possible to efficiently produce a thick steel plate or a hot-rolled steel plate having a high Young's modulus.

【図面の簡単な説明】 【図1】熱間圧延の圧延仕上げ温度と、得られた鋼板の
圧延直角方向のヤング率との関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a relationship between a rolling finish temperature of hot rolling and a Young's modulus in a direction perpendicular to the rolling direction of an obtained steel sheet.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−314823(JP,A) 特開 平4−147915(JP,A) 特開 昭57−2837(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-4-314823 (JP, A)                 JP-A-4-147915 (JP, A)                 JP-A-57-2837 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】重量割合にて、C:0.02〜0.15%、Mn:
0.4〜 2.0%、Si:0.80%以下、Al: 0.001〜0.06
%、Cr:0.60%以下、Cu: 1.5%以下、Ni: 3.0
%以下、V:0.10%以下、Ti:0.10%以下、およびC
a:0.0050%以下で、さらにNb:0.005 〜 0.10 %、
Mo:0.05〜0.80%およびB:0.0003〜0.0030%のうち
の2種以上を含有し、かつ 0.15≦ 5Nb+Mo+ 250B+ 3Ti+ 1.5V≦ 1.2 ・・・ (1) を満足する残部は不可避的不純物およびFeからなる鋼
片を、熱間圧延して鋼板とする際、 950℃からAr3
の間の累積圧下率を50%以上、Ar3 点未満の累積圧下
率を 5%以下とすることを特徴とする高ヤング率鋼板の
製造方法。
(57) [Claims] [Claim 1] C: 0.02-0.15%, Mn:
0.4 to 2.0%, Si: 0.80% or less, Al: 0.001 to 0.06
%, Cr: 0.60% or less, Cu: 1.5% or less, Ni: 3.0
%, V: 0.10% or less, Ti: 0.10% or less, and C
a: 0.0050% or less, Nb: 0.005 to 0.10%,
Mo: 0.05 to 0.80% and B: 0.0003 to 0.0030%, two or more of which are contained, and 0.15 ≦ 5Nb + Mo + 250B + 3Ti + 1.5V ≦ 1.2 (1) The balance satisfying (1) is from unavoidable impurities and Fe. When the steel slab is hot rolled into a steel sheet, the cumulative draft between 950 ° C. and the three Ar points is 50% or more, and the cumulative draft below the three Ar points is 5% or less. Manufacturing method of high Young's modulus steel sheet.
JP11946895A 1995-05-18 1995-05-18 Manufacturing method of high Young's modulus steel sheet Expired - Fee Related JP3511272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11946895A JP3511272B2 (en) 1995-05-18 1995-05-18 Manufacturing method of high Young's modulus steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11946895A JP3511272B2 (en) 1995-05-18 1995-05-18 Manufacturing method of high Young's modulus steel sheet

Publications (2)

Publication Number Publication Date
JPH08311541A JPH08311541A (en) 1996-11-26
JP3511272B2 true JP3511272B2 (en) 2004-03-29

Family

ID=14762082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11946895A Expired - Fee Related JP3511272B2 (en) 1995-05-18 1995-05-18 Manufacturing method of high Young's modulus steel sheet

Country Status (1)

Country Link
JP (1) JP3511272B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843982B2 (en) * 2004-03-31 2011-12-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
US20080118390A1 (en) * 2004-03-31 2008-05-22 Jfe Steel Corporation High-Stiffness High-Strength Thin Steel Sheet and Method For Producing the Same
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
WO2005095664A1 (en) * 2004-03-31 2005-10-13 Jfe Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
JP4843981B2 (en) * 2004-03-31 2011-12-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
KR100960167B1 (en) 2004-07-27 2010-05-26 신닛뽄세이테쯔 카부시키카이샤 High young's modulus steel plate, zinc hot dip galvanized steel sheet using the same, alloyed zinc hot dip galvanized steel sheet, high young's modulus steel pipe, and method for production thereof
JP5958038B2 (en) 2011-04-21 2016-07-27 Jfeスチール株式会社 Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
JP5370620B1 (en) 2011-11-15 2013-12-18 Jfeスチール株式会社 Thin steel plate and manufacturing method thereof
JP6149451B2 (en) * 2013-03-21 2017-06-21 新日鐵住金株式会社 High strength hot rolled steel sheet and method for producing the same
JP6354390B2 (en) * 2013-07-10 2018-07-11 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent rigidity in the rolling direction and method for producing the same

Also Published As

Publication number Publication date
JPH08311541A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP3409965B2 (en) Austenitic stainless hot-rolled steel sheet excellent in deep drawability and method for producing the same
JP4682805B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP3863818B2 (en) Low yield ratio steel pipe
JP4682806B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP3511272B2 (en) Manufacturing method of high Young&#39;s modulus steel sheet
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP3064871B2 (en) Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming
JP2019196508A (en) Hot rolled steel sheet, rectangular steel tube, and manufacturing method therefor
JPH1192859A (en) High tensile strength hot rolled steel plate having ultrafine structure and its production
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JP3390256B2 (en) High-strength and high-workability steel sheet for cans with excellent bake hardenability and aging resistance, and method for producing the same
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3578234B2 (en) Method of manufacturing hot-rolled steel sheet with high Young&#39;s modulus
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3285179B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP3842897B2 (en) Manufacturing method of high workability hot-rolled high-tensile steel sheet with excellent shape freezing property
JP3050083B2 (en) Manufacturing method of high Young&#39;s modulus hot rolled steel sheet
JP2737819B2 (en) Fe-Cr alloy with excellent ridging resistance
JPH0959717A (en) Production of ferritic stainless steel strip excellent in press formability, ridging resistance, and surface characteristic
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JPH1143724A (en) Production of hot rolled steel sheet excellent in scale adhesion and corrosion resistance
JP4571928B2 (en) Low yield ratio steel pipe

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees