JPH09260843A - Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof - Google Patents

Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof

Info

Publication number
JPH09260843A
JPH09260843A JP8063989A JP6398996A JPH09260843A JP H09260843 A JPH09260843 A JP H09260843A JP 8063989 A JP8063989 A JP 8063989A JP 6398996 A JP6398996 A JP 6398996A JP H09260843 A JPH09260843 A JP H09260843A
Authority
JP
Japan
Prior art keywords
inner layer
clad laminate
layer circuit
resin
copper clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8063989A
Other languages
Japanese (ja)
Inventor
Tokuo Okano
徳雄 岡野
Kazuhito Kobayashi
和仁 小林
Akishi Nakaso
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8063989A priority Critical patent/JPH09260843A/en
Priority to TW085110853A priority patent/TW462922B/en
Priority to KR1019960039569A priority patent/KR100187577B1/en
Priority to EP96306670A priority patent/EP0797378A3/en
Publication of JPH09260843A publication Critical patent/JPH09260843A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer copper-clad laminate board with an inner circuit superior in forming thin type, high-density, high-productivity, high- reliability and low-cost multilayer printed wiring boards. SOLUTION: A multilayer copper-clad laminate board with an inner circuit has an inner layer circuit board and outer layer circuit Cu foil joined on the circuit board through an insulation layer contg. electrically insulative whiskers dispersed in a thermosetting resin such that the whiskers are compounded with the resin and uniformly dispersed the rein which is then applied at least to one roughed surface of the foil and heated to dry enough to remove the solvent and half set it to form a Cu foil-attached prepreg, and the prepreg is formed on the inner layer circuit board having a previously completed circuit with the prepreg surface facing to this board and hot pressed to from the board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄型化、高密度化に対
応可能な多層プリント配線板用の内層回路入り多層銅張
積層板とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer copper clad laminate with an inner layer circuit for a multilayer printed wiring board which can be made thinner and higher in density, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、多層プリント配線板の製造方法と
しては、内層回路入り多層銅張積層板に回路形成する方
法が行われており、内層回路入り多層銅張積層板は、内
層に回路があらかじめ形成されていて、外層には絶縁層
を介して全面に銅箔が積層されている。この内層回路入
り多層銅張積層板は、回路形成したプリント配線板又は
回路形成した多層プリント配線板の両面にプリプレグ
を、そのさらに外側に銅箔を積層し熱圧成形して得られ
る。ここで使用されるプリプレグは、従来、ガラスクロ
スに樹脂を含浸乾燥し、樹脂を半硬化状態にしたガラス
クロスプリプレグを用いるのが一般的であるが、最近ガ
ラスクロスを用いないプリプレグであるフィルム形成能
のある熱硬化性樹脂を半硬化状態にした接着フィルム
(特開平6─200216、特開平6─242465号
公報参照)や、これらの銅箔とプリプレグの代わりに銅
箔の片面に前記接着フィルムを形成した銅箔付き接着フ
ィルム(特開平6─196862号公報参照)等が提案
されている。従って、従来公知の内層回路入り多層銅張
積層板は、内層回路と外層銅箔との間に、樹脂とガラス
クロスからなる電気絶縁層あるいは樹脂からなる電気絶
縁層を有するものである。
2. Description of the Related Art Conventionally, as a method of manufacturing a multilayer printed wiring board, a method of forming a circuit on a multilayer copper clad laminate with an inner layer circuit has been performed. A multilayer copper clad laminate with an inner layer circuit has a circuit on the inner layer. It is formed in advance and a copper foil is laminated on the entire surface with an insulating layer as an outer layer. This multilayer copper clad laminate with an inner layer circuit is obtained by thermocompressing a prepreg on both sides of a circuit-formed printed wiring board or a circuit-formed multilayer printed wiring board, and further laminating copper foil on the outside. The prepreg used here is generally a glass cloth prepreg in which a resin is semi-cured by impregnating and drying a glass cloth with a resin, but recently, a prepreg that does not use a glass cloth is formed into a film. An adhesive film (see JP-A-6-200216 and JP-A-6-242465) obtained by semi-curing a thermosetting resin having a function, or the adhesive film on one side of a copper foil instead of the copper foil and the prepreg. A copper foil-bonded adhesive film (see Japanese Patent Laid-Open No. 6-196862) has been proposed. Therefore, the conventionally known multilayer copper clad laminate with an inner layer circuit has an electrically insulating layer made of resin and glass cloth or an electrically insulating layer made of resin between the inner layer circuit and the outer layer copper foil.

【0003】[0003]

【発明が解決しようとする課題】近年、電子機器の小型
軽量化、高性能化、低コスト化が進行し、内層回路入り
多層銅張積層板には薄型化、高密度化、高生産性化、高
信頼性化、低コスト化が要求されている。薄型化の実現
のためには、層間絶縁層を薄型化しなければならない。
また高密度化のためには微細配線が必要であり、そのた
めには表面の平滑性が良好で、かつ寸法安定性が良好で
なくてはならない。さらに微細なスルーホールやインタ
ーステーシャルバイアホールが必要であり、ドリル加工
性、レーザ穴加工性が良好であることが要求されてい
る。また高生産性化に関しては、部品実装時間の短縮の
ためワイヤーボンディング性が良好であることや、ワー
クサイズ拡大等のために基板剛性が高いことが要求され
ている。また高信頼性化に関しては、実装部品との接続
信頼性向上のため基板の低熱膨張率化、メッキの密着性
向上、耐マイグレーション性向上が要求されている。こ
れらの要求に対し、前記従来の内層回路入り多層銅張積
層板では対応が困難である。
In recent years, electronic devices have become smaller and lighter, have higher performance, and have lower costs, so that multilayer copper clad laminates with inner layer circuits are made thinner, higher in density, and more productive. Higher reliability and lower cost are required. In order to realize thinning, the interlayer insulating layer must be thinned.
In addition, fine wiring is required for high density, and for that purpose, surface smoothness must be good and dimensional stability must be good. Further, fine through holes and interstitial via holes are required, and it is required that the drill workability and laser hole workability are good. Further, in terms of high productivity, it is required that the wire bonding property is good in order to shorten the component mounting time and the substrate rigidity is high in order to enlarge the work size. With regard to higher reliability, it is required to lower the coefficient of thermal expansion of the substrate, improve the adhesion of the plating, and improve the migration resistance in order to improve the connection reliability with the mounted components. It is difficult to meet these requirements with the conventional multilayer copper clad laminate containing an inner layer circuit.

【0004】現在、内層回路入り多層銅張積層板用に一
般的に使用されているガラスクロスは、その厚みが薄く
なるに従いヤーン(ガラス繊維束)同士の間の隙間が大
きくなる。そのため、厚みが薄いクロスほど目曲がり
(ヤーンが曲がったり、本来直角に交差すべき縦糸と横
糸が直角でなく交差する現象)が発生しやすくなる。こ
の目曲がりが原因となり、熱圧成形後に異常な寸法変化
やそりを生じやすくなる。さらに薄いガラスクロスほど
ヤーン間の隙間が大きいため、層間絶縁層中の繊維の体
積分率が低くなるため剛性が低下する。そのため、外層
の回路を加工した後の部品実装工程等において、たわみ
が大きくなりやすく問題となっている。現在、一般に使
用されているガラスクロスで最も薄いのは30μmのク
ロスであり、これを使用した層間絶縁層の厚さは40μ
m程度になる。これ以上に層間絶縁層の厚さを薄くする
ために、樹脂分を減らすと内層回路の凹凸への樹脂によ
る穴埋め性が低下しボイドが発生する。またこれ以上に
ガラスクロスを薄くするとクロス自体の強度が低下する
ため、ガラスクロスに樹脂を含浸するプリプレグ製造工
程でガラスクロスが破断しやすくなり製造が困難にな
る。
At present, the glass cloth generally used for a multilayer copper clad laminate containing an inner layer circuit has a larger gap between yarns (glass fiber bundles) as the thickness thereof becomes thinner. Therefore, the thinner the cross is, the more easily the eyes are bent (the yarn is bent, or the warp yarns and the weft yarns, which should originally intersect at right angles, intersect each other at right angles). Due to this bending, abnormal dimensional changes and warpage tend to occur after hot pressing. Since the thinner the glass cloth is, the larger the gap between the yarns is, the volume fraction of the fibers in the interlayer insulating layer is lowered, and the rigidity is lowered. Therefore, in a component mounting process or the like after processing the outer layer circuit, the deflection is likely to be large, which is a problem. Currently, the thinnest glass cloth generally used is 30 μm, and the thickness of the interlayer insulating layer using this is 40 μm.
m. If the amount of resin is reduced in order to further reduce the thickness of the interlayer insulating layer, the filling of the concave and convex portions of the inner layer circuit with the resin is deteriorated and voids are generated. Further, if the glass cloth is made thinner than this, the strength of the cloth itself decreases, so that the glass cloth is easily broken in the prepreg manufacturing process in which the resin is impregnated into the glass cloth, which makes the manufacturing difficult.

【0005】さらに、これらのガラスクロスを使用して
作製した内層回路入り多層銅張積層板は、小径ドリル加
工時に、絶縁層中に偏在するガラスクロスによって芯ぶ
れが発生しやすくドリルが折れやすい。さらにガラス繊
維の存在のため、レーザによる穴あけ性が悪く、内層回
路の凹凸が表面に現れやすく表面平滑性が悪い。一方、
ガラスクロスのないプリプレグである接着フィルムや、
銅箔付き接着フィルムを内外層間の絶縁層に用いた内層
回路入り多層銅張積層板は、厚さをより薄くでき、小径
ドリル加工性、レーザ穴加工性及び表面平滑性に優れ
る。しかしながら、これらの内層回路入り多層銅張積層
板は、外層絶縁層にガラスクロス基材がないため、剛性
が極めて低い。この剛性の低さは、高温下において顕著
であり、部品実装工程においてたわみが生じやすく、ワ
イヤーボンディング性も極めて悪い。また外層絶縁層に
ガラスクロス基材がなく、熱膨張係数が大きいため実装
部品との熱膨張の差が大きく、実装部品との接続信頼性
が低く、加熱冷却の熱膨張収縮によるはんだ接続部にク
ラックや破断が起こりやすい等多くの問題がある。
Further, in a multilayer copper clad laminate containing an inner layer circuit produced by using these glass cloths, when the small-diameter drill is processed, the glass cloth unevenly distributed in the insulating layer easily causes core runout and the drill is easily broken. Further, due to the presence of the glass fiber, the perforation property by laser is poor, and the unevenness of the inner layer circuit is likely to appear on the surface, resulting in poor surface smoothness. on the other hand,
An adhesive film that is a prepreg without glass cloth,
The multilayer copper clad laminate with an inner layer circuit using an adhesive film with a copper foil as an insulating layer between the inner and outer layers can have a smaller thickness and is excellent in small-diameter drilling workability, laser hole workability, and surface smoothness. However, these multilayer copper clad laminates with inner layer circuits have extremely low rigidity because the outer insulating layer does not have a glass cloth base material. This low rigidity is remarkable at high temperatures, so that it is likely to bend during the component mounting process, and the wire bonding property is extremely poor. In addition, since there is no glass cloth base material in the outer insulation layer and the coefficient of thermal expansion is large, the difference in thermal expansion from the mounted parts is large, the connection reliability with the mounted parts is low, and the solder connection part due to thermal expansion and contraction during heating and cooling There are many problems such as cracks and fractures.

【0006】本発明は、かかる状況に鑑み鋭意検討の結
果なされたもので、多層プリント配線板の薄型化、高密
度化、高生産性化、高信頼性化、低コスト化に優れた内
層回路入り多層銅張積層板を提供することを目的とする
ものである。
The present invention has been made as a result of intensive studies in view of such circumstances, and is an inner layer circuit excellent in thinning, high density, high productivity, high reliability and low cost of a multilayer printed wiring board. It is an object of the present invention to provide a multi-layered copper clad laminate containing the same.

【0007】[0007]

【課題を解決するための手段】かかる目的は本発明によ
れば、内層回路板と外層回路用銅箔とが絶縁層を介して
積層されてなる内層回路入り多層銅張積層板において、
前記絶縁層が熱硬化性樹脂中に電気絶縁性ウィスカーを
分散したものを用いることにより達成される。また、本
発明の内層回路入り多層銅張積層板の製造方法は、熱硬
化性樹脂に電気絶縁性ウィスカーを配合し、撹拌により
該ウィスカーを該熱硬化性樹脂中に均一に分散させた
後、少なくとも片面が粗化された銅箔の粗化面上に塗工
し、加熱乾燥により溶剤を除去するとともに、樹脂を半
硬化状態にした銅箔付きプリプレグのプリプレグ面をあ
らかじめ回路加工の完了した内層回路板に向き合うよう
に積層し、熱圧成形することからなる。
According to the present invention, such an object is to provide a multilayer copper clad laminate containing an inner layer circuit in which an inner layer circuit board and an outer layer circuit copper foil are laminated via an insulating layer,
The insulating layer is achieved by using a thermosetting resin in which electrically insulating whiskers are dispersed. Further, the method for producing a multilayer copper clad laminate containing an inner layer circuit of the present invention comprises blending a thermosetting resin with an electrically insulating whisker, and uniformly dispersing the whisker in the thermosetting resin by stirring, At least one surface is coated on the roughened surface of the copper foil, the solvent is removed by heating and drying, and the prepreg surface of the prepreg with copper foil in which the resin is semi-cured is the inner layer that has completed circuit processing in advance. It consists of laminating so as to face the circuit board and thermocompression molding.

【0008】[0008]

【発明の実施の形態】本発明に用いるウィスカーとして
は、電気絶縁性であり、弾性率が200GPa以上であ
るセラミックウィスカーが好ましく、200GPa未満
では多層プリント配線板とした時に充分な剛性が得られ
ない。ウィスカーの種類としては、例えば、硼酸アルミ
ニウム、ウォラストナイト、チタン酸カリウム、塩基性
硫酸マグネシウム、窒化けい素、α─アルミナの中から
選ばれた1以上のものを用いることができる。その中で
も、硼酸アルミニウムウィスカーは、弾性率が約400
GPaとガラスより遥かに高く、熱膨張係数も小さく、
しかも比較的安価である。この硼酸アルミニウムウィス
カーを外層絶縁層中に基材として用いた本発明の内層回
路入り多層銅張積層板から作製した多層プリント配線板
は、従来のガラスクロスを用いた多層プリント配線板よ
りも常温及び高温下における剛性が高く、ワイヤーボン
ディング性に優れ、熱膨張係数が小さく、寸法安定性に
優れる。ウィスカーの平均直径は0.1μm以下である
と、樹脂ワニスへの混合が難しくなると共に、塗工作業
性が低下し、3μm以上となると表面の平滑性に悪影響
が出ると共に、ウィスカーの微視的な均一分散性が損な
われる。従って、ウィスカーの平均直径は0.1〜3μ
mの範囲が好ましく、さらに塗工性がよい(平滑に塗り
やすい)ことから平均直径は0.5〜2μmがより好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION As the whiskers used in the present invention, ceramic whiskers which are electrically insulating and have an elastic modulus of 200 GPa or more are preferable. When the whiskers are less than 200 GPa, sufficient rigidity cannot be obtained when a multilayer printed wiring board is obtained. . As the type of whiskers, for example, one or more selected from aluminum borate, wollastonite, potassium titanate, basic magnesium sulfate, silicon nitride, and α-alumina can be used. Among them, aluminum borate whiskers have an elastic modulus of about 400.
It is much higher than GPa and glass, and has a small coefficient of thermal expansion.
Moreover, it is relatively inexpensive. A multilayer printed wiring board prepared from a multilayer copper clad laminate containing an inner layer circuit of the present invention using the aluminum borate whiskers as a base material in an outer insulating layer has a room temperature and a temperature lower than those of conventional multilayer printed wiring boards using a glass cloth. High rigidity at high temperature, excellent wire bonding property, small thermal expansion coefficient, and excellent dimensional stability. If the average diameter of the whiskers is 0.1 μm or less, it becomes difficult to mix with the resin varnish, and the coating workability decreases, and if it is 3 μm or more, the smoothness of the surface is adversely affected, and the whisker microscopic Uniform dispersibility is impaired. Therefore, the average diameter of the whiskers is 0.1-3μ
The range of m is preferable, and the average diameter is more preferably 0.5 to 2 μm because the coatability is good (smooth coating is easy).

【0009】また、ウィスカーの平均長さは平均直径の
10倍以上であることが好ましい。10倍未満では、繊
維としての補強効果が僅かになると同時に、後述するウ
ィスカーの樹脂層中での2次元配向が困難になるため、
配線板にした時に充分な剛性が得られない。前記理由か
ら、ウィスカーの平均長さは平均直径の約20倍以上で
あることがさらに好ましい。しかしウィスカーが長すぎ
る場合は、ワニス中への均一分散が難しいなると同時に
塗工作業性が低下する。また、導体回路と接触したウィ
スカーが他の導体回路と接触する確率が高くなり、繊維
に沿って移動する傾向にある銅イオンのマイグレーショ
ンによる回路間短絡事故を起こす可能性があるという問
題がある。従ってウィスカーの平均長さは100μm以
下が好ましく、さらに好ましくは50μm以下である。
The average length of the whiskers is preferably 10 times or more the average diameter. If it is less than 10 times, the reinforcing effect as a fiber becomes small, and at the same time, the two-dimensional orientation of the whiskers in the resin layer described later becomes difficult,
Sufficient rigidity cannot be obtained when used as a wiring board. For the above reasons, it is more preferable that the average length of the whiskers is about 20 times or more the average diameter. However, if the whiskers are too long, it becomes difficult to uniformly disperse the whiskers in the varnish, and at the same time, the coating workability deteriorates. In addition, there is a problem that whiskers that come into contact with a conductor circuit have a high probability of coming into contact with other conductor circuits, which may cause a short circuit between circuits due to migration of copper ions that tend to move along the fibers. Therefore, the average length of the whiskers is preferably 100 μm or less, more preferably 50 μm or less.

【0010】また多層プリント配線板の剛性及び耐熱性
をさらに高めるために、カップリング剤で表面処理した
ウィスカーを使用することも有効である。カップリング
剤で表面処理したウィスカーは、樹脂との濡れ性、結合
性が優れ剛性及び耐熱性を向上させることができる。こ
のとき使用するカップリング剤としては、シリコン系、
チタン系、アルミニウム系、ジルコニウム系、ジルコア
ルミニウム系、クロム系、ボロン系、リン系、アミノ酸
系等の公知のものを使用できる。
It is also effective to use whiskers surface-treated with a coupling agent in order to further enhance the rigidity and heat resistance of the multilayer printed wiring board. The whiskers surface-treated with a coupling agent have excellent wettability and bondability with a resin and can improve rigidity and heat resistance. The coupling agent used at this time is a silicon-based,
Known materials such as titanium, aluminum, zirconium, zirconaluminium, chromium, boron, phosphorus, and amino acids can be used.

