JPH0959717A - Production of ferritic stainless steel strip excellent in press formability, ridging resistance, and surface characteristic - Google Patents

Production of ferritic stainless steel strip excellent in press formability, ridging resistance, and surface characteristic

Info

Publication number
JPH0959717A
JPH0959717A JP7216051A JP21605195A JPH0959717A JP H0959717 A JPH0959717 A JP H0959717A JP 7216051 A JP7216051 A JP 7216051A JP 21605195 A JP21605195 A JP 21605195A JP H0959717 A JPH0959717 A JP H0959717A
Authority
JP
Japan
Prior art keywords
rolling
mass
less
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7216051A
Other languages
Japanese (ja)
Other versions
JP3373983B2 (en
Inventor
Takeshi Yokota
毅 横田
Takumi Ugi
工 宇城
Yasushi Kato
康 加藤
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21605195A priority Critical patent/JP3373983B2/en
Publication of JPH0959717A publication Critical patent/JPH0959717A/en
Application granted granted Critical
Publication of JP3373983B2 publication Critical patent/JP3373983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the occurrence of surface defects by performing one of the passes at the time of hot rolling at respectively specified temp., coefficient of friction, and draft and also performing cold rolling by means of a work roll of specific roll diameter. SOLUTION: A steel stock, having a composition which consists of, by mass, <=0.01% C, <=1.0% Si, <=1.0% Mn, 11-30% Cr, <=0.07% Al, <=0 02% N, <=0 01% S, <=0.01% O, Ti in the amount satisfying (Ti-2×S-3×O)/(C+N)>=4 and Ti×N<=0.003, and the balance Fe and also satisfies C+N=0.006 to 0.025% and N/C>=2, is used. This steel stock is hot-rolled, annealed, pickled, and cold- rolled. At this time, one of the passes in a roughing stage is carried out under the conditions of 900-1150 deg.C rolling temp., <=0.3 coefficient of friction between the rolling stock and the roll, and 40-75% draft, and further, cold rolling is done so that at least 50% of rolling reduction is attained by means of a work roll of >=500mm roll diameter. By this method, an excellent material can be attained by a single cold rolling method, and the ferritic stainless steel strip can be inexpensively provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面性状に優れ、
しかもプレス成形性(特に、r値、r値の面内異方性
(以下、単に「面内異方性」と略記))および耐リジン
グ性に優れるフェライト系ステンレス鋼帯の製造方法に
関するものである。
TECHNICAL FIELD The present invention has excellent surface properties,
Moreover, the present invention relates to a method for producing a ferritic stainless steel strip which is excellent in press formability (particularly r value, in-plane anisotropy of r value (hereinafter simply referred to as “in-plane anisotropy”) and ridging resistance. is there.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼は、通常、連
続鋳造片を加熱した後、熱間圧延(粗圧延および仕上げ
圧延)−熱延板焼鈍−冷間圧延−仕上げ焼鈍の各工程を
経て製造される。このようにして製造されたフェライト
系ステンレス鋼は、一般に、耐応力腐食割れ性に優れる
とともに安価であることから、各種厨房器具、自動車部
品などの分野で幅広く使用されているが、オーステナイ
ト系ステンレス鋼に比べるとプレス成形性および耐リジ
ング性の点では劣るという欠点を有していた。このた
め、フェライト系ステンレス鋼のプレス成形性や耐リジ
ング性を向上させるために、これまでにも多くの努力が
続けられてきた。
2. Description of the Related Art Ferritic stainless steel is usually manufactured by heating a continuous cast piece and then performing hot rolling (coarse rolling and finish rolling) -hot rolled sheet annealing-cold rolling-finish annealing. It The ferritic stainless steel produced in this manner is generally widely used in various fields such as kitchen appliances and automobile parts because it is excellent in stress corrosion cracking resistance and is inexpensive. However, it had a drawback that it was inferior in press formability and ridging resistance compared to. Therefore, many efforts have been made to improve the press formability and ridging resistance of ferritic stainless steel.

【0003】例えば、特開昭52−31919号公報に
は、プレス成形性を向上させるための鋼成分として、C
+Nを低下させTiを適量添加する技術が開示されてい
る。しかしながら、このような従来のTi添加低炭窒素フ
ェライト系ステンレス鋼では、フェライト粒の{55
4}<225>方位への集積が強まり、その結果、この
鋼に特有なリジング(圧延方向に対し30〜45°の方向に
引張加工を施した時に発生するもので、圧延方向の引張
加工でみられるこれまでのリジングとは異なる。以下、
単に「30°方向リジング」と略記する)が発生するとい
う問題があった(鉄と鋼、60(1976)、S227参照)。
For example, Japanese Patent Laid-Open Publication No. 52-31919 discloses C as a steel component for improving press formability.
A technique of lowering + N and adding an appropriate amount of Ti is disclosed. However, in such a conventional Ti-added low carbon nitrogen ferritic stainless steel, the ferrite particles of {55
4} <225> orientation is strengthened, and as a result, ridging peculiar to this steel (which occurs when tensile processing is performed in the direction of 30 to 45 ° with respect to the rolling direction, Different from the ridging that has been seen so far. Below,
There is a problem in that it is simply abbreviated as "30 ° direction ridging") (see Iron and Steel, 60 (1976), S227).

【0004】そこで、30°方向リジングを防止するため
の技術が、特開昭53−48017号公報に開示されて
いる。この技術は、C+Nが0.03%以下、Tiが0.1 〜0.
5 %のフェライト系ステンレス鋼を750 ℃以下で巻取
り、450〜700で15%以上の温間圧延を行い、こ
れを焼鈍する過程で巻取り温度以上の温度域においては
0.1 ℃/sec以上の昇温速度で加熱し、780 ℃以上950 ℃
以下まで昇温し、0〜30分の保定後冷却し、引き続き中
間焼鈍をはさみ中間冷間圧延率を50%以上、最終冷間圧
延率を30%以上、50%未満として、{554}方位に替
わり{111}方位を発達させるものである。しかしな
がら、この方法では製造工程で非常に厳しい条件が課せ
られるばかりか、冷間圧延を2回法とするので大幅なコ
ストアップにもつながる。
Therefore, a technique for preventing ridging in the 30 ° direction is disclosed in JP-A-53-48017. In this technology, C + N is 0.03% or less and Ti is 0.1-0.
5% ferritic stainless steel was wound up at 750 ° C or lower, warm-rolled at 450-700 at 15% or higher, and annealed in the temperature range higher than the winding temperature.
Heat at a heating rate of 0.1 ° C / sec or more to 780 ° C or more and 950 ° C.
The temperature is raised to the following, cooled after being held for 0 to 30 minutes, and then intermediate annealing is inserted to set the intermediate cold rolling rate to 50% or more and the final cold rolling rate to 30% or more and less than 50%, and the {554} orientation. Instead, it develops the {111} orientation. However, this method not only imposes extremely strict conditions in the manufacturing process but also leads to a significant increase in cost because the cold rolling is performed twice.

【0005】また、冷間圧延を1回法とした技術は特開
平6−279951号公報に開示されている。この方法
は、C、Nが0.02%以下でかつ、( C/12)+(N/1
4)≦(Ti /48) +(Nb/93)のフェライト系ステンレ
ス鋼を850 〜950 ℃の仕上げ温度で熱間圧延し、引き続
き550 ℃以下の温度で巻取り、熱延板焼鈍することなく
100mm 以上のロール径を有する圧延ロールにて50〜70%
の冷間圧延をおこない、しかる後再結晶温度+50℃〜再
結晶温度+150 ℃の範囲で冷延板焼鈍を施すものであ
る。しかし、この方法は製造条件の制約が厳しい割りに
は、熱延板焼鈍を行ってもr値は1.1 程度でしかなく、
プレス成形性の改善が不十分である。なお、特開昭59
−38334号公報には、ロール径150mm 以上( 好まし
くは300mm 以下) のワークロールを用いて冷間圧延を施
すことによりr値、リジング(通常の、圧延方向に引張
で生ずるもの)を改善する方法が開示されているが、r
値の最大値は1.47で十分な特性を有しているとはいえな
い。
A technique in which cold rolling is performed once is disclosed in Japanese Patent Laid-Open No. 6-279951. In this method, C and N are 0.02% or less and (C / 12) + (N / 1
4) ≤ (Ti / 48) + (Nb / 93) ferritic stainless steel is hot-rolled at a finishing temperature of 850 to 950 ° C, then rolled up at a temperature of 550 ° C or less without hot-rolled sheet annealing.
50 to 70% with rolling rolls having a roll diameter of 100 mm or more
Cold rolling is performed, and then cold-rolled sheet annealing is performed in the range of recrystallization temperature + 50 ° C to recrystallization temperature + 150 ° C. However, in this method, the r value is only about 1.1 even if hot-rolled sheet annealing is performed, although the manufacturing conditions are severely restricted.
The press moldability is not sufficiently improved. Incidentally, JP-A-59
JP-A-38334 discloses a method for improving r-value and ridging (usually caused by tension in the rolling direction) by cold rolling using a work roll having a roll diameter of 150 mm or more (preferably 300 mm or less). Is disclosed, but r
The maximum value is 1.47, which is not sufficient.

【0006】上述したようなプレス成形性、リジング特
性のほか、フェライト系ステンレス鋼には、表面に塗装
等を施さずに使用されるため、表面の美麗さが厳しく要
求される。これに関して、Ti添加ステンレス鋼はチタン
の窒化物や酸化物を原因とする、チタンストリークと呼
ばれる表面欠陥が、通常のフェライト系ステンレス鋼に
比べて発生しやすいという問題点もある。この問題を問
題を解決するための技術として、特開昭56−3575
5号公報には、0.1 〜0.5 %のTiを含有するフェライト
系ステンレス鋼において、〔%Ti〕/〔%Al〕=5〜3
0、かつ〔%Ti〕1.5 〔%N〕≦4.0 ×10-5として、表
面欠陥の発生を抑制する方法が開示されている。しかし
ながら、この技術では表面欠陥は改善されても、十分な
プレス加工性は得られないという問題があった。
In addition to the press formability and ridging characteristics as described above, the ferritic stainless steel is used without being coated on the surface, so that the surface must be beautiful. In this regard, the Ti-added stainless steel has a problem that surface defects called titanium streaks caused by titanium nitride and oxide are more likely to occur than in ordinary ferritic stainless steel. As a technique for solving this problem, JP-A-56-3575
No. 5 discloses that in a ferritic stainless steel containing 0.1 to 0.5% Ti, [% Ti] / [% Al] = 5 to 3
0 and [% Ti] 1.5 [% N] ≦ 4.0 × 10 −5 , a method for suppressing the generation of surface defects is disclosed. However, this technique has a problem that sufficient press workability cannot be obtained even if surface defects are improved.

【0007】[0007]

【発明が解決しようとする課題】上述したように、フェ
ライト系ステンレス鋼のプレス加工性向上のためにTiを
添加すれば、30°方向リジングが顕著になる。このリジ
ングを抑制するためには、巻取り、熱延板焼鈍および冷
間圧延などの各工程条件に厳しい制限が課せられてい
た。また、冷間圧延のロール径を大きくしてr値を改善
しようとする試みには限界があった。しかも、これらの
技術はいずれも、r値やリジング特性に着目したのみ
で、プレス成形における重要な特性である、面内異方性
を改善するものではなかった。そのうえ、Ti添加ステン
レス鋼においては表面欠陥が発生し、プレス成形性や耐
リジング性と両立させることは不可能であった。
As described above, if Ti is added to improve the press workability of ferritic stainless steel, ridging in the 30 ° direction becomes remarkable. In order to suppress this ridging, severe restrictions have been imposed on process conditions such as winding, hot-rolled sheet annealing and cold rolling. Further, there has been a limit to the attempt to increase the roll diameter in cold rolling to improve the r value. Moreover, none of these techniques improves the in-plane anisotropy, which is an important property in press molding, only focusing on the r value and the ridging property. Moreover, surface defects were generated in the Ti-added stainless steel, and it was impossible to achieve compatibility with press formability and ridging resistance.

【0008】そこで、本発明の主たる目的は、上記既知
技術が抱えている上述した問題を惹起することのないフ
ェライト系ステンレス鋼帯の製造方法を提供することに
ある。本発明の他の目的は、プレス成形性(特に、r
値、面内異方性)および耐リジング(特に、30°方向リ
ジング)性に優れ、しかも表面性状に優れるフェライト
系ステンレス鋼帯の製造方法を提供することにある。
Therefore, a main object of the present invention is to provide a method for producing a ferritic stainless steel strip which does not cause the above-mentioned problems of the above-mentioned known techniques. Another object of the present invention is press formability (particularly r
It is an object of the present invention to provide a method for producing a ferritic stainless steel strip which has excellent values, in-plane anisotropy) and ridging resistance (particularly, ridging in the 30 ° direction) and has excellent surface properties.

【0009】[0009]

【課題を解決するための手段】さて、上掲の目的の実現
に向けて鋭意研究した結果、発明者らは、特にフェライ
ト系ステンレス鋼の化学成分相互の関係、粗圧延条件お
よび冷間圧延条件を適正に組み合わることにより解決で
きることを見いだし本発明を完成するに至った。
Means for Solving the Problems Now, as a result of earnest research aimed at realizing the above-mentioned objects, the inventors have found that the mutual relationships among the chemical components of the ferritic stainless steel, the rough rolling condition and the cold rolling condition, in particular. The inventors have found that it can be solved by properly combining the above and completed the present invention.

【0010】すなわち、本発明は下記の構成を要旨とす
るものである。 (1) C:0.01mass%以下、 Si:1.0 mass%以下、Mn:
1.0 mass%以下、 Cr:11〜30mass%、Al:0.07mass%
以下、 N:0.02mass%以下、S:0.01mass%以下、
O:0.01mass%以下を含み、かつこれらの成分含有量が
C+N:0.006 〜0.025 mass%、N/C:2.0 以上、(T
i−2×S−3×O) /(C+N):4以上、Ti×N:
0.003 以下を満足して含有し、残部がFeおよび不可避的
不純物の組成からなる鋼素材に、粗圧延工程および仕上
げ圧延工程からなる熱間圧延を施し、その後、熱延板焼
鈍、酸洗、冷間圧延、さらに仕上げ焼鈍を施してフェラ
イト系ステンレス鋼帯を製造するにあたり、前記粗圧延
工程のうちの少なくとも1パスの圧延を、圧延温度が90
0 〜1150℃、被圧延材と圧延ロールの間の摩擦係数が0.
3 以下、圧下率が40〜75%の条件で行い、かつ前記冷間
圧延を、冷延全圧下量の少なくとも50%はロール径が50
0mm 以上のワークロールを用いて行うことを特徴とする
プレス成形性、耐リジング性および表面性状に優れるフ
ェライト系ステンレス鋼帯の製造方法。
That is, the present invention has the following structures. (1) C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn:
1.0 mass% or less, Cr: 11 to 30 mass%, Al: 0.07 mass%
Below, N: 0.02 mass% or less, S: 0.01 mass% or less,
O: 0.01 mass% or less, and the content of these components is C + N: 0.006 to 0.025 mass%, N / C: 2.0 or more, (T
i-2 × S-3 × O) / (C + N): 4 or more, Ti × N:
A steel material containing 0.003 or less content and the balance being Fe and inevitable impurities is hot-rolled by a rough rolling process and a finish rolling process, and then annealed, pickled and cooled. In producing a ferritic stainless steel strip by performing hot rolling and finish annealing, at least one pass of the rough rolling step is performed at a rolling temperature of 90.
0 ~ 1150 ℃, the coefficient of friction between the material to be rolled and the rolling roll is 0.
3 or less, the reduction ratio is 40 to 75%, and the cold rolling, the roll diameter is 50% at least 50% of the total cold rolling reduction amount.
A method for producing a ferritic stainless steel strip having excellent press formability, ridging resistance and surface properties, which is characterized by using a work roll of 0 mm or more.

【0011】(2) 上記(1) に記載の鋼組成のものに、さ
らにCa:0.0003〜0.0050mass%、Mg:0.0003〜0.0050ma
ss%、B:0.0003〜0.0050mass%のうちの1種または2
種以上を含有させてなる成分の鋼素材を用いることを特
徴とするフェライト系ステンレス鋼帯の製造方法。
(2) In addition to the steel composition described in (1) above, Ca: 0.0003 to 0.0050 mass%, Mg: 0.0003 to 0.0050 ma
ss%, B: 0.0003 to 0.0050 mass%, one or two
A method for producing a ferritic stainless steel strip, characterized in that a steel material having a composition containing at least one kind is used.

【0012】(3) 上記仕上げ圧延工程のうちの少なくと
も1パスの圧延を、圧延温度が600 〜950 ℃、圧下率が
20〜45%の条件で行う上記(1) または(2) に記載のフェ
ライト系ステンレス鋼帯の製造方法。 (4) 被圧延材と圧延ロールの間の摩擦係数が0.3 以下の
条件で圧延する上記(3)に記載のフェライト系ステンレ
ス鋼帯の製造方法。
(3) At least one pass of the finish rolling step is performed at a rolling temperature of 600 to 950 ° C. and a reduction rate of
The method for producing a ferritic stainless steel strip according to (1) or (2) above, which is performed under the condition of 20 to 45%. (4) The method for producing a ferritic stainless steel strip according to the above (3), which is carried out under the condition that the friction coefficient between the material to be rolled and the rolling roll is 0.3 or less.

【0013】[0013]

【発明の実施の形態】まず、本発明に想到する契機とな
った実験研究の成果について説明する。C:0.0015〜0.
0050mass%、 N:0.0045〜0.0200mass%、Ti:0.0050〜
0.25mass%、Cr:16〜17mass%としたステンレス鋼を溶
製し、1220℃に加熱後、4スタンドの粗圧延機、7スタ
ンドの仕上げ圧延機からなる熱間圧延機にて板厚4.0mm
の熱延板とした。この熱延板を通常の方法にしたがっ
て、熱延板焼鈍(850 〜1050℃で60sec )−酸洗−冷延
−仕上げ焼鈍(850 〜1050℃で60sec )により板厚0.7m
m の冷延焼鈍板とした。ここで、上記熱間圧延におい
て、粗圧延工程の4スタンド目の圧下率を33%と50%の
2水準に変化させ、圧延温度は1050℃、摩擦係数は0.2
の一定とした。さらに、それぞれの粗圧延条件において
冷間圧延におけるロール径を変化させた。これら粗圧延
における摩擦係数の調整は、低融点のガラス系潤滑剤と
水との混合比を変化させることによって行い、摩擦係数
の値は、公知の方法のOrowanによる混合摩擦圧延
理論をもとに求めた。上記冷延焼鈍板から試験片を採取
し、r値および30°方向リジング特性を調査した。図1
は、r値およびリジング(30°方向リジング)特性に及
ぼす粗圧延の4スタンド目の圧下率(以下「R4 」と略
記する)とN/Cの影響を示す。図4より、R4 を50%
とし、N/Cを2.0 以上とすれば、r値、リジング特性
ともに良好な値が得られることがわかる。また、図2
は、r値に及ぼす冷延ワークロール径の影響を示すもの
で、R4 を50%とした場合冷延ロール径が500mm 以上で
r値が向上することがわかる。
BEST MODE FOR CARRYING OUT THE INVENTION First, the results of the experimental research that led to the present invention will be described. C: 0.0015 to 0.
0050mass%, N: 0.0045-0.0200mass%, Ti: 0.0050-
Stainless steel with 0.25 mass% and Cr: 16 to 17 mass% was melted, heated to 1220 ° C, and then hot rolled with a 4-stand rough rolling mill and a 7-stand finishing mill.
Hot rolled sheet. This hot-rolled sheet was annealed according to the usual method by hot-rolled sheet annealing (850 to 1050 ° C for 60 seconds) -pickling-cold rolling-finish annealing (850 to 1050 ° C for 60 seconds) to a thickness of 0.7 m.
It was a cold rolled annealed sheet of m 2. Here, in the hot rolling, the rolling reduction of the fourth stand in the rough rolling process was changed to two levels of 33% and 50%, the rolling temperature was 1050 ° C, and the friction coefficient was 0.2.
And constant. Furthermore, the roll diameter in cold rolling was changed under each rough rolling condition. The adjustment of the friction coefficient in these rough rolling is performed by changing the mixing ratio of the low-melting-point glass-based lubricant and water, and the value of the friction coefficient is based on the mixed friction rolling theory by Orowan of a known method. I asked. Specimens were taken from the cold-rolled and annealed sheets, and the r value and 30 ° direction ridging characteristics were investigated. FIG.
Shows the effects of the rolling reduction (hereinafter abbreviated as “R 4 ”) and N / C at the 4th stand of rough rolling on the r value and ridging (30 ° direction ridging) characteristics. From Figure 4, R 4 is 50%
It can be seen that, when N / C is 2.0 or more, good values can be obtained for both the r value and the ridging characteristic. FIG.
Shows the effect of the cold rolling work roll diameter on the r value, and it can be seen that when R 4 is 50%, the r value is improved when the cold rolling roll diameter is 500 mm or more.

【0014】次に本発明においてフェライト系ステンレ
ス鋼の化学成分および製造条件を上記要旨構成のとおり
に限定した理由について説明する。 ・C:0.01mass%以下 Cは、r値および耐食性を低下させる元素であり、0.01
mass%を超えるとその影響が顕著になるので0.01mass%
以下とする。 なお、 現状の製造・分析限界を考慮すると
Cは、好ましくは0.0005〜0.0080mass%である。
Next, the reason why the chemical composition and the manufacturing conditions of the ferritic stainless steel in the present invention are limited to the above-mentioned gist constitution will be explained. -C: 0.01 mass% or less C is an element that reduces the r value and corrosion resistance, and 0.01
If the mass% is exceeded, the effect will be significant, so 0.01 mass%
The following is assumed. Note that C is preferably 0.0005 to 0.0080 mass% in consideration of the current manufacturing and analysis limits.

【0015】・Si:1.0 mass%以下 Siは、脱酸のために有効な元素であるが、過度の添加は
鋼板の硬質化と延性の低下を招くので、その添加範囲は
1.0 mass%以下、好ましくは0.05〜 0.4wt%とする。
Si: 1.0 mass% or less Si is an element effective for deoxidation, but excessive addition causes hardening of the steel sheet and deterioration of ductility, so the range of addition is
The amount is 1.0 mass% or less, preferably 0.05 to 0.4 wt%.

【0016】・Mn:1.0 mass%以下 Mnは、熱間加工性の改善や溶接部の靱性改善のために有
効な元素である。この目的のためには、1.0 mass%以下
以下の添加で十分であり、好ましくは0.05〜 0.70wt %
である。
Mn: 1.0 mass% or less Mn is an element effective for improving hot workability and toughness of welded portions. For this purpose, addition of 1.0 mass% or less is sufficient, and preferably 0.05 to 0.70 wt%
It is.

【0017】・Cr:11〜30mass% Crは、ステンレス鋼としての耐食性を確保するためには
不可欠な元素である。その量が11mass%未満では耐食性
が不足し、一方30mass%を超えると極端なr値の低下を
招くので、その添加範囲は11〜30mass%、好ましくは14
〜19mass%である。
Cr: 11 to 30 mass% Cr is an essential element for ensuring the corrosion resistance as stainless steel. When the amount is less than 11 mass%, the corrosion resistance is insufficient, while when it exceeds 30 mass%, the r value is extremely lowered, so that the addition range is 11 to 30 mass%, preferably 14
~ 19 mass%.

【0018】・Al:0.07mass%以下 Alは、過度に添加すると、Al2O3 を生成して表面欠陥を
発生させる元素である。とくに0.07mass%を超えて添加
するとその影響が顕著になるので、0.07mass%以下とす
る。
Al: 0.07 mass% or less Al is an element which, if added excessively, produces Al 2 O 3 to generate surface defects. In particular, if it is added in excess of 0.07 mass%, the effect becomes remarkable, so the content should be 0.07 mass% or less.

【0019】・N:0.02mass%以下 Nは、スラブ鋳造時にTiNを形成し、耐リジング性に有
害であるとされる柱状晶の体積(すなわち柱状晶の長さ
と幅)を小さくする。すなわち、本発明におけるリジン
グ改善効果は、従来考えられていたような等軸晶率の上
昇によるものではなく、C、N、Ti添加量のバランスを
最適化することにより柱状晶の体積が小さくなったこと
が要因の一つであると考えられる。このような効果を得
るためには、ある程度のN添加量が必要であるが、0.02
mass%を超えての添加は多量のTiNの析出により表面性
状の劣化を招くため、N添加量の上限は0.02mass%とし
た。なお、N量の下限値はN/C及びC+Nの制限によ
って定まる。
N: 0.02 mass% or less N forms TiN during slab casting, and reduces the volume of columnar crystals (that is, the length and width of columnar crystals) which are considered to be harmful to ridging resistance. That is, the effect of improving ridging in the present invention is not due to the increase in the equiaxed crystal ratio as conventionally considered, but the volume of columnar crystals is reduced by optimizing the balance of the addition amounts of C, N and Ti. It is thought that this is one of the factors. To obtain such an effect, it is necessary to add a certain amount of N, but 0.02
Since the addition of more than mass% leads to the deterioration of the surface properties due to the precipitation of a large amount of TiN, the upper limit of the N addition amount is set to 0.02 mass%. The lower limit of the N amount is determined by the limits of N / C and C + N.

【0020】・S:0.01mass%以下 Sは、チタン硫化物を形成して有効なTi量を減少させる
ので、極力低減することが望ましい。このため、その上
限は0.01mass%、好ましくは0.005 mass%とする。
S: 0.01 mass% or less Since S forms titanium sulfide and reduces the effective amount of Ti, it is desirable to reduce it as much as possible. Therefore, the upper limit is set to 0.01 mass%, preferably 0.005 mass%.

【0021】・O:0.01mass%以下 Oは、チタン酸化物を形成して有効なTi量を減少させる
ので、極力低減することが望ましい。このため、その上
限は0.01mass%、好ましくは0.005 mass%とする。
O: 0.01 mass% or less O forms titanium oxide and reduces the effective amount of Ti, so it is desirable to reduce it as much as possible. Therefore, the upper limit is set to 0.01 mass%, preferably 0.005 mass%.

【0022】・N/C:2.0 以上 N/Cは、本発明において特に重要な構成要件の一つで
ある。TiNは、TiCに比べてはるかに高温から析出する
ため、TiNの析出量が適正であれば、柱状晶の体積を小
さくする効果を有する。この柱状晶の体積低減効果は、
N/Cが2.0 未満では小さい。また、TiNは、TiCに比
べて析出物の粒径が大きく、仕上げ焼鈍時に熱的に安定
であるため、再結晶前の固溶C、N量を低く押さえるの
に有効である。そして従来のTi添加フェライト系ステン
レス鋼のようにN/Cを2未満にし、TiCが多量に微細
析出している場合は、仕上げ焼鈍時に{554}方位が
著しく発達し、30°方向リジングが発生するのに対し
て、N/Cを2.0 以上とした場合、おもに{111}再
結晶集合組織が発達し30°方向リジングの発生を抑制す
ることができる。 以上の理由から、N/Cの下限値を2.
0 に限定した。一方、N/Cの上限は理想的にはC=0p
pmの場合に無限大となるため制限を設けない。
N / C: 2.0 or more N / C is one of the particularly important constituent features in the present invention. Since TiN precipitates at a temperature far higher than that of TiC, it has the effect of reducing the volume of columnar crystals if the amount of TiN precipitation is appropriate. The volume reduction effect of this columnar crystal is
It is small when N / C is less than 2.0. Further, since TiN has a larger grain size of precipitates than TiC and is thermally stable during finish annealing, it is effective in suppressing the amount of solute C and N before recrystallization to be low. When N / C is set to less than 2 as in the case of conventional Ti-added ferritic stainless steel and a large amount of TiC is finely precipitated, {554} orientation is significantly developed during finish annealing and 30 ° direction ridging occurs. On the other hand, when N / C is set to 2.0 or more, the {111} recrystallized texture mainly develops and the occurrence of ridging at 30 ° can be suppressed. For the above reasons, set the lower limit of N / C to 2.
Limited to 0. On the other hand, the upper limit of N / C is ideally C = 0p
In the case of pm, it is infinite, so no limit is set.

【0023】・C+N:0.006 〜0.025 mass% CとNは、従来のフェライト系ステンレス鋼では、共に
極力低減させることが望ましいとされていたが、本発明
では次の理由からある程度の量は含有させる必要があ
る。すなわち、Cが0.01mass%以下、 Nが0.02mass%以
下、N/Cが2.0以上であってもC+Nが0.006mass %
未満では、r値は高いもののTiNの析出量が不十分であ
ることから耐リジング性に劣る。一方、C+Nが0.025
mass%を超えると、r値および耐食性が劣化する。した
がって、C+Nの含有量は0.006 〜0.025 mass%の範囲
とする。なお、C+Nの好ましい範囲は0.01〜0.02mass
%である。
C + N: 0.006 to 0.025 mass% C and N were considered to be desirably reduced as much as possible in the conventional ferritic stainless steel, but in the present invention, a certain amount is contained for the following reason. There is a need. That is, even if C is 0.01 mass% or less, N is 0.02 mass% or less, and N / C is 2.0 or more, C + N is 0.006 mass% or less.
If the amount is less than r, the r-value is high, but the amount of precipitation of TiN is insufficient, resulting in poor ridging resistance. On the other hand, C + N is 0.025
If it exceeds mass%, the r value and the corrosion resistance deteriorate. Therefore, the content of C + N is set in the range of 0.006 to 0.025 mass%. In addition, the preferable range of C + N is 0.01 to 0.02 mass.
%.

【0024】・ (Ti−2×S−3×O) /(C+N):
4以上、かつTi×N:0.003 以下(式中の成分量単位は
いずれもmass%) 高いr値と良好な表面性状を得るためには、Ti、 C、
N、O、Sの成分バランスが重要となる。 (Ti−2×S
−3×O) /(C+N)が4未満ではr値≧1.5を得る
ことが困難である。また、Ti×Nが0.003 を超えると表
面性状が著しく劣化する。以上の理由から (Ti−2×S
−3×O) /(C+N)の値は4以上、かつTi×Nの値
は0.003 以下とした。
(Ti-2 × S-3 × O) / (C + N):
4 or more and Ti × N: 0.003 or less (each component amount unit in the formula is mass%) In order to obtain a high r value and good surface properties, Ti, C,
The balance of N, O, and S components is important. (Ti-2 x S
If -3 × O) / (C + N) is less than 4, it is difficult to obtain r value ≧ 1.5. Further, when Ti × N exceeds 0.003, the surface properties are remarkably deteriorated. For the above reasons (Ti-2 × S
The value of −3 × O) / (C + N) was 4 or more, and the value of Ti × N was 0.003 or less.