【0011】本発明で使用する熱硬化性樹脂は、従来の
内層回路入り多層銅張積層板に使用されているガラスク
ロスを基材とするプリプレグ及びガラスクロス基材を含
まない接着フィルム、あるいは銅箔付き接着フィルムに
使用されている熱硬化性樹脂を使用することができる。
ここでいう熱硬化性樹脂とは、樹脂、硬化剤、硬化促進
剤、および必要に応じて用いられるカップリング剤、希
釈剤等を含むものを意味する。樹脂の種類としては、例
えば、エポキシ樹脂、ビスマレイミドトリアジン樹脂、
ポリイミド樹脂、フェノール樹脂、メラミン樹脂、けい
素樹脂、不飽和ポリエステル樹脂、シアン酸エステル樹
脂、イソシアネート樹脂、ポリイミド樹脂又はこれらの
種々の変性樹脂類が好適である。この中で、プリント配
線板特性上、特にビスマレイミドトリアジン樹脂、エポ
キシ樹脂が好適である。そのエポキシ樹脂としては、ビ
スフェノールA型エポキシ樹脂、ビスフェノールF型エ
ポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノ
ールノボラック型エポキシ樹脂、クレゾールノボラック
型エポキシ樹脂、ビスフェノールAノボラック型エポキ
シ樹脂、サリチルアルデヒドノボラック型エポキシ樹
脂、ビスフェノールFノボラック型エポキシ樹脂、脂環
式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、
グリシジルアミン型エポキシ樹脂、ヒダントイン型エポ
キシ樹脂、イソシヌネレート型エポキシ樹脂、脂肪族環
状エポキシ樹脂及びそれらのハロゲン化物、水素添加
物、及び前記樹脂の混合物が好適である。中でもビスフ
ェノールAノボラック型エポキシ樹脂又はサリチルアル
デヒドノボラック型エポキシ樹脂は耐熱性に優れ好まし
い。
The thermosetting resin used in the present invention is a glass cloth-based prepreg used for conventional multilayer copper clad laminates with inner layer circuits and an adhesive film containing no glass cloth base material, or copper. The thermosetting resin used for the adhesive film with foil can be used.
The thermosetting resin as used herein means a resin containing a resin, a curing agent, a curing accelerator, and a coupling agent, a diluent and the like which are used as necessary. Examples of the resin type include epoxy resin, bismaleimide triazine resin,
Polyimide resin, phenol resin, melamine resin, silicon resin, unsaturated polyester resin, cyanate ester resin, isocyanate resin, polyimide resin or various modified resins thereof are suitable. Among them, bismaleimide triazine resin and epoxy resin are particularly preferable in terms of printed wiring board characteristics. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, salicylaldehyde novolac type epoxy resin, Bisphenol F novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin,
Glycidylamine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic cyclic epoxy resins and their halides, hydrogenates, and mixtures of said resins are suitable. Among them, bisphenol A novolac type epoxy resin or salicylaldehyde novolac type epoxy resin is preferable because it has excellent heat resistance.

【0012】このような樹脂の硬化剤としては、従来使
用しているものが使用でき、樹脂がエポキシ樹脂の場合
には、例えばジシアンジアミド、ビスフェノールA、ビ
スフェノールF、ポリビニルフェノール、ノボラック樹
脂ビスフェノールAノボラック樹脂及びこれらのフェノ
ール樹脂のハロゲン化物等を使用できる。中でもビスフ
ェノールAノボラック樹脂は耐熱性に優れ好ましい。こ
の硬化剤の前記樹脂に対する割合は、樹脂100重量部
に対して、2〜100重量部の範囲が好ましく、さらに
は、ジシアンジアミドでは2〜5重量部、それ以外の硬
化剤では30〜80重量部の範囲が好ましい。
As the curing agent for such a resin, those conventionally used can be used. When the resin is an epoxy resin, for example, dicyandiamide, bisphenol A, bisphenol F, polyvinylphenol, novolac resin bisphenol A novolac resin Also, halides of these phenolic resins can be used. Among them, bisphenol A novolac resin is preferable because it has excellent heat resistance. The ratio of the curing agent to the resin is preferably in the range of 2 to 100 parts by weight with respect to 100 parts by weight of the resin, and further 2 to 5 parts by weight for dicyandiamide and 30 to 80 parts by weight for other curing agents. Is preferred.

【0013】硬化促進剤としては、樹脂がエポキシ樹脂
の場合、イミダゾール化合物、有機リン化合物、第3級
アミン、第4級アンモニウム塩などを使用する。この硬
化促進剤の前記樹脂に対する割合は、樹脂100重量部
に対して、0.01〜20重量部の範囲が好ましく、
0.1〜1.0%の範囲がより好ましい。
As the curing accelerator, when the resin is an epoxy resin, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt or the like is used. The ratio of the curing accelerator to the resin is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the resin,
The range of 0.1 to 1.0% is more preferable.

【0014】本発明に使用する熱硬化性樹脂は、溶剤に
て希釈して樹脂ワニスとして使用することもできる。溶
剤には、アセトン、メチルエチルケトン、トルエン、キ
シレン、メチルイソブチルケトン、酢酸エチル、エチレ
ングリコールモノメチルエーテル、メタノール、エタノ
ール、N,N─ジメチルホルムアミド、N,N─ジメチ
ルアセトアミド等を使用できる。この希釈剤の前記樹脂
に対する割合は、樹脂100重量部に対して、1〜20
0重量部の範囲が好ましく、30〜100重量部の範囲
がさらに好ましい。さらに本発明においては、樹脂中に
上記した各成分の他に、必要に応じて従来より公知のカ
ップリング剤、充填材等を適宜配合してもよい。
The thermosetting resin used in the present invention may be diluted with a solvent and used as a resin varnish. As the solvent, acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, methanol, ethanol, N, N-dimethylformamide, N, N-dimethylacetamide or the like can be used. The ratio of the diluent to the resin is 1 to 20 with respect to 100 parts by weight of the resin.
The range of 0 parts by weight is preferable, and the range of 30 to 100 parts by weight is more preferable. Further, in the present invention, conventionally known coupling agents, fillers and the like may be appropriately blended in the resin in addition to the above-mentioned components.

【0015】本発明の内層回路入り多層銅張積層板の絶
縁層中のウィスカーの配合量は、5〜50容量%が好ま
しい。5容量%未満では、回路加工後に充分な剛性が確
保できないと共に、製造工程中において、銅箔付きプリ
プレグのカールが大きくなることや、銅箔付きプリプレ
グの切断時に樹脂が細かく砕けて飛散しやすくなる等の
取り扱い性が悪くなるからである。一方ウィスカーの配
合量が50容量%以下とするのは、50容量%を越える
と、製造工程中の熱圧成形時の内層回路の穴埋め性や凹
凸部への埋め込み性が損なわれ、熱圧成形後のウィスカ
ーと樹脂からなる外層絶縁層中にボイドやかすれが発生
しやすくなり、配線板特性を損なう恐れがあるからであ
る。さらに、内層回路の穴埋め性や凹凸部への埋めこみ
性に優れ、なおかつ、製造した多層プリント配線板が従
来のガラスクロス使用のプリプレグを用いて製造した配
線板と比較し、同等又は同等以上の剛性と寸法安定性と
ワイヤボンディング性を持つことができる理由から、本
発明の内層回路入り多層銅張積層板の外層絶縁層中のウ
ィスカーの配合量は、樹脂固形分に対し20〜50容量
%であることがより好ましい。
The blending amount of whiskers in the insulating layer of the multilayer copper clad laminate with an inner layer circuit of the present invention is preferably 5 to 50% by volume. If it is less than 5% by volume, sufficient rigidity cannot be ensured after circuit processing, and the curl of the prepreg with copper foil increases during the manufacturing process, and the resin tends to shatter and scatter when the prepreg with copper foil is cut. This is because the handling property such as is deteriorated. On the other hand, the content of the whiskers is set to 50% by volume or less because when the content exceeds 50% by volume, the hole filling property of the inner layer circuit and the embedding property in the uneven portion during the thermocompression molding during the manufacturing process are impaired, and the thermocompression molding is performed. This is because voids and scratches are likely to occur in the outer insulating layer formed of the whiskers and the resin later, and the characteristics of the wiring board may be impaired. Furthermore, it is excellent in hole filling of inner layer circuits and embedding in irregularities, and the multilayer printed wiring board produced has a rigidity equal to or higher than that of a wiring board manufactured using a conventional prepreg using glass cloth. For the reason that it is possible to have dimensional stability and wire bonding property, the compounding amount of the whiskers in the outer insulating layer of the multilayer copper clad laminate with an inner layer circuit of the present invention is 20 to 50% by volume with respect to the resin solid content. More preferably.

【0016】本発明に用いられる銅箔としては、少なく
とも片面に粗化面を有する従来のプリント配線板用に使
用されている電解銅箔、圧延銅箔、キャリア付き極薄銅
箔を使用する。平滑な銅箔面にウィスカーを含む熱硬化
性樹脂層を形成したのでは、銅箔とウィスカーを含む熱
硬化性樹脂層との間の密着性を充分に確保することがで
きないので、銅箔の粗化面にウィスカーを含む熱硬化性
樹脂層を形成することが好ましい。銅箔の厚さは、微細
な回路を形成できる理由から、薄いものがよく、30μ
m以下が好ましい。より好ましくは10μm以下の極薄
銅箔が好ましいが、この場合には、単独では取り扱いが
困難なためキャリア付き銅箔を使用することが好まし
い。
As the copper foil used in the present invention, there is used an electrolytic copper foil, a rolled copper foil, or an ultrathin copper foil with a carrier, which has at least one roughened surface and is used for a conventional printed wiring board. By forming a thermosetting resin layer containing whiskers on a smooth copper foil surface, it is not possible to sufficiently secure the adhesion between the copper foil and the thermosetting resin layer containing whiskers. It is preferable to form a thermosetting resin layer containing whiskers on the roughened surface. The thickness of the copper foil is preferably thin, 30 μ, because fine circuits can be formed.
m or less is preferable. More preferably, an ultrathin copper foil having a thickness of 10 μm or less is preferable, but in this case, it is preferable to use a copper foil with a carrier because it is difficult to handle by itself.

【0017】銅箔にウィスカー配合した樹脂ワニスを塗
工する際には、銅箔の面と平行な方向にせん断力を負荷
できるか、あるいは銅箔の面に垂直な方向に圧縮力を負
荷できる塗工方式を採用する。具体的には、例えば、ブ
レードコータ、ロッドコータ、ナイフコータ、スクイズ
コータ、リバースロールコータ、トランスファロールコ
ータ等の塗工方式を使用する。
When the resin varnish containing whiskers is applied to the copper foil, a shearing force can be applied in a direction parallel to the surface of the copper foil, or a compressive force can be applied in a direction perpendicular to the surface of the copper foil. Adopt a coating method. Specifically, for example, a coating method such as a blade coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater, or a transfer roll coater is used.

【0018】本発明では、ウィスカーを含む熱硬化性樹
脂を塗工した銅箔を内層板と共に熱圧成形して内層回路
入り多層銅張積層板を作製する。このように熱圧成形す
ることにより銅箔に塗工した樹脂中のウィスカーをより
2次元配向に近い状態にすることができる。同時に熱圧
成形により樹脂を硬化させ、銅箔と絶縁層を強固に接着
させることができる。熱圧成形は、従来の銅張積層板の
熱圧成形に使用されている加熱加圧プレスを使用でき、
従来の銅張積層板の条件である圧力1〜20MPa、温
度130℃〜250℃、時間1〜120分の範囲で熱圧
成形する。
In the present invention, a copper foil coated with a thermosetting resin containing whiskers is thermocompression-molded together with an inner layer board to produce a multilayer copper clad laminate with an inner layer circuit. By thermoforming in this way, the whiskers in the resin coated on the copper foil can be brought into a state closer to a two-dimensional orientation. At the same time, the resin can be cured by thermocompression molding to firmly bond the copper foil and the insulating layer. Thermocompression molding can use the heating and pressing press used in the conventional thermocompression molding of copper clad laminates,
Thermocompression molding is performed under the conditions of a conventional copper clad laminate, a pressure of 1 to 20 MPa, a temperature of 130 to 250 ° C., and a time of 1 to 120 minutes.

【0019】本発明の内層回路入り多層銅張積層板の外
層絶縁層は、従来のような厚さに制約のあるガラスクロ
ス等の中間製品を基材に使用するのではなく、極めて微
細なウィスカーを製造工程において直接に基材として使
用するため、生産性が高いと共に絶縁層の厚さを自由に
設定できる。従って、従来のガラスクロスプリプレグで
は作製不可能な極薄の外層絶縁層を有する内層回路入り
多層銅張積層板が作製でき、多層プリント配線板の薄型
化に大きく貢献できる。また、従来のガラスクロス基材
を用いた従来の内層回路入り多層銅張積層板は、外層絶
縁層中のガラス繊維が繊維の交錯点等に部分的に高密度
に充填されており、この繊維の高密度充填部が熱圧成形
時に潰れないため、表面にはクロス目や内層回路の凹凸
に影響された凹凸が現れるが、本発明の内層回路入り多
層銅張積層板は、その製造工程において、熱硬化性樹脂
中にウィスカーが均一に比較的低密度に分散されている
銅箔付きプリプレグを用いるため、熱圧成形時に内層回
路がある部分ではウィスカーがより2次元配向度と密度
を高めるように他の部分より多く潰れることにより、内
層回路の凹凸を吸収することができ、なおかつ使用する
ウィスカーは従来のガラス繊維よりも遥かに細いため、
本発明の内層回路入り多層銅張積層板の表面は極めて平
滑になる。すなわち本発明の内層回路入り銅張積層板は
表面平滑性に優れており、本発明の内層回路入り多層銅
張積層板から作製される多層プリント配線板は、配線の
微細化が可能であり、それにより配線の高密度化ができ
る。また、本発明の内層回路入り多層銅張積層板の外層
絶縁層の基材であるウィスカーは、従来の基材であるガ
ラスクロスよりもレーザーによる被加工性が遥かに良好
であるため、従来のガラスクロスを使用した絶縁層では
困難であったレーザ穴明けが容易にできる。そのため、
直径100μm以下の小径のインターステーシャルバイ
アホール(IVH)が容易に作製可能であり、配線の微
細化、高密度化が達成でき、電子機器の小型高性能化に
大きく貢献できる。また、本発明の内層回路入り多層銅
張積層板の外層絶縁層に、レーザにより明けた穴は穴壁
に適度にウィスカーが突き出ているため、めっきの密着
性が樹脂単独の絶縁層にレーザにより明けた穴のめっき
の密着性より遥かに良好であり、電気回路の層間接続信
頼性が高い。そのため電子機器の信頼性を向上できる。
The outer insulating layer of the multilayer copper clad laminate with an inner circuit according to the present invention does not use an intermediate product such as glass cloth having a limited thickness as a base material as in the conventional case, but an extremely fine whisker. Is used as the base material directly in the manufacturing process, the productivity is high and the thickness of the insulating layer can be freely set. Therefore, a multilayer copper clad laminate having an inner layer circuit having an extremely thin outer insulating layer, which cannot be produced by the conventional glass cloth prepreg, can be produced, and it can greatly contribute to the thinning of the multilayer printed wiring board. Further, in the conventional multilayer copper clad laminate with an inner layer circuit using a conventional glass cloth base material, the glass fibers in the outer insulating layer are partially densely packed at the intersections of the fibers. Since the high-density filling part of does not collapse at the time of thermocompression molding, unevenness appears on the surface due to cross stitches and unevenness of the inner layer circuit, but the multilayer copper clad laminate with inner layer circuit of the present invention Since the prepreg with the copper foil in which the whiskers are uniformly dispersed in the thermosetting resin at a relatively low density is used, the whiskers will have a higher degree of two-dimensional orientation and density in the portion where the inner layer circuit is present during thermocompression molding. By crushing more than other parts, it is possible to absorb the irregularities of the inner layer circuit, and since the whiskers used are much thinner than conventional glass fibers,
The surface of the multilayer copper clad laminate with an inner layer circuit of the present invention is extremely smooth. That is, the inner layer circuit-containing copper clad laminate of the present invention is excellent in surface smoothness, the multilayer printed wiring board produced from the inner layer circuit-containing multilayer copper clad laminate of the present invention is capable of fine wiring. As a result, the wiring density can be increased. Further, whiskers, which are the base material of the outer insulating layer of the multilayer copper clad laminate with an inner layer circuit of the present invention, have much better workability with a laser than the conventional base material, glass cloth. Laser drilling, which was difficult with an insulating layer using glass cloth, can be easily performed. for that reason,
A small diameter interstitial via hole (IVH) having a diameter of 100 μm or less can be easily manufactured, and miniaturization and high density of wiring can be achieved, which greatly contributes to miniaturization and high performance of electronic equipment. Further, in the outer layer insulating layer of the multilayer copper clad laminate containing an inner layer circuit of the present invention, the holes drilled by the laser are appropriately projected whiskers on the hole wall, so that the adhesion of the plating to the insulating layer of the resin alone by the laser. It is much better than the adhesion of plating in open holes, and the reliability of interlayer connection of electric circuits is high. Therefore, the reliability of the electronic device can be improved.

【0020】また、本発明の内層回路入り多層銅張積層
板の外層絶縁層は、基材であるウィスカーが均一に分散
しているため、従来のガラスクロスを基材に使用した内
層回路入り多層銅張積層板のドリル穴明け時において、
ガラスが偏在しているために発生するドリルの芯ぶれや
折損という問題が発生しにくい。そのため、ドリル穴明
け時の重ね枚数を増やすことが可能であり生産性を向上
でき、しかも、ドリル加工穴の位置精度が向上するため
配線の微細化及び高密着化が可能となり、電子機器の高
性能化に大きく貢献できる。また、本発明の内層回路入
り多層銅張積層板の外層絶縁層の基材のウィスカーは、
従来の基材のガラスクロスよりも遥かに高剛性であり、
かつ従来のガラスクロスよりもくまなく均一に分散され
ている。そのため、本発明の内層回路入り多層銅張積層
板は、従来のガラスクロスを使用したものよりも高い表
面硬度と優れたワイヤボンディング性を有しており、電
子部品の実装性に優れる。また、本発明の内層回路入り
多層銅張積層板は、ウィスカーの配合量を増すことによ
り従来のガラスクロスを使用した内層回路入り多層銅張
積層板より弾性率を高くでき、これを用いて作製したプ
リント配線板は、剛性が高く、はんだリフロー時等のた
わみが低減されるため、ワークサイズ拡大等により生産
性を向上できる。また、本発明の内層回路入り多層銅張
積層板は、絶縁層がガラスよりも遥かに高剛性であり、
かつ低熱膨張率のウィスカーにより均一に強化され、従
来のガラスクロスを使用した内層回路入り多層銅張積層
板と同等以上の寸法安定性を有しているため、プリント
配線板の回路を微細化できる。また、本発明の内層回路
入り多層銅張積層板から作製したプリント配線板は熱膨
張率が小さく、搭載する電子部品との熱膨張率差も小さ
いため、基板と部品との接続信頼性が高く、電子機器の
信頼性向上に貢献できる。また、本発明の内層回路入り
多層銅張積層板は、絶縁層がガラスクロスのような連続
繊維でなく、微細で不連続のウィスカーを基材とするた
め、基材に沿って発生しやすい銅イオンのマイグレーシ
ョンによる回路間短絡事故の発生が低減でき、電子機器
の信頼性向上に貢献できる。以下、本発明を実施例に基
づいて詳細に説明するが、本発明はこれに限定されるも
のではない。
In the outer layer insulating layer of the multi-layered copper clad laminate with inner layer circuit of the present invention, the whiskers as the base material are uniformly dispersed, so that the conventional multi-layer with inner layer circuit using glass cloth as the base material. When drilling a copper clad laminate,
The problem of core misalignment and breakage due to uneven distribution of glass is unlikely to occur. Therefore, it is possible to increase the number of piles when drilling holes and improve productivity, and moreover, the positional accuracy of the drilled holes is improved, so that finer wiring and higher adhesion can be achieved, and high electronic device It can greatly contribute to performance improvement. Further, the whiskers of the base material of the outer insulating layer of the multilayer copper clad laminate with an inner layer circuit of the present invention are:
It has much higher rigidity than the conventional glass cloth of the base material,
Moreover, it is evenly dispersed throughout the glass cloth. Therefore, the multilayer copper clad laminate with inner layer circuit of the present invention has higher surface hardness and excellent wire bonding property than those using the conventional glass cloth, and is excellent in mountability of electronic components. Further, the multilayer copper clad laminate with an inner layer circuit of the present invention can have a higher elastic modulus than the multilayer copper clad laminate with an inner layer circuit using a conventional glass cloth by increasing the compounding amount of whiskers, and is manufactured using this. Since the printed wiring board thus produced has high rigidity and the deflection during solder reflow is reduced, the productivity can be improved by increasing the work size. Further, in the multilayer copper clad laminate with an inner layer circuit of the present invention, the insulating layer has much higher rigidity than glass,
In addition, it is uniformly reinforced by whiskers with a low coefficient of thermal expansion, and has dimensional stability equivalent to or better than that of a conventional multi-layer copper-clad laminate with an inner layer circuit that uses glass cloth, so the circuit of the printed wiring board can be miniaturized. . Further, the printed wiring board manufactured from the multilayer copper clad laminate containing the inner layer circuit of the present invention has a small coefficient of thermal expansion and a small difference in coefficient of thermal expansion from the electronic components to be mounted, so that the connection reliability between the board and the components is high. Can contribute to improving the reliability of electronic devices. In addition, the multilayer copper clad laminate with an inner layer circuit of the present invention has an insulating layer made of fine and discontinuous whiskers as a base material instead of continuous fibers such as glass cloth. It is possible to reduce the occurrence of short circuit accidents due to migration of ions, which contributes to the improvement of reliability of electronic devices. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0021】[0021]

【実施例】【Example】

実施例1 ビスフェノールAノボラック型エポキシ樹脂100重量
部に対し、テトラブロモビスフェノールA47重量部、
ビスフェノールAノボラック樹脂37重量部、2−メチ
ル−4−メチルイミダゾール0.5重量部、およびメチ
ルエチルケトン100重量部からなる熱硬化性樹脂ワニ
スに、平均直径0.8μm、平均繊維長20μmの硼酸
アルミニウムウィスカーを樹脂固形分100重量部に対
し89重量部配合し、硼酸アルミニウムウィスカーがワ
ニス中に均一に分散するまで撹拌した。これを厚さ18
μmの片面粗化電解銅箔の粗化面にナイフコータにて塗
工し、温度150℃で10分間加熱乾燥して溶剤を除去
すると共に、樹脂を半硬化した。ナイフコータのギャッ
プを適宜調整して、ウィスカーと半硬化樹脂からなるプ
リプレグ層の厚みが30μmの銅箔付きプリプレグを作
製した。プリプレグ層のウィスカー体積分率は30vo
l%であった。
Example 1 47 parts by weight of tetrabromobisphenol A based on 100 parts by weight of bisphenol A novolac type epoxy resin,
Aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm in a thermosetting resin varnish consisting of 37 parts by weight of bisphenol A novolac resin, 0.5 parts by weight of 2-methyl-4-methylimidazole, and 100 parts by weight of methyl ethyl ketone. 89 parts by weight was blended with 100 parts by weight of the resin solid content, and the mixture was stirred until the aluminum borate whiskers were uniformly dispersed in the varnish. This is thickness 18
The roughened surface of the one-side roughened electrolytic copper foil having a thickness of μm was coated with a knife coater, and dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and semi-cured the resin. By appropriately adjusting the gap of the knife coater, a prepreg with a copper foil having a prepreg layer of whiskers and semi-cured resin with a thickness of 30 μm was produced. Whisker volume fraction of prepreg layer is 30 vo
1%.

【0022】この作製した銅箔付きプリプレグを、銅箔
厚さ18μm、絶縁層厚さ100μmの両面銅張積層板
に回路形成した内層板の回路面にプリプレグ面を合わせ
るように積層し、温度170℃圧力2MPaにて60分
間熱圧成形して内層回路入り多層銅張積層板を得た。こ
の内層回路入り多層銅張積層板の表面粗さを触針式表面
粗さ計にて測定した結果約2μm以下であり、良好な表
面平滑性であった。さらに、この内層回路入り多層銅張
積層板の外層銅箔の所定位置にエッチングにより直径5
0μmの円状に銅箔を除去した穴を明け、その穴へレー
ザビームを照射した。レーザビームの発振周波数は15
0Hz、照射パルス数5、エネルギーフルエンスは2
3.5J/cm2であった。次に、このサンプルに過マ
ンガン酸によりデスミア処理を行った後、無電解銅メッ
キを施し、このサンプルの穴の断面を顕微鏡観察した結
果、レーザビームが照射された部分の絶縁層は除去さ
れ、その穴は内層回路に達していた。穴壁はレーザビー
ム入射側から内層回路に向かい穴径が小さくなる方向に
若干のテーパがあり、内層回路との接続部である穴底部
の直径は40μmであるが、導通穴として充分な接続面
積が確保されていた。さらに穴壁は、樹脂部から3μm
前後にウィスカーが突出しているため、めっきの付きま
わり性は極めて良好であった。
The prepared prepreg with a copper foil was laminated on a double-sided copper clad laminate having a copper foil thickness of 18 μm and an insulating layer thickness of 100 μm so that the prepreg surface would match the circuit surface of the inner layer board having a circuit formed thereon, and the temperature was 170 Thermosetting was performed at a pressure of 2 MPa for 60 minutes to obtain a multilayer copper clad laminate with an inner layer circuit. The surface roughness of the multilayer copper clad laminate containing the inner layer circuit was measured by a stylus type surface roughness meter, and as a result, it was about 2 μm or less, indicating good surface smoothness. Further, the outer copper foil of the multilayer copper clad laminate containing the inner layer circuit is etched at a predetermined position to have a diameter of 5 mm.
A hole from which the copper foil was removed was opened in a circular shape of 0 μm, and the hole was irradiated with a laser beam. The oscillation frequency of the laser beam is 15
0 Hz, irradiation pulse number 5, energy fluence is 2
It was 3.5 J / cm 2 . Next, after performing desmear treatment with permanganic acid to this sample, electroless copper plating was performed, and as a result of microscopic observation of the cross section of the hole of this sample, the insulating layer of the portion irradiated with the laser beam was removed, The hole reached the inner layer circuit. The hole wall has a slight taper from the laser beam incident side toward the inner layer circuit in the direction of decreasing hole diameter, and the diameter of the hole bottom part that is the connection part with the inner layer circuit is 40 μm, but a sufficient connection area as a conduction hole. Was secured. Furthermore, the hole wall is 3 μm from the resin part.
Since the whiskers protruded in the front and back, the throwing power of the plating was extremely good.

【0023】また、直径0.3mmのドリルにて本発明
の内層回路入り多層銅張積層板を5枚重ねて穴明けした
時の最上板と最下板の穴位置のずれ量を測定したところ
20μm以下であった。さらに、この内層回路入り多層
銅張積層板に回路形成した後、ICベアチップを実装
し、ワイヤボンディングで表面回路と接続した。ワイヤ
ボンディング条件は、超音波出力を1W、超音波出力時
間を50μs、ボンド荷重を100g、ワイヤボンディ
ング温度を180℃としたところ、良好にワイヤボンデ
ィングできた。この内層回路入り多層銅張積層板の一部
を切取り、外層銅箔をエッチングにより除去し、外観を
観察したところ、ボイドやかすれがなく、内層回路の凹
凸への埋めこみ性は良好であった。この外層銅箔エッチ
ング後の内層回路入り多層銅張積層板の曲げ弾性率を3
点曲げにより測定した結果、常温下で40GPa、20
0℃下で20GPaであった。また、この外層銅箔エッ
チング後、内層回路入り多層銅張積層板のTMAによる
常温下での面方向の熱膨張係数を測定したところ12p
pmであった。
Further, the amount of deviation between the hole positions of the uppermost plate and the lowermost plate was measured when five multi-layered copper clad laminates with an inner layer circuit according to the present invention were stacked and punched with a drill having a diameter of 0.3 mm. It was 20 μm or less. Further, after forming a circuit on the multilayer copper clad laminate containing the inner layer circuit, an IC bare chip was mounted and connected to the surface circuit by wire bonding. As for the wire bonding conditions, the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C. As a result, the wire bonding was successfully performed. A part of the multilayer copper clad laminate containing the inner layer circuit was cut out, the outer layer copper foil was removed by etching, and the appearance was observed. As a result, no voids or scratches were found, and the embeddability in the unevenness of the inner layer circuit was good. The flexural modulus of the multilayered copper clad laminate containing the inner layer circuit after etching the outer layer copper foil was 3
As a result of measuring by point bending, at room temperature, 40 GPa, 20
It was 20 GPa at 0 ° C. Further, after the outer layer copper foil was etched, the coefficient of thermal expansion of the inner layer circuit-containing multilayer copper clad laminate at room temperature by TMA was measured and found to be 12 p.
pm.

【0024】[0024]

【実施例2】サリチルアルデヒドノボラック型エポキシ
樹脂100重量部に対しビスフェノールA型ノボラック
樹脂70重量部、N−メチルイミダゾール1重量部、お
よびメチルエチルケトン100重量部からなるワニス
に、平均直径0.8μm、平均繊維長20μmの窒化珪
素ウィスカーを樹脂固形分100重量部に対し89重量
部配合し、窒化珪素ウィスカーがワニス中に均一に分散
するまで撹拌した。これを厚さ18μmの片面粗化電解
銅箔の粗化面にナイフコータにて塗工し、温度150℃
で10分間加熱乾燥して溶剤を除去すると共に、樹脂を
半硬化した。ナイフコータのギャップを適宜調整して、
ウィスカーと半硬化樹脂からなるプリプレグ層の厚みが
30μmの銅箔付きプリプレグを作製した。プリプレグ
層のウィスカー体積分率は30vol%であった。この
作製した銅箔付きプリプレグを、銅箔厚さ18μm、絶
縁層厚さ100μmの両面銅張積層板に回路形成した内
層板用プリント配線板に、その回路面にプリプレグ面を
合わせるように積層し、熱圧成形して内層回路入り多層
銅張積層板を得た。この内層回路入り多層銅張積層板の
表面粗さを触針式表面粗さ計にて測定したところ表面粗
さは約2μm以下であり、良好な表面平滑性であった。
さらに、この内層回路入り多層銅張積層板の外層銅箔の
所定位置にエッチングにより直径50μmの円状に銅箔
を除去した穴を明け、その穴へレーザビームを照射し
た。レーザビームの発振周波数は150Hz、照射パル
ス数5、エネルギーフルエンスは23.5J/cm2
した。次に、このサンプルに過マンガン酸によるデスミ
ア処理を行った後、無電解銅メッキを施し、このサンプ
ルの穴の断面を顕微鏡観察した結果、レーザビームが照
射された部分の絶縁層は除去され、その穴は内層回路に
達していた。穴壁はレーザビーム入射側から内層回路に
向かい穴径が小さくなく方向に若干のテーパがあり、内
層回路との接続部である穴底部の直径は40μmである
が、導通穴として充分な接続面積が確保されていた。さ
らに穴壁は、樹脂部から3μm前後にウィスカーが突出
しているため、めっきの付きまわり性は極めて良好であ
った。
Example 2 A varnish consisting of 70 parts by weight of a bisphenol A type novolak resin, 1 part by weight of N-methylimidazole, and 100 parts by weight of methyl ethyl ketone to 100 parts by weight of salicylaldehyde novolak type epoxy resin, an average diameter of 0.8 μm and an average value. 89 parts by weight of silicon nitride whiskers having a fiber length of 20 μm were mixed with 100 parts by weight of the resin solid content, and stirred until the silicon nitride whiskers were uniformly dispersed in the varnish. This is applied to the roughened surface of a one-sided roughened electrolytic copper foil having a thickness of 18 μm with a knife coater, and the temperature is 150 ° C.
The resin was semi-cured while the solvent was removed by heating and drying at 10 minutes. Adjust the gap of the knife coater appropriately,
A prepreg with a copper foil having a prepreg layer of whiskers and semi-cured resin having a thickness of 30 μm was produced. The whisker volume fraction of the prepreg layer was 30 vol%. The prepared prepreg with a copper foil was laminated on a printed wiring board for an inner layer board in which a circuit was formed on a double-sided copper-clad laminate having a copper foil thickness of 18 μm and an insulating layer thickness of 100 μm so that the prepreg surface was aligned with the circuit surface. Then, it was subjected to thermocompression molding to obtain a multilayer copper-clad laminate containing an inner layer circuit. When the surface roughness of this multilayer copper clad laminate containing an inner layer circuit was measured with a stylus type surface roughness meter, the surface roughness was about 2 μm or less, indicating good surface smoothness.
Further, a hole in which the copper foil was removed in a circular shape having a diameter of 50 μm was formed by etching at a predetermined position of the outer layer copper foil of the multilayer copper clad laminate containing the inner layer circuit, and the hole was irradiated with a laser beam. The oscillation frequency of the laser beam was 150 Hz, the number of irradiation pulses was 5, and the energy fluence was 23.5 J / cm 2 . Next, after performing desmearing treatment with permanganate to this sample, electroless copper plating was performed, and as a result of microscopic observation of the cross section of the hole of this sample, the insulating layer in the portion irradiated with the laser beam was removed, The hole reached the inner layer circuit. The hole wall has a slight taper in the direction from the laser beam incident side to the inner layer circuit, and the diameter of the hole bottom part that is the connection part with the inner layer circuit is 40 μm, but a sufficient connection area as a conduction hole. Was secured. Furthermore, since the whiskers protruded from the resin portion by about 3 μm on the hole wall, the throwing power of the plating was extremely good.

【0025】また、直径0.3mmのドリルにて本発明
の内層回路入り多層銅張積層板を5枚重ねて穴明けした
時の最上板と最下板の穴位置のずれ量を測定したところ
20μm以下であった。さらに、この内層回路入り多層
銅張積層板に回路形成した後、ベアチップを実装し、ワ
イヤボンディングで表面回路と接続した。ワイヤボンデ
ィング条件は、超音波出力を1W、超音波出力時間を5
0μs、ボンド荷重を100g、ワイヤボンディング温
度を180℃としたところ、良好にワイヤボンディング
できた。この内層回路入り多層銅張積層板の一部を切取
り、外層銅箔をエッチングにより除去し、外観を観察し
たところ、ボイドやかすれがなく、内層回路の凹凸への
埋め込み性は良好であった。この外層銅箔エッチング後
の内層回路入り多層銅張積層板の曲げ弾性率を3点曲げ
により測定した結果、常温下で40GPa、200℃下
で30GPaであった。また、この外層銅箔エッチング
後、内層回路入り多層銅張積層板のTMAによる常温下
での面方向の熱膨張係数を測定したところ13ppmで
あった。次に、これらの実施例の効果を確認するための
比較例を示す。
Further, the amount of deviation between the hole positions of the uppermost plate and the lowermost plate was measured when five multi-layered copper clad laminates with an inner layer circuit according to the present invention were stacked and punched with a drill having a diameter of 0.3 mm. It was 20 μm or less. Furthermore, after forming a circuit on this multilayer copper clad laminate containing an inner layer circuit, a bare chip was mounted and connected to the surface circuit by wire bonding. The wire bonding conditions are 1 W for ultrasonic output and 5 for ultrasonic output time.
When 0 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., good wire bonding was possible. A part of this multilayer copper clad laminate containing an inner layer circuit was cut out, the outer layer copper foil was removed by etching, and the appearance was observed. As a result, no voids or scratches were found, and the embedding property in the unevenness of the inner layer circuit was good. The flexural modulus of the multilayered copper clad laminate containing the inner layer circuit after etching the outer layer copper foil was measured by three-point bending. As a result, it was 40 GPa at room temperature and 30 GPa at 200 ° C. In addition, after the outer layer copper foil was etched, the coefficient of thermal expansion of the inner layer circuit-containing multilayer copper clad laminate at room temperature by TMA was 13 ppm. Next, comparative examples for confirming the effects of these examples will be described.