【0025】・Ca:0.0003〜0.0050mass%、Mg:0.0003
〜0.0050mass%、B:0.0003〜0.0050mass% Ca、MgおよびBは、いずれも鋳造時のノズル詰まりを防
止する元素である。その効果を得るには、いずれも、0.
0003mass%の添加が必要であるが、過度に添加すると耐
食性の低下を招くので上限は0.0050mass%とする。な
お、これら元素の好ましい添加量は、いずれも0.0005〜
0.0020mass%である。
-Ca: 0.0003 to 0.0050 mass%, Mg: 0.0003
˜0.0050 mass%, B: 0.0003 to 0.0050 mass% Ca, Mg and B are all elements that prevent nozzle clogging during casting. To get the effect, both are 0.
It is necessary to add 0003 mass%, but if it is added excessively, corrosion resistance will be deteriorated, so the upper limit is made 0.0050 mass%. The preferable addition amount of these elements is 0.0005 to
It is 0.0020 mass%.

【0026】次に、上記成分組成に調整された素材か
ら、フェライト系ステンレス鋼帯を製造するための処理
条件を以下に説明する。 ・粗圧延工程 圧延温度:900 〜1150℃ 粗圧延の圧延温度が900 ℃未満では、フェライト系ステ
ンレス鋼の再結晶が進みにくく耐リジング性が改善され
ないばかりか、r値が小さく、面内異方性が大きくな
る。また、大圧下圧延時におけるロール寿命が著しく短
くなる。一方、圧延温度が1150℃を超えると、大圧下圧
延によりフェライト粒が圧延方向にのびて耐リジング性
の劣化を招く。なお、好ましい圧延温度は950 〜1100℃
である。
Next, the processing conditions for producing a ferritic stainless steel strip from the materials adjusted to the above composition will be described below.・ Rough rolling process: Rolling temperature: 900-1150 ℃ If the rolling temperature of rough rolling is less than 900 ℃, recrystallization of ferritic stainless steel is difficult to proceed and ridging resistance is not improved. The nature becomes large. In addition, the roll life at the time of large reduction rolling is significantly shortened. On the other hand, when the rolling temperature exceeds 1150 ° C, the ferrite grains extend in the rolling direction due to the large reduction rolling, and the ridging resistance is deteriorated. The preferred rolling temperature is 950 to 1100 ° C.
It is.

【0027】圧下率:40〜75% 粗圧延の圧下率が40%未満では、板厚の中心部に未再結
晶組織が多量に残存するため、耐リジング性が劣り、面
内異方性も改善されない。一方、75%を超えての圧延
は、噛み込み不良、ロールと鋼板との焼き付き、さらに
は噛み込み時の衝撃による板厚変動を引き起こす危険性
がある。したがって、粗圧延の圧下率は40〜75%にする
必要がある。なお、好ましい圧下率の範囲は45〜64%で
ある。
Reduction ratio: 40 to 75% If the reduction ratio of rough rolling is less than 40%, a large amount of unrecrystallized structure remains in the center of the plate thickness, resulting in poor ridging resistance and in-plane anisotropy. Not improved. On the other hand, if the rolling exceeds 75%, there is a risk of defective biting, seizure between the roll and the steel plate, and further variation in the plate thickness due to the impact at the time of biting. Therefore, the rolling reduction of rough rolling must be 40 to 75%. The preferable range of the rolling reduction is 45 to 64%.

【0028】摩擦係数:0.30以下 粗圧延の摩擦係数が0.30を超えると、鋼板表層部の強剪
断歪み領域では再結晶が起こるが、板厚中心部では大部
分が未再結晶組織(巨大フェライトバンド組織)として
残るので、耐リジング性が劣り、r値および面内異方性
も改善されない。しかも、鋼板とロールとの焼き付きに
より鋼板の表面性状が劣化する。そこで、粗圧延の摩擦
係数を0.30以下にすると、板厚中心部の静的再結晶が著
しく促進され、耐リジング性、r値および面内異方性を
改善することができる。したがって、粗圧延の摩擦係数
は0.30以下、好ましくは0.2 以下とする必要がある。こ
の摩擦係数の下限値は、ロールが素材を噛み込んで圧延
することができる範囲で、いくら小さくても良い。な
お、摩擦係数を低下させるための潤滑方法は当業者に知
られた任意の方法でよい。
Coefficient of friction: 0.30 or less When the coefficient of friction of rough rolling exceeds 0.30, recrystallization occurs in the strong shear strain region of the surface layer of the steel sheet, but most of the unrecrystallized structure (giant ferrite band) in the center of the sheet thickness Since it remains as a structure), the ridging resistance is inferior and the r value and the in-plane anisotropy are not improved. Moreover, seizure between the steel sheet and the roll deteriorates the surface properties of the steel sheet. Therefore, if the coefficient of friction of rough rolling is set to 0.30 or less, static recrystallization in the central portion of the plate thickness is significantly promoted, and ridging resistance, r value and in-plane anisotropy can be improved. Therefore, the coefficient of friction of rough rolling needs to be 0.30 or less, preferably 0.2 or less. The lower limit value of this friction coefficient may be set to any value within a range in which the roll can bite and roll the material. The lubrication method for reducing the friction coefficient may be any method known to those skilled in the art.

【0029】上記粗圧延工程における3条件をを同時に
満たす「少なくとも1パスの圧延」を行うことにより熱
延焼鈍後(冷間圧延前)の結晶粒の微細化がはられ、次
工程での大径ロールによる冷間圧延による耐リジング
性、r値および面内異方性の改善効果をより高める。上
記「少なくとも1パスの圧延」は粗圧延工程のどの段階
で行ってもよいが、実際には、粗圧延工程のうち上記
を満たすスタンドのパスにおいて、上記およびの条
件を課した圧延を行えばよい。
By performing "at least one pass rolling" which simultaneously satisfies the three conditions in the rough rolling step, the crystal grains after hot rolling annealing (before cold rolling) are made finer, and in the next step, a large amount is obtained. The effect of improving ridging resistance, r-value and in-plane anisotropy by cold rolling with a radial roll is further enhanced. The above-mentioned "rolling of at least one pass" may be performed at any stage of the rough rolling process, but in practice, in the pass of the stand satisfying the above in the rough rolling process, if rolling under the conditions of and is performed, Good.

【0030】・仕上げ圧延上記条件による粗圧延工程に
引き続いて、さらに仕上げ圧延工程において下記条件を
満たす圧延を少なくとも1パス施すことにより、耐リジ
ング性、r値および面内異方性をより一層改善すること
が可能となる。 圧延温度:600 〜950 ℃ 圧延温度が600 ℃未満では20%以上の圧下率を確保する
ことが困難となり、またロールの摩擦も激しくなる。一
方、圧延温度が950 ℃を超えると圧延歪みの蓄積が少な
いために、r値、面内異方性の改善効果が期待できなく
なる。したがって、圧延温度は600 〜950 ℃の範囲にす
る必要があり、好ましくは750 〜900 ℃の範囲がよい。 圧下率:20〜45% 圧下率が20%未満では、r値、面内異方性の改善が認
められず、一方45%を超えると表面性状が劣化する。
したがって、圧下率は20〜45%、好ましくは25〜
35%とする。なお、上記の仕上げ圧延条件を満た
していれば、仕上げ圧延工程のいずれのパスにおいてこ
の条件の圧延を施しても、r値、面内異方性の改善効果
は現れる。さらに、上記の仕上げ圧延条件を満たす
パスにおいて、ロールと被圧延材との間の摩擦係数を0.
3 以下にすると、一層優れたr値および面内異方性を有
する鋼板を形状不良を招くことなく製造することが可能
になる。
Finishing rolling Following the rough rolling process under the above conditions, further performing at least one pass of the rolling that satisfies the following conditions in the finishing rolling process, further improving the ridging resistance, r value and in-plane anisotropy. It becomes possible to do. Rolling temperature: 600-950 ° C If the rolling temperature is less than 600 ° C, it becomes difficult to secure a reduction rate of 20% or more, and the friction of the roll becomes severe. On the other hand, when the rolling temperature exceeds 950 ° C., the accumulation of rolling strain is small, and the effect of improving the r value and in-plane anisotropy cannot be expected. Therefore, the rolling temperature must be in the range of 600 to 950 ° C, preferably 750 to 900 ° C. Reduction ratio: 20 to 45% If the reduction ratio is less than 20%, the r value and in-plane anisotropy are not improved, while if it exceeds 45%, the surface properties deteriorate.
Therefore, the rolling reduction is 20 to 45%, preferably 25 to
35%. If the above-mentioned finish rolling conditions are satisfied, the r-value and the in-plane anisotropy can be improved by rolling under these conditions in any pass of the finish rolling process. Furthermore, in the pass satisfying the above-mentioned finish rolling conditions, the coefficient of friction between the roll and the material to be rolled is 0.
When it is 3 or less, it becomes possible to manufacture a steel sheet having a more excellent r value and in-plane anisotropy without causing shape defects.