【0026】[0026]

【比較例1】実施例1と同じ樹脂ワニスを厚さ30μm
のガラスクロスに含浸塗工し、温度150℃で10mi
n間加熱乾燥して溶剤を除去すると共に、樹脂を半硬化
し、ガラスクロスと半硬化状態にあるエポキシ樹脂から
なる厚さが30μmのガラスエポキシプリプレグを作製
した。このガラスエポキシプリプレグを、銅箔厚さ18
μmで絶縁層厚さ100μmの両面銅張積層板に回路形
成した内層板用プリント配線板の上下に積層し、さら
に、その外側に厚さ18μmの片面粗化電解銅箔を、そ
の粗化面がプリプレグに向き合うように積層し、熱圧成
形して内層回路入り多層銅張積層板を得た。この内層回
路入り多層銅張積層板の表面粗さを触針式表面粗さ計に
て測定したところ表面粗さは8μm以上であった。さら
に、この内層回路入り多層銅張積層板の外層銅箔の所定
位置にエッチングにより直径50μmの円状に銅箔を除
去した穴を明け、その穴へレーザビームを照射した。レ
ーザビームの発振周波数は150Hz、照射パルス数
5、エネルギーフルエンスは23.5J/cm2とし
た。次に、このサンプルに過マンガン酸によるデスミア
処理を行った後、無電解銅メッキを施し、このサンプル
の穴の断面を顕微鏡観察した。レーザビームが照射され
た部分の絶縁層中の樹脂は一部除去されていたが、ガラ
スクロスは残存しており、その穴は内層回路に達してい
なかった。すなわちIVHは形成できなかった。また、
直径0.3mmのドリルにて本発明の内層回路入り多層
銅張積層板を5枚重ねて穴明けした時の最上板と最下板
の穴位置のずれ量を測定したところ50μm以上であっ
た。さらに、この内層回路入り多層銅張積層板に回路形
成した後、ベアチップを実装し、ワイヤボンディングで
表面回路と接続した。ワイヤボンディング条件は、超音
波出力を1W、超音波出力時間を50μs、ボンド荷重
を100g、ワイヤボンディング温度を180℃とした
ところ、ワイヤのはがれが発生していた。この内層回路
入り多層銅張積層板の一部を切取り、外層銅箔をエッチ
ングにより除去し外観を観察したところ、かすれが発生
していた。
[Comparative Example 1] The same resin varnish as in Example 1 was applied to a thickness of 30 μm.
Impregnated and coated on glass cloth at 10 ℃ at a temperature of 150 ℃
The resin was semi-cured while heating and drying for n to remove the solvent, and a glass epoxy prepreg having a thickness of 30 μm, which was made of glass cloth and epoxy resin in a semi-cured state, was produced. This glass epoxy prepreg, copper foil thickness 18
The printed wiring board for the inner layer is formed on the upper and lower sides of the circuit formed on the double-sided copper clad laminate having a thickness of 100 μm and the insulating layer is 100 μm. Was laminated so as to face the prepreg, and thermocompression-molded to obtain a multilayer copper clad laminate including an inner layer circuit. When the surface roughness of this multilayer copper clad laminate with an inner layer circuit was measured by a stylus type surface roughness meter, the surface roughness was 8 μm or more. Further, a hole in which the copper foil was removed in a circular shape having a diameter of 50 μm was formed by etching at a predetermined position of the outer layer copper foil of the multilayer copper clad laminate containing the inner layer circuit, and the hole was irradiated with a laser beam. The oscillation frequency of the laser beam was 150 Hz, the number of irradiation pulses was 5, and the energy fluence was 23.5 J / cm 2 . Next, this sample was subjected to desmearing treatment with permanganate, followed by electroless copper plating, and the cross section of the hole of this sample was observed under a microscope. The resin in the insulating layer at the portion irradiated with the laser beam was partially removed, but the glass cloth remained, and the hole did not reach the inner layer circuit. That is, IVH could not be formed. Also,
The amount of deviation of the hole positions between the uppermost plate and the lowermost plate when 5 layers of the multi-layered copper clad laminate with an inner layer circuit of the present invention were piled up with a drill having a diameter of 0.3 mm was measured and found to be 50 μm or more. . Furthermore, after forming a circuit on this multilayer copper clad laminate containing an inner layer circuit, a bare chip was mounted and connected to the surface circuit by wire bonding. As for the wire bonding conditions, when the ultrasonic wave output was 1 W, the ultrasonic wave output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., wire peeling occurred. When a part of the multilayer copper clad laminate containing the inner layer circuit was cut out, the outer layer copper foil was removed by etching, and the appearance was observed, it was found that fading occurred.

【0027】[0027]

【比較例2】実施例1と同じ樹脂ワニスを、厚さ20μ
mのガラスクロスに含浸塗工し、温度150℃で10m
in間加熱乾燥して溶剤を除去すると共に、樹脂を半硬
化し、ガラスクロスと半硬化状態にあるエポキシ樹脂か
らなる厚さが30μmのガラスエポキシプリプレグの作
製を試みた。比較例1で発生した内層回路への樹脂埋め
込み性不足によるかすれを防止するために、ガラスを減
らし樹脂を増やすことが目的である。しかし、乾燥炉中
でクロスが塗工した樹脂の重量に耐えきれず破断した。
[Comparative Example 2] The same resin varnish as in Example 1 was applied to a thickness of 20 μm.
m glass cloth impregnated and coated at a temperature of 150 ° C for 10 m
An attempt was made to manufacture a glass epoxy prepreg having a thickness of 30 μm, which was composed of glass cloth and an epoxy resin in a semi-cured state, in which the resin was semi-cured by heating and drying for 1 hour to remove the solvent. The purpose is to reduce the amount of glass and increase the amount of resin in order to prevent blurring due to insufficient embedding of resin in the inner layer circuit, which occurred in Comparative Example 1. However, the cloth could not bear the weight of the applied resin in the drying oven and broke.

【0028】[0028]

【比較例3】重量平均分子量が500,000の高分子
量エポキシ重合体と、ビスフェノールA型エポキシ樹脂
を主成分とするフィルム形成能を有する熱硬化性樹脂
を、厚さ18μmの片面粗化電解銅箔の粗化面にナイフ
コータにて塗工し、温度150℃で10min間加熱乾
燥して溶剤を除去すると共に、樹脂を半硬化した。ナイ
フコータのギャップを適宜調整して、半硬化樹脂からな
るプリプレグ層の厚みが30μmの銅箔付きプリプレグ
を作製した。この作製した銅箔付きプリプレグを、銅箔
厚さ18μm、絶縁層厚さ100μmの両面銅張積層板
に回路形成して、あらかじめ作製しておいた内層板用プ
リント配線板に、その回路面にプリプレグ面を合わせる
ように積層し、熱圧成形して内層回路入り多層銅張積層
板を得た。この内層回路入り多層銅張積層板の表面粗さ
を触針式表面粗さ計にて測定したところ表面粗さは約2
μm以下であり、良好な表面平滑性であった。さらに、
この内層回路入り多層銅張積層板の外層銅箔の所定位置
にエッチングにより直径50μmの円状に銅箔を除去し
た穴を明け、その穴へレーザビームを照射した。レーザ
ビームの発振周波数は150Hz、照射パルス数5、エ
ネルギーフルエンスは23.5J/cm2 とした。次
に、このサンプルに過マンガン酸によるデスミア処理を
行った後、無電解銅メッキを施し、このサンプルの穴の
断面を顕微鏡観察した。レーザビームが照射された部分
の絶縁層は除去され、その穴は内層回路に達している
た。穴壁はレーザビーム入射側から内層回路に向かい穴
径が小さくなく方向に若干のテーパがあり、内層回路と
の接続部である穴底部の直径は40μmであるが、導通
穴として充分な接続面積が確保されている。穴壁は実施
例1〜2に比較し滑らかであり、一部にめっきのはがれ
が観察された。
Comparative Example 3 A high-molecular-weight epoxy polymer having a weight-average molecular weight of 500,000 and a thermosetting resin containing bisphenol A type epoxy resin as a main component and having a film-forming ability were prepared by using a one-side roughened electrolytic copper having a thickness of 18 μm. The roughened surface of the foil was coated with a knife coater and heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and semi-cured the resin. By appropriately adjusting the gap of the knife coater, a prepreg with a copper foil having a prepreg layer of a semi-cured resin having a thickness of 30 μm was produced. The prepared prepreg with a copper foil is formed into a circuit on a double-sided copper-clad laminate having a copper foil thickness of 18 μm and an insulating layer thickness of 100 μm, and a printed wiring board for an inner layer board prepared in advance is provided on the circuit surface. The layers were laminated so that the prepreg surfaces were aligned, and thermocompression-molded to obtain a multilayer copper-clad laminate with an inner layer circuit. The surface roughness of the multilayer copper clad laminate containing the inner layer circuit was measured by a stylus type surface roughness meter, and the surface roughness was about 2
It was not more than μm, and the surface smoothness was good. further,
A hole in which the copper foil was removed in a circular shape having a diameter of 50 μm by etching was made at a predetermined position of the outer layer copper foil of this multilayer copper clad laminate containing an inner layer circuit, and the hole was irradiated with a laser beam. The oscillation frequency of the laser beam is 150 Hz, the number of irradiation pulses is 5, and the energy fluence is 23.5 J / cm 2. And Next, this sample was subjected to desmearing treatment with permanganate, followed by electroless copper plating, and the cross section of the hole of this sample was observed under a microscope. The insulating layer in the portion irradiated with the laser beam was removed, and the hole reached the inner layer circuit. The hole wall has a slight taper in the direction from the laser beam incident side to the inner layer circuit, and the diameter of the hole bottom part that is the connection part with the inner layer circuit is 40 μm, but a sufficient connection area as a conduction hole. Is secured. The hole wall was smoother than in Examples 1 and 2, and peeling of the plating was observed in part.

【0029】また、直径0.3mmのドリルにて本発明
の内層回路入り多層銅張積層板を5枚重ねて穴明けした
時の最上板と最下板の穴位置のずれ量を測定したところ
20μm以下であった。さらに、この内層回路入り多層
銅張積層板に回路形成した後、ベアチップを実装し、ワ
イヤボンディングで表面回路と接続した。ワイヤボンデ
ィング条件は、超音波出力を1W、超音波出力時間を5
0μs、ボンド荷重を100g、ワイヤボンディング温
度を180℃としたところ、多数のワイヤのはがれが発
生した。この内層回路入り多層銅張積層板の一部を切取
り、外層銅箔をエッチングにより除去し、外観を観察し
たところ、ボイドやかすれがなく、内層回路の凹凸への
埋めこみ性は良好であった。この外層銅箔エッチング後
の内層回路入り多層銅張積層板の曲げ弾性率を3点曲げ
により測定した結果、常温下で20GPa、200℃下
で10GPaであった。また、この外層銅箔エッチング
後、内層回路入り多層銅張積層板のTMAによる常温下
での面方向の熱膨張係数を測定したところ20ppmで
あった。
Further, the amount of deviation between the hole positions of the uppermost plate and the lowermost plate was measured when five multi-layered copper clad laminates with an inner layer circuit of the present invention were stacked and punched with a drill having a diameter of 0.3 mm. It was 20 μm or less. Furthermore, after forming a circuit on this multilayer copper clad laminate containing an inner layer circuit, a bare chip was mounted and connected to the surface circuit by wire bonding. The wire bonding conditions are 1 W for ultrasonic output and 5 for ultrasonic output time.
When 0 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., peeling of many wires occurred. A part of the multilayer copper clad laminate containing the inner layer circuit was cut out, the outer layer copper foil was removed by etching, and the appearance was observed. As a result, no voids or scratches were found, and the embeddability in the unevenness of the inner layer circuit was good. The bending elastic modulus of the multilayer copper clad laminate containing the inner layer circuit after etching the outer layer copper foil was measured by three-point bending. As a result, it was 20 GPa at room temperature and 10 GPa at 200 ° C. Further, after the outer layer copper foil was etched, the coefficient of thermal expansion of the inner layer circuit-containing multilayer copper clad laminate at room temperature by TMA was 20 ppm when measured at room temperature.

【0030】[0030]

【発明の効果】本発明の内層回路入り多層銅張積層板
は、極薄化が可能であり、しかも表面が平滑で回路加工
性がよく、剛性が高いため実装信頼性が高く、表面硬度
が高いためワイヤボンド性がよく、熱膨張係数が小さい
ため寸法安定性がよい。従って、本発明の内層回路入り
多層銅張積層板は、多層プリント配線板の薄型化、高密
度化、高生産性化、高信頼性化、低コスト化に多大な貢
献をするものである。
INDUSTRIAL APPLICABILITY The multilayer copper clad laminate with an inner layer circuit according to the present invention can be extremely thinned, has a smooth surface, has good circuit workability, and has high rigidity, so that mounting reliability is high and surface hardness is high. Since it is high, the wire bondability is good, and since the coefficient of thermal expansion is small, the dimensional stability is good. Therefore, the multilayer copper clad laminate with an inner layer circuit of the present invention greatly contributes to thinning, high density, high productivity, high reliability and low cost of the multilayer printed wiring board.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 79/00 LQZ B29C 67/14 G // B29L 9:00 C08K 7:04 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C08L 79/00 LQZ B29C 67/14 G // B29L 9:00 C08K 7:04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内層回路板と外層回路用銅箔とが絶縁層を
介して積層されてなる内層回路入り多層銅張積層板にお
いて、前記絶縁層が熱硬化性樹脂中に電気絶縁性ウィス
カーを分散したものであることを特徴とする内層回路入
り多層銅張積層板。
1. A multilayer copper clad laminate containing an inner layer circuit, comprising an inner layer circuit board and an outer layer circuit copper foil laminated via an insulating layer, wherein the insulating layer comprises an electrically insulating whisker in a thermosetting resin. A multi-layer copper clad laminate with an inner layer circuit characterized by being dispersed.
【請求項2】電気絶縁性ウィスカーが、弾性率が200
GPa以上であるセラミックウィスカーであることを特
徴とする請求項1に記載の内層回路入り多層銅張積層
板。
2. The electrically insulating whiskers have an elastic modulus of 200.
The multilayer copper clad laminate with an inner layer circuit according to claim 1, which is a ceramic whisker having GPa or more.
【請求項3】電気絶縁性ウィスカーの平均直径が0.1
〜3μmであり、平均長さが平均直径の10倍以上であ
ることを特徴とする請求項1又は2記載の内層回路入り
多層銅張積層板。
3. The electrically insulating whiskers have an average diameter of 0.1.
3. The multilayer copper clad laminate with an inner layer circuit according to claim 1 or 2, wherein the multilayer copper clad laminate has an inner length of 3 to 3 μm and an average length of 10 times or more the average diameter.
【請求項4】電気絶縁性ウィスカーが硼酸アルミニウム
である請求項1乃至3のいずれかに記載の内層回路入り
多層銅張積層板。
4. The multilayer copper clad laminate with an inner layer circuit according to claim 1, wherein the electrically insulating whiskers are aluminum borate.
【請求項5】熱硬化性樹脂がエポキシ樹脂又はポリイミ
ド樹脂を主成分とするものであることを特徴とする請求
項1乃至4のいずれかに記載の内層回路入り多層銅張積
層板。
5. The multilayer copper clad laminate with an inner layer circuit according to claim 1, wherein the thermosetting resin is mainly composed of epoxy resin or polyimide resin.
【請求項6】熱硬化性樹脂に電気絶縁性ウィスカーを配
合し、撹拌により該ウィスカーを該熱硬化性樹脂中に均
一に分散させた後、少なくとも片面が粗化された銅箔の
粗化面上に塗工し、加熱乾燥により溶剤を除去するとと
もに、樹脂を半硬化状態にした銅箔付きプリプレグのプ
リプレグ面をあらかじめ回路加工の完了した内層回路板
に向き合うように積層し、熱圧成形することを特徴とす
る内層回路入り多層銅張積層板の製造方法。
6. A roughened surface of a copper foil having at least one surface roughened after blending an electrically insulating whisker with a thermosetting resin and uniformly dispersing the whisker in the thermosetting resin by stirring. Coat on top, remove the solvent by heating and drying, stack the prepreg surface of the prepreg with copper foil in which the resin is semi-cured so that it faces the inner layer circuit board on which circuit processing has been completed in advance, and thermocompress molding A method for producing a multi-layer copper-clad laminate including an inner layer circuit, comprising:
JP8063989A 1996-03-21 1996-03-21 Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof Pending JPH09260843A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8063989A JPH09260843A (en) 1996-03-21 1996-03-21 Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof
TW085110853A TW462922B (en) 1996-03-21 1996-09-05 Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
KR1019960039569A KR100187577B1 (en) 1996-03-21 1996-09-12 Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
EP96306670A EP0797378A3 (en) 1996-03-21 1996-09-13 Copper-clad laminate, multilayer copper-clad laminate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8063989A JPH09260843A (en) 1996-03-21 1996-03-21 Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH09260843A true JPH09260843A (en) 1997-10-03

Family

ID=13245212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8063989A Pending JPH09260843A (en) 1996-03-21 1996-03-21 Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH09260843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316592A (en) * 2000-04-28 2001-11-16 Hitachi Chem Co Ltd Insulating material composition, metal foil with insulating material, insulating material with metal foil on both surfaces, and metal-clad laminated board
CN103770400A (en) * 2014-01-09 2014-05-07 鹤山东力电子科技有限公司 3D (three-dimensional) metal-based copper-clad plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316592A (en) * 2000-04-28 2001-11-16 Hitachi Chem Co Ltd Insulating material composition, metal foil with insulating material, insulating material with metal foil on both surfaces, and metal-clad laminated board
CN103770400A (en) * 2014-01-09 2014-05-07 鹤山东力电子科技有限公司 3D (three-dimensional) metal-based copper-clad plate

Similar Documents

Publication Publication Date Title
EP0763562B1 (en) Prepreg for printed circuit board
WO2007099710A1 (en) Intermediate layer material, and composite laminate plate
JP5696786B2 (en) Prepreg, laminated board, semiconductor package, and laminated board manufacturing method
TW201922895A (en) Thermosetting resin composition, and statically bendable copper-clad plate and printed circuit board prepared therefrom
JP3838389B2 (en) Insulating material and multilayer printed wiring board using the same
TWI419636B (en) Multiple circuit board and semiconductor device
KR100187577B1 (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JPH09260843A (en) Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP3390306B2 (en) Prepreg with carrier film for printed wiring boards
JPH09254313A (en) Copper-clad laminate and its manufacture
JPH09202834A (en) Prepreg for printed circuit board and its production
JP3804812B2 (en) Method for producing insulating varnish
JP2002265754A (en) High dielectric constant b-staged resin composition sheet and printed wiring board using the same
JP4366785B2 (en) Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof
JPH10287834A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JP3911739B2 (en) Insulation material for wiring boards
JPH09202832A (en) Prepreg for printing circuit board and its production
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JPH11140229A (en) Thermosetting resin composition, adhesive sheet using the same and metal foil having adhesive layer attached thereto
JPH11279493A (en) Adhesive sheet, metallic foil with adhesive, multilayer board covered with metallic foil, and layered board and printed circuit board covered with metallic foil
JPH11236456A (en) Resin sheet, metallic foil-clad laminate and multilayer printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060518