【0031】・冷間圧延 ロール径が500mm未満のワークロールで圧延する
と、鋼板表層にせん断歪みが集中するため、{111}
方位の発達が阻害される。これに対して、ロール径が50
0mm 以上のワークロールを使用すると、板厚方向に均一
に歪が導入されるため、{111}方位の発達に有利で
ある。しかしながら、この効果は、粗圧延工程において
圧延温度900〜1150℃、圧下率40〜75%、摩
擦係数0.3以下の圧延を施し、かつ冷延全圧下量の50
%、好ましくは65%以上をワークロール径500mm
以上で圧延しなければ得られない。
· Cold rolling When rolling with a work roll having a roll diameter of less than 500 mm, shear strain is concentrated on the surface layer of the steel sheet, so {111}
Azimuth development is hindered. In contrast, the roll diameter is 50
The use of a work roll of 0 mm or more uniformly introduces strain in the plate thickness direction, which is advantageous for the development of the {111} orientation. However, this effect is obtained by performing rolling at a rolling temperature of 900 to 1150 ° C., a rolling reduction of 40 to 75%, a friction coefficient of 0.3 or less in the rough rolling process, and a cold rolling total rolling reduction of 50.
%, Preferably 65% or more for work roll diameter 500 mm
It cannot be obtained without rolling.

【0032】なお、本発明においては、上述した処理条
件以外の製造条件は常法に従えばよい。例えば、スラブ
加熱温度範囲は1050〜1300℃、粗圧延工程は900 〜1300
℃、仕上げ圧延工程は550 〜1050℃、熱延板焼鈍は700
〜1100℃、冷延板焼鈍は750〜1100℃が好ましい。ま
た、潤滑油の種類、潤滑方法についても常法に従い決定
すればよい。
In the present invention, manufacturing conditions other than the above-mentioned processing conditions may be in accordance with ordinary methods. For example, the slab heating temperature range is 1050 to 1300 ℃, and the rough rolling process is 900 to 1300
℃, finish rolling process 550-1050 ℃, hot rolled sheet annealing 700
It is preferable that the temperature is ˜1100 ° C., and the cold rolled sheet annealing is 750 to 1100 ° C. Further, the type of lubricating oil and the lubricating method may be determined in accordance with a conventional method.

【0033】[0033]

【実施例】実施例1 表1に示す化学組成の鋼A〜W(21種類)を溶製し、
スラブとした後、1220℃に加熱後、4スタンドの粗圧延
機、7スタンドの仕上げ圧延機からなる熱間圧延機にて
板厚4.0mm の熱延板とした。この熱延板を通常の方法に
したがって、熱延板焼鈍(850 〜1050℃×60sec)−酸洗
−冷延−仕上げ焼鈍(850 〜1050℃×60sec)により板厚
0.7mm の冷延焼鈍板とした。ここで、上記熱間圧延にお
いて、粗圧延工程の3または4スタンド目の圧下率、摩
擦係数を変化させた。摩擦係数の調整は低融点のガラス
系潤滑剤と水との混合比を変化させることによって行っ
た。摩擦係数の値は、公知の方法のOrowanの混合摩擦
圧延理論をもとに求めた。 さらに、冷間圧延におけるロ
ール径を変え、冷延全圧下量に占める500 mmφ以上のワ
ークロールを用いた圧下量の比率を変化させた。
EXAMPLES Example 1 Steels A to W (21 types) having the chemical compositions shown in Table 1 were melted,
After forming into a slab, it was heated to 1220 ° C., and then a hot-rolled sheet having a thickness of 4.0 mm was formed by a hot rolling mill including a 4-stand rough rolling mill and a 7-stand finish rolling mill. This hot-rolled sheet is annealed (850-1050 ° C x 60 sec) -pickling-cold rolling-finish annealing (850-1050 ° C x 60 sec) according to the usual method.
A 0.7 mm cold rolled annealed sheet was used. Here, in the hot rolling, the rolling reduction and the friction coefficient of the third or fourth stand in the rough rolling process were changed. The coefficient of friction was adjusted by changing the mixing ratio of the low melting glass lubricant and water. The value of the friction coefficient was obtained based on the known method of mixed friction rolling by Orowan. Furthermore, the roll diameter in the cold rolling was changed to change the ratio of the reduction amount using the work roll of 500 mmφ or more to the total reduction amount of the cold rolling.

【0034】[0034]

【表1】 [Table 1]

【0035】上記方法によって得られた鋼板を供試材と
して、r値、面内異方性Δrおよびリジングの各特性値
を下記の方法により測定した。 ・r値 JIS13号B試験片を用い15%引歪を与えた後、3点
法により各方向のr値を求め、次式により平均値として
表した。 r=(rL +2rD +rC )/4 ただし、rL 、rD 、rC はそれぞれ圧延方向、圧延方
向に対して45°の方向、圧延方向に対して90°の方向の
r値を表す。 ・Δr 上記方法で求めた各方向のr値から、Δr=(rL −2
D +rC )/2により求めた。 ・リジング 圧延方向のほか圧延方向に対し30°の方向から採取した
JIS5号試験片に20%の引張歪を与えた後、表面粗
度計によりリジング高さ(μm )を求めた。 ・表面欠陥 コイルの全長(両端10mを除く)を目視により検査し、
線状の欠陥の発生個数を単位面積当たりに換算し求め
た。上記の粗圧延工程における1パスの最大圧下率、そ
のときの摩擦係数および圧延温度の各条件、冷間圧延の
各条件と得られた特性値を表2に示す。なお、本発明法
で製造した鋼板はすべて噛み込み不良、形状不良のいず
れも発生せず良好であった。表2から、本発明方法を適
用した鋼板は、いずれも優れたr値および耐リジング性
を示すとともに、Δrの絶対値も0.3 以下と非常に小さ
く、さらに表面欠陥の発生率も0.001 〜0.005 個/m2
ときわめて小さいことがわかる。
Using the steel sheet obtained by the above method as a test material, the r value, the in-plane anisotropy Δr and the characteristic values of ridging were measured by the following methods. -R value After applying a 15% tensile strain using a JIS No. 13 B test piece, the r value in each direction was determined by the three-point method and expressed as an average value by the following formula. r = (r L + 2r D + r C ) / 4 where r L , r D , and r C are r values in the rolling direction, 45 ° to the rolling direction, and 90 ° to the rolling direction, respectively. Represent -Δr From the r value in each direction obtained by the above method, Δr = (r L -2
It was calculated by r D + r C ) / 2.・ Ridging After applying a tensile strain of 20% to a JIS No. 5 test piece taken from a direction of 30 ° to the rolling direction in addition to the rolling direction, the ridging height (μm) was determined by a surface roughness meter.・ Surface defects Visually inspect the entire length of the coil (excluding both ends 10m),
The number of linear defects generated was calculated and converted per unit area. Table 2 shows the maximum rolling reduction in one pass in the rough rolling step, each condition of the friction coefficient and rolling temperature at that time, each condition of cold rolling and the obtained characteristic values. In addition, all the steel sheets manufactured by the method of the present invention were good without any biting failure or shape failure. From Table 2, all of the steel sheets to which the method of the present invention is applied show excellent r-value and ridging resistance, the absolute value of Δr is very small at 0.3 or less, and the occurrence rate of surface defects is 0.001 to 0.005. / M 2
It turns out that it is extremely small.

【0036】[0036]

【表2】 [Table 2]

【0037】実施例2 表1に示す化学組成の鋼A〜W(21鋼種)を溶製し、
スラブとした後、1220℃に加熱後、4スタンドの粗圧延
機、7スタンドの仕上げ圧延機からなる熱間圧延機にて
板厚4.0mm の熱延板とした。この熱延板を通常の方法に
したがって、熱延板焼鈍(850 〜1050℃×60sec)−酸洗
−冷延−仕上げ焼鈍(850 〜1050℃×60sec)により板厚
0.7mm の冷延焼鈍板とした。ここで、上記熱間圧延にお
いて、粗圧延工程の3スタンド目の圧下率、摩擦係数
を、また仕上げ圧延の6または7スタンド目の圧下率お
よび圧延温度を変化させた。粗圧延の摩擦係数の調整は
実施例1と同様の方法でおこなった。さらに冷間圧延に
おけるロール径および圧下量を変化させた。上記方法に
よって得られた鋼板を供試材として、r値、Δrおよび
リジングの各特性値を実施例1と同様の方法により測定
した。上記した粗圧延工程における1パスの最大圧下
率、そのときの摩擦係数および圧延温度の各条件、仕上
げ圧延における圧下率、圧延温度の各製造条件、冷間圧
延の各条件と得られた特性値を表3に示す。なお、本発
明方法で製造した鋼板はすべて噛込み不良、形状不良の
いずれも発生せず良好であった。表3から本発明方法を
適用した鋼板は、いずれも実施例1よりも優れたr値お
よび耐リジング性を示すとともに、Δrの絶対値も0.15
以下と非常に小さいく、さらに表面欠陥の発生率も0.00
1 〜0.005 個/m2 ときわめて小さいことがわかる。
Example 2 Steels A to W (21 steel types) having the chemical compositions shown in Table 1 were melted,
After forming into a slab, it was heated to 1220 ° C., and then a hot-rolled sheet having a thickness of 4.0 mm was formed by a hot rolling mill including a 4-stand rough rolling mill and a 7-stand finish rolling mill. This hot-rolled sheet is annealed (850-1050 ° C x 60 sec) -pickling-cold rolling-finish annealing (850-1050 ° C x 60 sec) according to the usual method.
A 0.7 mm cold rolled annealed sheet was used. Here, in the hot rolling, the rolling reduction and the friction coefficient of the third stand in the rough rolling step, and the rolling reduction and the rolling temperature of the sixth or seventh stand in the finish rolling were changed. The friction coefficient of rough rolling was adjusted in the same manner as in Example 1. Furthermore, the roll diameter and the amount of reduction in cold rolling were changed. Using the steel sheet obtained by the above method as a test material, the r value, Δr and each characteristic value of ridging were measured by the same method as in Example 1. One pass maximum rolling reduction in the rough rolling process, each condition of friction coefficient and rolling temperature at that time, rolling reduction in finish rolling, each manufacturing condition of rolling temperature, each condition of cold rolling and obtained characteristic value Is shown in Table 3. In addition, all the steel sheets manufactured by the method of the present invention were good without any defective biting or defective shape. From Table 3, all of the steel sheets to which the method of the present invention is applied show r-value and ridging resistance superior to those in Example 1, and the absolute value of Δr is 0.15.
Very small as below, and the occurrence rate of surface defects is 0.00
It can be seen that it is extremely small at 1 to 0.005 pieces / m 2 .

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】上述したように本発明法によれば、r値
および耐リジング性(耐30°方向リジング性)に優
れ、面内異方性が小さいフェライト系ステンレス鋼帯
を、表面欠陥の発生を極めて低値に抑制して製造するこ
とが可能となる。しかも、本発明法によれば、このよう
な優れた材質を冷延1回法で達成できるので、フェライ
ト系ステンレス鋼帯を安価に提供することができる。
As described above, according to the method of the present invention, a ferritic stainless steel strip which is excellent in r value and ridging resistance (30 ° direction ridging resistance) and has a small in-plane anisotropy can be obtained. It is possible to suppress the generation to an extremely low value and manufacture. Moreover, according to the method of the present invention, since such an excellent material can be achieved by the cold rolling once method, the ferritic stainless steel strip can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】r値および耐30°方向リジング性に及ぼすN
/Cおよび粗圧延条件の影響を示したグラフである。
FIG. 1 shows the influence of r value and N on ridging resistance in the direction of 30 °.
It is a graph which showed the influence of / C and rough rolling conditions.

【図2】r値に及ぼす熱間粗圧延および冷間圧延の影響
を示したグラフである。
FIG. 2 is a graph showing the effects of hot rough rolling and cold rolling on the r value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 康 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 佐藤 進 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Kato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, Kawasaki Steel Corporation Technical Research Laboratory (72) Inventor Susumu Sato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel Engineering Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.01mass%以下、 Si:1.0 mass%以
下、 Mn:1.0 mass%以下、 Cr:11〜30mass%、 Al:0.07mass%以下、 N:0.02mass%以下、 S:0.01mass%以下、 O:0.01mass%以下を含み、か
つこれらの成分含有量が C+N:0.006 〜0.025 mass%、 N/C:2.0 以上、 (Ti−2×S−3×O) /(C+N):4以上、 Ti×N:0.003 以下を満足して含有し、残部がFeおよび
不可避的不純物の組成からなる鋼素材に、粗圧延工程お
よび仕上げ圧延工程からなる熱間圧延を施し、その後、
熱延板焼鈍、酸洗、冷間圧延、さらに仕上げ焼鈍を施し
てフェライト系ステンレス鋼帯を製造するにあたり、前
記粗圧延工程のうちの少なくとも1パスの圧延を、圧延
温度が900 〜1150℃、被圧延材と圧延ロールの間の摩擦
係数が0.3 以下、圧下率が40〜75%の条件で行い、かつ
前記冷間圧延を、冷延全圧下量の少なくとも50%はロー
ル径が500mm 以上のワークロールを用いて行うことを特
徴とするプレス成形性、耐リジング性および表面性状に
優れるフェライト系ステンレス鋼帯の製造方法。
1. C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, Cr: 11 to 30 mass%, Al: 0.07 mass% or less, N: 0.02 mass% or less, S: 0.01 mass% or less, O: 0.01 mass% or less, and the content of these components is C + N: 0.006 to 0.025 mass%, N / C: 2.0 or more, (Ti-2 * S-3 * O) / (C + N) : 4 or more and Ti × N: 0.003 or less are contained, and the rest of the steel material having a composition of Fe and inevitable impurities is subjected to hot rolling including a rough rolling step and a finish rolling step, and then,
In producing a ferritic stainless steel strip by performing hot-rolled sheet annealing, pickling, cold rolling, and finish annealing, at least one pass rolling in the rough rolling step is performed at a rolling temperature of 900 to 1150 ° C. The coefficient of friction between the material to be rolled and the rolling roll is 0.3 or less, the reduction ratio is 40 to 75%, and the cold rolling is performed at a roll diameter of 500 mm or more for at least 50% of the total cold rolling reduction amount. A method for producing a ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties, which is characterized in that it is performed using a work roll.
【請求項2】鋼素材として、 C:0.01mass%以下、 Si:1.0 mass%以下、 Mn:1.0 mass%以下、 Cr:11〜30mass%、 Al:0.07mass%以下、 N:0.02mass%以下、 S:0.01mass%以下、 O:0.01mass%以下を含み、か
つこれらの成分含有量が C+N:0.006 〜0.025 mass%、 N/C:2.0 以上、 (Ti−2×S−3×O) /(C+N):4以上、 Ti×N:0.003 以下を満足して含有し、さらにCa:0.00
03〜0.0050mass%、Mg:0.0003〜0.0050mass%、B:0.
0003〜0.0050mass%のうちの1種または2種以上を含有
し、残部がFeおよび不可避的不純物の組成からなるもの
を用いることを特徴とする請求項1に記載のフェライト
系ステンレス鋼帯の製造方法。
2. As a steel material, C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, Cr: 11 to 30 mass%, Al: 0.07 mass% or less, N: 0.02 mass% or less. , S: 0.01 mass% or less, O: 0.01 mass% or less, and the content of these components is C + N: 0.006 to 0.025 mass%, N / C: 2.0 or more, (Ti-2xS-3xO). / (C + N): 4 or more, Ti × N: 0.003 or less is contained, and further Ca: 0.00
03-0.0050mass%, Mg: 0.0003-0.0050mass%, B: 0.
[0003] Manufacture of a ferritic stainless steel strip according to claim 1, characterized in that one containing one or more of 0.003 to 0.0050 mass% and the balance consisting of Fe and unavoidable impurities is used. Method.
【請求項3】上記仕上げ圧延工程のうちの少なくとも1
パスの圧延を、圧延温度が600 〜950 ℃、圧下率が20〜
45%の条件で行う請求項1または請求項2に記載のフェ
ライト系ステンレス鋼帯の製造方法。
3. At least one of the finish rolling steps
Pass rolling is performed at a rolling temperature of 600-950 ° C and a rolling reduction of 20-
The method for producing a ferritic stainless steel strip according to claim 1 or 2, which is carried out under the condition of 45%.
【請求項4】被圧延材と圧延ロールの間の摩擦係数が0.
3 以下の条件で圧延する請求項3に記載のフェライト系
ステンレス鋼帯の製造方法。
4. The coefficient of friction between the material to be rolled and the rolling roll is 0.
3. The method for producing a ferritic stainless steel strip according to claim 3, wherein the rolling is performed under the following conditions.
JP21605195A 1995-08-24 1995-08-24 Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties Expired - Fee Related JP3373983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21605195A JP3373983B2 (en) 1995-08-24 1995-08-24 Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21605195A JP3373983B2 (en) 1995-08-24 1995-08-24 Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties

Publications (2)

Publication Number Publication Date
JPH0959717A true JPH0959717A (en) 1997-03-04
JP3373983B2 JP3373983B2 (en) 2003-02-04

Family

ID=16682520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21605195A Expired - Fee Related JP3373983B2 (en) 1995-08-24 1995-08-24 Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties

Country Status (1)

Country Link
JP (1) JP3373983B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064452A (en) * 2001-08-20 2003-03-05 Kawasaki Steel Corp Ferritic stainless steel sheet having excellent adhesion in coating film and corrosion resistance, and production method therefor
KR100413824B1 (en) * 1999-12-29 2003-12-31 주식회사 포스코 Manufacturing Ti-added type 430 stainless steel having higher ridging resistance and good elongation
KR100480356B1 (en) * 2000-12-13 2005-04-06 주식회사 포스코 Method of producing ferritic stainless steel sheets having excellent ridging property
JP2006328524A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same
KR100857681B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 method of manufacturing a ferritic stainless steel with improved ridging property

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52717A (en) * 1975-06-24 1977-01-06 Nippon Steel Corp Process for production of coldrolled ferritic stainless steel plates w ith little ridging and surface roughening
JPS552702A (en) * 1978-05-04 1980-01-10 Kawasaki Steel Corp Titanium containing austenitic stainless steel with excellent surface condition
JPS60165353A (en) * 1984-02-07 1985-08-28 Nippon Steel Corp Stainless steel plate excellent in processability and corrosion resistance
JPH04210425A (en) * 1990-12-12 1992-07-31 Nkk Corp Production of ferritic stainless steel excellent in ridging resistance
JPH0617143A (en) * 1992-07-02 1994-01-25 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in surface characteristic and deep drawability
JPH07126757A (en) * 1993-10-29 1995-05-16 Kawasaki Steel Corp Manufacture of ferritic stainless steel sheet excellent in ridging resistance
WO1995020683A1 (en) * 1994-01-26 1995-08-03 Kawasaki Steel Corporation Method of manufacturing stainless steel sheet of high corrosion resistance
JPH0813097A (en) * 1994-06-24 1996-01-16 Kawasaki Steel Corp Ferritic stainless steel sheet small in plane anisotropy and production thereof
JPH0820843A (en) * 1994-07-05 1996-01-23 Kawasaki Steel Corp Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JPH08311542A (en) * 1995-05-12 1996-11-26 Nippon Steel Corp Production of ferritic stainless steel sheet for deep drawing excellent in ridging resistance and small in anisotropy
JPH0953155A (en) * 1995-08-14 1997-02-25 Kawasaki Steel Corp Iron-chrome alloy excellent in ridging resistance and surface property

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52717A (en) * 1975-06-24 1977-01-06 Nippon Steel Corp Process for production of coldrolled ferritic stainless steel plates w ith little ridging and surface roughening
JPS552702A (en) * 1978-05-04 1980-01-10 Kawasaki Steel Corp Titanium containing austenitic stainless steel with excellent surface condition
JPS60165353A (en) * 1984-02-07 1985-08-28 Nippon Steel Corp Stainless steel plate excellent in processability and corrosion resistance
JPH04210425A (en) * 1990-12-12 1992-07-31 Nkk Corp Production of ferritic stainless steel excellent in ridging resistance
JPH0617143A (en) * 1992-07-02 1994-01-25 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in surface characteristic and deep drawability
JPH07126757A (en) * 1993-10-29 1995-05-16 Kawasaki Steel Corp Manufacture of ferritic stainless steel sheet excellent in ridging resistance
WO1995020683A1 (en) * 1994-01-26 1995-08-03 Kawasaki Steel Corporation Method of manufacturing stainless steel sheet of high corrosion resistance
JPH0813097A (en) * 1994-06-24 1996-01-16 Kawasaki Steel Corp Ferritic stainless steel sheet small in plane anisotropy and production thereof
JPH0820843A (en) * 1994-07-05 1996-01-23 Kawasaki Steel Corp Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JPH08311542A (en) * 1995-05-12 1996-11-26 Nippon Steel Corp Production of ferritic stainless steel sheet for deep drawing excellent in ridging resistance and small in anisotropy
JPH0953155A (en) * 1995-08-14 1997-02-25 Kawasaki Steel Corp Iron-chrome alloy excellent in ridging resistance and surface property

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413824B1 (en) * 1999-12-29 2003-12-31 주식회사 포스코 Manufacturing Ti-added type 430 stainless steel having higher ridging resistance and good elongation
KR100480356B1 (en) * 2000-12-13 2005-04-06 주식회사 포스코 Method of producing ferritic stainless steel sheets having excellent ridging property
JP2003064452A (en) * 2001-08-20 2003-03-05 Kawasaki Steel Corp Ferritic stainless steel sheet having excellent adhesion in coating film and corrosion resistance, and production method therefor
JP4655432B2 (en) * 2001-08-20 2011-03-23 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in adhesion and corrosion resistance of paint film and method for producing the same
JP2006328524A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same
KR100857681B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 method of manufacturing a ferritic stainless steel with improved ridging property

Also Published As

Publication number Publication date
JP3373983B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
EP1990430A1 (en) High-strength hot rolled steel plate and manufacturing method thereof
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP4367091B2 (en) High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same
JP2007119848A (en) Cold rolled ferritic stainless steel sheet having excellent press formability and its production method
KR100502040B1 (en) Steel sheet for double-rolled tube and method for making the same
JPH08253818A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3373983B2 (en) Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties
JP2009052108A (en) Extra-low carbon and extremely thin cold rolled steel sheet for building material, and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP4765388B2 (en) Manufacturing method for cold rolled steel sheet with excellent flatness after punching
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3288620B2 (en) Steel sheet for double-wound pipe and method for producing the same
WO2013084458A1 (en) Hot-rolled steel sheet for cold rolling material, and method for producing same
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
KR100276303B1 (en) The manufacturing method of pipe used low carbon cold rolling steel sheet with anti season creaking

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees