JPH09260684A - Manufacture of liquid crystal display - Google Patents

Manufacture of liquid crystal display

Info

Publication number
JPH09260684A
JPH09260684A JP33056096A JP33056096A JPH09260684A JP H09260684 A JPH09260684 A JP H09260684A JP 33056096 A JP33056096 A JP 33056096A JP 33056096 A JP33056096 A JP 33056096A JP H09260684 A JPH09260684 A JP H09260684A
Authority
JP
Japan
Prior art keywords
energy beam
liquid crystal
crystal display
scanning
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33056096A
Other languages
Japanese (ja)
Other versions
JP3825515B2 (en
Inventor
Shinichi Kawamura
真一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33056096A priority Critical patent/JP3825515B2/en
Publication of JPH09260684A publication Critical patent/JPH09260684A/en
Application granted granted Critical
Publication of JP3825515B2 publication Critical patent/JP3825515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To change the characteristic of a TFT at its boundary part gradually, by performing scanning of an energy beam a plurality of times, overlapping an end part irradiated region at each adjoining time, and performing the scanning, so that the boundaries between the overlapping regions and non- overlapping regions may be nonlinear. SOLUTION: At the time of linear energy beam irradiation for the n-th line, an optical system is moved by a step of 0.5mm per one shot in a range of ±2mm against a vibration center at random in the direction of Y-axis. The optical system from a first mirror 23 to an image forming lens 26 is moved in the direction of Y-axis by 96mm, and scanning for the (n+1)-th line is performed. And the optical system is moved by a step of 0.5mm per one shot at random, in the direction of Y-axis in a range of the maximum width 2mm. The overlapping region of the n-th line and the (n+1)-th line of the energy beam is in a random shape, and it is possible to change the characteristic (especially the threshold characteristic) of a TFT in the boundary part between the overlapping region and the non-overlapping region gradually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置にか
かり、詳しくは非晶質シリコンに線状エネルギービーム
を複数回走査させて照射し、多結晶化するための走査方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a scanning method for irradiating amorphous silicon with a linear energy beam by scanning it a plurality of times to polycrystallize it.

【0002】[0002]

【従来の技術】液晶表示装置の薄膜トランジスタの製造
方法で、非晶質シリコン層の一部を多結晶化することに
より低抵抗化し、ソース・ドレイン領域を形成する製造
方法が開発されている。この非晶質シリコンを多結晶化
するには、エネルギービームを照射し、溶融させ、再結
晶化させる方法が採られている。
2. Description of the Related Art As a method of manufacturing a thin film transistor of a liquid crystal display device, a method of forming a source / drain region by reducing the resistance by partially polycrystallizing an amorphous silicon layer has been developed. To polycrystallize this amorphous silicon, a method of irradiating with an energy beam, melting and recrystallizing is adopted.

【0003】このエネルギービームの照射方法に関し、
特開平61−187222号公報には、エネルギービー
ムを線状に変換して照射する方法が開示されている。ま
た、特開平2−78217号公報には、この線状のエネ
ルギービームを複数回走査させて照射する場合に、その
重複領域を一定に保つ方法が開示されている。
Regarding the method of irradiating this energy beam,
Japanese Patent Laid-Open No. 61-187222 discloses a method of converting an energy beam into a linear shape and irradiating it. Further, Japanese Patent Application Laid-Open No. 2-78217 discloses a method of keeping the overlapping region constant when scanning and irradiating the linear energy beam a plurality of times.

【0004】しかしながら、上述したように重複領域を
持たせると、その重複領域が、当然他の領域に比べてエ
ネルギービームの照射量が多くなり、薄膜トランジスタ
の特性、特に閾値特性が微妙に変化してしまい、画像に
表示ムラが現れてしまう。図5に示すように特に上述し
たように重複領域を常に一定に保った場合、表示ムラが
一直線状に現れてしまい、視覚的に非常に強調されて見
えてしまうという問題がある。
However, when the overlapping area is provided as described above, the overlapping area naturally has a larger irradiation amount of the energy beam than the other areas, and the characteristics of the thin film transistor, particularly the threshold characteristics change subtly. As a result, display unevenness appears in the image. As shown in FIG. 5, particularly when the overlapping area is always kept constant as described above, there is a problem that the display unevenness appears in a straight line and is visually very emphasized.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みなされたもので、線状ビームビームの照射方法に特
徴を持たせることにより、視覚的に表示ムラが目立たな
い液晶表示装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a liquid crystal display device in which display unevenness is not visually noticeable by giving a characteristic to a method of irradiating a linear beam beam. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明は、非晶質シリコ
ン層に線状ビームを照射及び走査して、非晶質シリコン
層を多結晶シリコン層に変換し、線状エネルギービーム
の照射及び走査は、多結晶シリコン層に変換される領域
全体を覆うように、その位置をシフトして複数回行われ
る工程を備えた液晶表示装置の製造方法において、エネ
ルギービームは複数回の線状エネルギービームの走査の
隣接する各回数の端部照射領域を重複させて走査され、
重複領域と非重複領域との境界が非直線状となるように
走査される液晶表示装置の製造方法である。
The present invention is directed to irradiating and scanning a linear beam on an amorphous silicon layer to convert the amorphous silicon layer into a polycrystalline silicon layer and irradiating a linear energy beam on the amorphous silicon layer. In the method of manufacturing a liquid crystal display device, the scanning is performed a plurality of times by shifting the position so as to cover the entire region converted into the polycrystalline silicon layer. The scanning is performed by overlapping the edge irradiation areas of each adjacent number of times of scanning,
This is a method for manufacturing a liquid crystal display device in which scanning is performed so that the boundary between the overlapping area and the non-overlapping area becomes non-linear.

【0007】本発明によれば、エネルギービームの重複
領域と非重複領域との境界が非直線状になることでエネ
ルギービーム照射量による個々のTFTの特性差に起因
する表示ムラを視覚的にとらえにくくすることができ
る。
According to the present invention, since the boundary between the overlapping region and the non-overlapping region of the energy beam is made non-linear, the display unevenness caused by the difference in the characteristics of the individual TFTs due to the energy beam irradiation amount can be visually recognized. Can be hardened.

【0008】[0008]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照して詳細に説明する。 (実施例1)図10に液晶表示装置の構造を示す。絶縁
基板1上に薄膜トランジスタ(TFT)101と画素電
極4が形成されたアレイ基板102と、他の絶縁基板1
03上にカラーフィルタ104と対向電極105とが形
成された対向基板106とがスペーサ107及びシール
108材を介して対向配置されており、この間隙に液晶
109が封入されている。さらにアレイ基板102及び
対向基板106の外側面には偏光板110、111が貼
り付けてある。
Embodiments of the present invention will be described below in detail with reference to the drawings. (Embodiment 1) FIG. 10 shows the structure of a liquid crystal display device. Array substrate 102 in which thin film transistor (TFT) 101 and pixel electrode 4 are formed on insulating substrate 1, and other insulating substrate 1
03, a color filter 104 and a counter substrate 106 on which a counter electrode 105 is formed are arranged so as to face each other with a spacer 107 and a seal 108 material interposed therebetween, and a liquid crystal 109 is sealed in this gap. Further, polarizing plates 110 and 111 are attached to the outer surfaces of the array substrate 102 and the counter substrate 106.

【0009】図1に、本発明の一実施例に使用されるT
FT101の構造を示す。まずガラスからなる絶縁基板
1上にインジウム・錫酸化物(ITO)からなる画素電
極4が形成されている。そして、モリブデン・タングス
テン(MoW)合金からなるソース電極5とドレイン電
極6が形成されている。ドレイン電極6は、下層にIT
O膜が敷かれており、2層構造となっている。また、ソ
ース電極5はやはり下層に画素電極4の延長であるIT
O膜が敷かれている。
FIG. 1 shows a T used in an embodiment of the present invention.
1 shows the structure of FT101. First, a pixel electrode 4 made of indium tin oxide (ITO) is formed on an insulating substrate 1 made of glass. Then, a source electrode 5 and a drain electrode 6 made of a molybdenum-tungsten (MoW) alloy are formed. The drain electrode 6 has IT in the lower layer.
An O film is laid and has a two-layer structure. In addition, the source electrode 5 is IT which is an extension of the pixel electrode 4 in the lower layer.
O film is laid.

【0010】次に、絶縁基板1上に、ソース電極5とド
レイン電極6とに接続されたn型多結晶半導体層7と、
このn型多結晶半導体層7に挟まれた非晶質シリコンか
らなる活性層7aが形成されている。そして、半導体層
7上に窒化シリコン(SiNx)からなるゲート絶縁膜
8が形成され、さらにその上にアルミニウム(Al)層
とモリブデン(Mo)層10からなるゲート電極11が
形成されている。そして、最上部に窒化シリコンからな
る保護膜13が被覆されている。
Next, on the insulating substrate 1, an n-type polycrystalline semiconductor layer 7 connected to the source electrode 5 and the drain electrode 6, and
An active layer 7a made of amorphous silicon is formed between the n-type polycrystalline semiconductor layers 7. Then, a gate insulating film 8 made of silicon nitride (SiNx) is formed on the semiconductor layer 7, and a gate electrode 11 made of an aluminum (Al) layer and a molybdenum (Mo) layer 10 is further formed thereon. A protective film 13 made of silicon nitride is coated on the uppermost part.

【0011】以上のようにして構成されるTFT101
の製造工程について、図2A〜2Cを参照して、以下に
詳細に説明する。まずガラスからなる絶縁基板1上に、
スパッタリング法によりITO膜2と、MoW合金膜3
とを順次積層成膜する。次いで、フォトリソグラフィ法
によりこれらITO膜2及びMoW合金膜3をパターニ
ングして、画素電極4、ドレインライン、ソース電極
5、及びドレイン電極6を形成する(図2A)。このと
き、画素電極4上にはMoW合金膜3が被覆されている
が、このMoW合金膜3は後に除去される。
The TFT 101 configured as described above
The manufacturing process of is described in detail below with reference to FIGS. First, on the insulating substrate 1 made of glass,
ITO film 2 and MoW alloy film 3 by sputtering method
And are sequentially laminated to form a film. Next, the ITO film 2 and the MoW alloy film 3 are patterned by photolithography to form the pixel electrode 4, the drain line, the source electrode 5, and the drain electrode 6 (FIG. 2A). At this time, the pixel electrode 4 is covered with the MoW alloy film 3, but the MoW alloy film 3 is removed later.

【0012】次に、図2Bに示すように、厚さ1000
オングストロームの非晶質シリコン層7aと、厚さ40
00オングストロームの窒化シリコン膜8とをプラズマ
CVD法により順次積層形成し、さらにスパッタ法によ
り、Al膜9とMo10とを積層する。その後、フォト
リソグラフィ法によりMo膜10、Al膜9、及びSi
Nx膜8を同一パターンでエッチング加工し、Al膜9
とMo膜10の2層からなるゲート電極11、及びSi
Nx膜からなるゲート絶縁膜8を形成する。このとき、
非晶質シリコン層7aまでエッチングしないようにす
る。非晶質シリコン層7aへの過剰エッチングを防ぐた
め、酸化シリコン(SiOx)等の膜を非晶質シリコン
層7aの上層に形成しておくこともある。その後、ゲー
ト電極11をマスクとして用いて、非晶質シリコン層7
aに、非質量分離型のイオン注入装置により、加速電圧
60kV、ドーズ量3×1015/cm2 でリン(P)を
添加し、非晶質シリコン層7aの一部をn型非晶質シリ
コンとし、そして、波長308nmのXeClエキシマ
レーザ装置により、非晶質シリコン層7aにエネルギー
密度150mJ/cm2 のエネルギービームを照射し、
Pの添加された非晶質シリコン層7aをn型多結晶シリ
コン層7とし、このn型多結晶シリコン層7をフォトリ
ソグラフィ法によりエッチング加工して、ソース・ドレ
インコンタクト領域を形成する(図2C)。
Next, as shown in FIG. 2B, the thickness 1000
Angstrom amorphous silicon layer 7a, thickness 40
A silicon nitride film 8 having a thickness of 00 angstrom is sequentially formed by plasma CVD, and an Al film 9 and Mo 10 are further formed by sputtering. After that, the Mo film 10, the Al film 9 and the Si film are formed by photolithography.
The Nx film 8 is etched with the same pattern to form an Al film 9
And a gate electrode 11 composed of two layers of Mo film 10 and Si
A gate insulating film 8 made of an Nx film is formed. At this time,
The amorphous silicon layer 7a is not etched. In order to prevent excessive etching of the amorphous silicon layer 7a, a film of silicon oxide (SiOx) or the like may be formed on the amorphous silicon layer 7a. After that, the amorphous silicon layer 7 is formed using the gate electrode 11 as a mask.
Phosphorus (P) was added to a at a accelerating voltage of 60 kV and a dose amount of 3 × 10 15 / cm 2 by a non-mass separation type ion implantation apparatus, and a part of the amorphous silicon layer 7 a was made into an n-type amorphous layer. Then, the amorphous silicon layer 7a is irradiated with an energy beam having an energy density of 150 mJ / cm 2 by using XeCl excimer laser device having a wavelength of 308 nm.
The amorphous silicon layer 7a containing P is used as an n-type polycrystalline silicon layer 7, and the n-type polycrystalline silicon layer 7 is etched by photolithography to form source / drain contact regions (FIG. 2C). ).

【0013】次に、このようにして形成された構造体の
全面に、例えばSiNx等をプラズマCVD法により被
覆し、保護膜13を形成する。そして、周辺電極上と画
素電極上の保護膜13をフォトリソグラフィ法によって
エッチング除去する。さらに、この時点でITOからな
る画素電極4上にMoW合金膜3が残っているので、こ
のMoW合金膜3をエッチング除去する。
Next, the entire surface of the structure thus formed is covered with, for example, SiNx by a plasma CVD method to form a protective film 13. Then, the protective film 13 on the peripheral electrodes and the pixel electrodes is removed by etching by photolithography. Further, since the MoW alloy film 3 remains on the pixel electrode 4 made of ITO at this point, the MoW alloy film 3 is removed by etching.

【0014】こうして、図1に示すように、ソース電極
5、ドレイン電極6、画素電極4、多結晶半導体層7、
ゲート絶縁膜8、ゲート電極9、保護膜13からなるT
FTを有する液晶表示装置のアレイ基板102を得るこ
とができる。
Thus, as shown in FIG. 1, the source electrode 5, the drain electrode 6, the pixel electrode 4, the polycrystalline semiconductor layer 7,
T composed of the gate insulating film 8, the gate electrode 9 and the protective film 13
The array substrate 102 of the liquid crystal display device having FT can be obtained.

【0015】このアレイ基板102に対し、絶縁基板1
03にカラーフィルタ104と対向電極105を形成し
た対向基板106をスペーサ107とシール材108を
介して貼り合わせ、その中に液晶109を封入する。さ
らにアレイ基板102と対向基板106の外側面に偏光
板110、111を貼り付けて液晶表示装置を得ること
ができる。
In contrast to the array substrate 102, the insulating substrate 1
The counter substrate 106 having the color filter 104 and the counter electrode 105 formed thereon is bonded to the spacer 03 via the spacer 107 and the sealant 108, and the liquid crystal 109 is sealed therein. Further, polarizing plates 110 and 111 are attached to the outer surfaces of the array substrate 102 and the counter substrate 106 to obtain a liquid crystal display device.

【0016】次に、前述した非晶質シリコンを多結晶化
する際の線状エネルギービーム照射について詳細に説明
する。図3に本実施例で用いたエキシマレーザアニール
装置の外観を示す。このエキシマレーザアニール装置
は、線状エネルギービームを形成する光学系を有してい
る。
Next, the linear energy beam irradiation for polycrystallizing the above-mentioned amorphous silicon will be described in detail. FIG. 3 shows the appearance of the excimer laser annealing apparatus used in this example. This excimer laser annealing apparatus has an optical system that forms a linear energy beam.

【0017】図3において、レーザ発振源として、発振
波長308nmのエキシマレーザ発振源21を用いた。
このエキシマレーザ発振源21から発振されたエネルギ
ービーム22は、第1のミラー23により反射され、進
路を変えられ、次いで、ホモジナイザを含む光学系24
を通り、第2のミラー25により反射され進路を変えら
れる。
In FIG. 3, an excimer laser oscillation source 21 having an oscillation wavelength of 308 nm was used as the laser oscillation source.
The energy beam 22 oscillated from the excimer laser oscillation source 21 is reflected by the first mirror 23 to change its course, and then the optical system 24 including a homogenizer.
And the course is changed by being reflected by the second mirror 25.

【0018】そして、エネルギービームは結像レンズ2
6によりステージ台27上に載せられた基板28上に、
線状ビーム29として結像される。このステージ台27
は、X軸方向に移動することができ、一方向光学系の第
1のミラーから結像レンズ26までは一体となってY軸
方向に移動することができる。つまり、走査方向をX軸
方向、走査方向に対して垂直方向をY軸方向とする。
Then, the energy beam is formed by the imaging lens 2
On the substrate 28 placed on the stage table 27 by 6,
It is imaged as a linear beam 29. This stage stand 27
Can be moved in the X-axis direction, and the first mirror of the one-way optical system to the imaging lens 26 can be integrally moved in the Y-axis direction. That is, the scanning direction is the X-axis direction and the direction perpendicular to the scanning direction is the Y-axis direction.

【0019】図4Aは、線状エネルギービーム強度のX
軸方向の断面プロファイルを、図4Bは、線状エネルギ
ービーム強度のY軸方向の断面プロファイルを示してお
り、その両断面プロファイルはトップフラットの台形プ
ロファイルを示している。線状エネルギービームのX軸
方向(幅方向)のエネルギー密度均一部の長さは0.4
mmであり、Y軸方向(長手方向)のエネルギー密度均
一部の長さは100mmである。ただし、各軸の端部は
裾を引いており、エネルギー強度最大値の10%から9
0%の間で、X軸方向では約0.05mm、Y軸方向で
は約1mmの裾をひいている。
FIG. 4A shows the X of the linear energy beam intensity.
FIG. 4B shows a cross-sectional profile in the Y-axis direction of the linear energy beam intensity, and both cross-sectional profiles show a top flat trapezoidal profile. The length of the energy density uniform portion in the X-axis direction (width direction) of the linear energy beam is 0.4.
mm, and the length of the energy density uniform part in the Y-axis direction (longitudinal direction) is 100 mm. However, the end of each axis has a hem, so that 10% to 9% of the maximum value of energy intensity
Between 0%, a skirt of about 0.05 mm in the X-axis direction and about 1 mm in the Y-axis direction is drawn.

【0020】この第1のミラー23から結像レンズ26
までの光学系は、エネルギービームの発振に同期させて
移動させる。そして、エネルギービームの発振周波数は
100Hzで、線状エネルギービームのX軸方向のオー
バーラップ量が75%となるように線状エネルギービー
ムの1パルス照射に対してステージ台29を0.1mm
X軸方向に移動させる。つまり、線状エネルギービーム
のX軸方向の幅は0.4mmなので、一カ所につき4シ
ョットのエネルギービーム照射が行われることになる。
From the first mirror 23 to the imaging lens 26
The optical system up to is moved in synchronization with the oscillation of the energy beam. The oscillation frequency of the energy beam is 100 Hz, and the stage table 29 is 0.1 mm for one pulse irradiation of the linear energy beam so that the overlap amount of the linear energy beam in the X-axis direction is 75%.
Move in the X-axis direction. That is, since the width of the linear energy beam in the X-axis direction is 0.4 mm, four shots of energy beam irradiation are performed at one location.

【0021】ここで、本実施例においては、第n+1列
目との重複領域が直線的になるのを防ぐために、第n列
目の線状エネルギービーム照射の走査の時に、光学系を
Y軸方向にランダムに振動中心に対して±2mmの範囲
で、1ショット0.5mmのステップで移動させてい
る。
Here, in this embodiment, in order to prevent the overlapping region with the (n + 1) th column from being linear, the optical system is moved to the Y-axis during the scanning of the linear energy beam irradiation of the nth column. Randomly moving in a direction within a range of ± 2 mm with respect to the center of vibration in steps of 0.5 mm per shot.

【0022】次に、第n列目の線状エネルギービームの
走査後、第1のミラー23から結像レンズ26までの光
学系をY軸方向に96mm移動させ、続いて、第n+1
列目の走査を行う。そして、光学系を第n列目の照射時
と同様にY軸方向にランダムに最大幅2mmの範囲で1
ショット0.5mmのステップで移動させて走査する。
このような線状エネルギービームのn列とn+1列の走
査の状態を図5に模式的に示す。
Next, after scanning the nth row linear energy beam, the optical system from the first mirror 23 to the imaging lens 26 is moved in the Y-axis direction by 96 mm, and then the (n + 1) th.
Scan the columns. Then, as in the case of the irradiation of the n-th row, the optical system is randomly set in the Y-axis direction within the range of the maximum width of 2 mm.
The shot is moved and scanned in steps of 0.5 mm.
FIG. 5 schematically shows such a scanning state of the nth row and the n + 1th row of the linear energy beam.

【0023】図7は、走査方向と垂直な方向に振動させ
つつ走査させた第n列目と第n+1列目の線状エネルギ
ービームを重ね合わせた場合の、X軸方向0.1mm、
Y軸方向0.5mmの領域のショット回数を、個別の回
数と重ね合わせた回数とを表した図である。図7から、
第n列目と第n+1列目の線状エネルギービームの重複
領域のショット回数は、徐々に変化していることが分か
る。
FIG. 7 shows 0.1 mm in the X-axis direction when the linear energy beams in the nth and (n + 1) th columns, which are scanned while vibrating in the direction perpendicular to the scanning direction, are superposed.
It is a figure showing the number of shots in the area of 0.5 mm in the Y-axis direction, the number of times of individual shots and the number of times of superposition. From FIG.
It can be seen that the number of shots in the overlapping region of the linear energy beams in the nth column and the (n + 1) th column is gradually changing.

【0024】図6Aは線状エネルギービームの第n列目
と第n+1列目の重複領域を示す図、図6Bは、Y軸方
向に振動する第n列目と第n+1列目の線状エネルギー
ビームの端部の形状を示す図である。図6Aおよび6B
から明らかなように、線状エネルギービームの第n列目
と第n+1列目の重複領域はランダムな形状とされてお
り、そうすることにより、重複領域と重複していない領
域との境界部におけるTFTの特性(特に閾値特性)が
徐々に変化していくため、これに起因する表示ムラが視
覚的にとらえにくくなり、見た目に良好な画像が得られ
る。
FIG. 6A is a diagram showing an overlapping region of the nth column and the (n + 1) th column of the linear energy beam, and FIG. 6B is a linear energy of the nth column and the (n + 1) th column vibrating in the Y-axis direction. It is a figure which shows the shape of the edge part of a beam. 6A and 6B
As is clear from the above, the overlapping regions of the nth column and the (n + 1) th column of the linear energy beam have a random shape, and by doing so, at the boundary between the overlapping region and the non-overlapping region, Since the characteristics of the TFT (in particular, the threshold characteristics) gradually change, it is difficult to visually recognize the display unevenness resulting from this, and an image with a good appearance can be obtained.

【0025】また、本実施例では第n列目、第n+1列
目ともにY軸方向にランダムに動かしながらX軸方向に
走査したが、例えば、第n列目をランダムに、第n+1
列目を直線状に走査してもかまわないし、また、第n列
目をランダムに、第n+1列目は第n列目と同様の挙動
で走査してもかまわない。第n列目と第n+1列目の境
界の形状は、周期関数曲線とすることができる。
In the present embodiment, both the nth column and the (n + 1) th column are moved in the Y axis direction at random while scanning in the X axis direction. For example, the nth column is randomly moved to the (n + 1) th column.
The column may be scanned linearly, or the nth column may be randomly scanned and the (n + 1) th column may be scanned in the same manner as the nth column. The shape of the boundary between the nth column and the (n + 1) th column can be a periodic function curve.

【0026】以上の例では、光学系をY軸方向に移動さ
せることにより線状エネルギービームの振動を行った
が、ステージを移動させることも可能である。さらに、
以上の例では、光学系又はステージをY軸方向に移動さ
せることにより、第n列目と第n+1列目の線状エネル
ギービームの重複領域を非直線的にしているが、図9に
示すように、結像レンズ26の下に、複数の光変調素子
30を線状エネルギービーム29に沿って並べた光変調
素子アレイ40を配置し、線状エネルギービームの端部
に対応する位置にある光変調素子30の屈折率又は透過
率を変化させても良い。
In the above example, the linear energy beam is oscillated by moving the optical system in the Y-axis direction, but it is also possible to move the stage. further,
In the above example, by moving the optical system or the stage in the Y-axis direction, the overlapping region of the linear energy beams of the nth column and the (n + 1) th column is made non-linear, but as shown in FIG. A light modulation element array 40 in which a plurality of light modulation elements 30 are arranged along the linear energy beam 29 is arranged under the imaging lens 26, and light at a position corresponding to the end of the linear energy beam is arranged. The refractive index or the transmittance of the modulation element 30 may be changed.

【0027】(実施例2)次に実施例1とは構成の異な
るTFTを例に挙げて説明する。図11に本実施例のT
FT201の構成を示す。ガラスからなる絶縁基板20
2上に多結晶シリコン層203が形成されており、この
多結晶シリコン層203はチャネル領域203aとこの
チャネル領域203aを挟むようにソース領域203b
及びドレイン領域203cを有している。その他結晶シ
リコン層203を覆うようにゲート絶縁膜204が形成
されている。さらにゲート絶縁膜204上にゲート電極
205がパターニング形成されており、ゲート電極20
5を覆うように層間絶縁膜206が形成されている。そ
して層間絶縁膜206に設けられたコンタクトホールを
介してソース電極207とソース領域203bが、また
ドレイン領域203cとドレイン電極208がそれぞれ
接続している。そしてソース電極207に画素電極20
9が接続されている。
(Embodiment 2) Next, a TFT having a structure different from that of Embodiment 1 will be described as an example. FIG. 11 shows T of this embodiment.
The structure of FT201 is shown. Insulating substrate 20 made of glass
2 has a polycrystalline silicon layer 203 formed thereon, and this polycrystalline silicon layer 203 has a channel region 203a and a source region 203b so as to sandwich the channel region 203a.
And a drain region 203c. A gate insulating film 204 is formed so as to cover the other crystalline silicon layer 203. Further, a gate electrode 205 is patterned and formed on the gate insulating film 204.
An interlayer insulating film 206 is formed so as to cover 5. The source electrode 207 and the source region 203b are connected to each other and the drain region 203c and the drain electrode 208 are connected to each other through a contact hole formed in the interlayer insulating film 206. The pixel electrode 20 is formed on the source electrode 207.
9 is connected.

【0028】次にこのTFT201の製造方法を以下に
説明する。まずガラスからなる絶縁基板202上におよ
そ800オングストロームの非晶質シリコン層をプラズ
マCVD法により成膜する。続いてこの非晶質シリコン
層に線状エネルギービームを走査しながら照射して多結
晶シリコン層203とする。このときのエネルギー密度
は300〜500mJ/cm2 程度に設定する。そし
て、実施例1と同様に複数の走査の重複領域が非直線状
になるように照射を行う。このようにして形成された多
結晶シリコン層203を島状にパターニングする。
Next, a method of manufacturing the TFT 201 will be described below. First, an amorphous silicon layer having a thickness of about 800 Å is formed on the insulating substrate 202 made of glass by the plasma CVD method. Subsequently, this amorphous silicon layer is irradiated with a linear energy beam while scanning to form a polycrystalline silicon layer 203. The energy density at this time is set to about 300 to 500 mJ / cm 2 . Then, as in the first embodiment, irradiation is performed so that the overlapping region of a plurality of scans becomes non-linear. The polycrystalline silicon layer 203 thus formed is patterned into an island shape.

【0029】次に多結晶シリコン層203を覆うように
ゲート絶縁膜204としてSiOxを成膜し、MoW合
金をスパッタ法により堆積させる。堆積したMoW合金
をパターニングしてゲート電極205とする。次にこの
ゲート電極205をマスクとして多結晶シリコン層20
3のソース領域203b及びドレイン領域203cとな
る領域にイオンドーピングを行う。次にこのゲート電極
205を覆うように層間絶縁膜206としてSiOxを
成膜する。さらにこの状態で先程ドーピングしたイオン
の活性化を行い、続いて多結晶シリコン層203への水
素化を行う。そしてソース領域203b及びドレイン領
域203c上の層間絶縁膜206にコンタクトホールを
形成し、Al等のソース電極207およびドレイン電極
208をそれぞれソース領域203b、ドレイン領域2
03cに接続するように形成する。
Next, a SiOx film is formed as a gate insulating film 204 so as to cover the polycrystalline silicon layer 203, and a MoW alloy is deposited by a sputtering method. The deposited MoW alloy is patterned to form the gate electrode 205. Next, using this gate electrode 205 as a mask, the polycrystalline silicon layer 20
Ion doping is performed on the regions to be the source region 203b and the drain region 203c. Next, SiOx is formed as an interlayer insulating film 206 so as to cover the gate electrode 205. Further, in this state, the doped ions are activated, and then the polycrystalline silicon layer 203 is hydrogenated. Then, contact holes are formed in the interlayer insulating film 206 on the source region 203b and the drain region 203c, and the source electrode 207 and the drain electrode 208 made of Al or the like are formed as the source region 203b and the drain region 2, respectively.
It is formed so as to be connected to 03c.

【0030】以上の実施例1、2では、画素領域のTF
Tの製造に本発明を適用したが、周辺の駆動回路、即ち
図8に示すXドライバ、Yドライバに本発明を適用する
ことも可能である。この場合、Xドライバが第n列目と
第n+1列目の線状エネルギービームの重複領域を横切
らないように、線状エネルギービームの走査方向をXド
ライバの延びる方向と平行にして、線状エネルギービー
ムの重複領域をXドライバから外すことが好ましい。
In the first and second embodiments described above, the TF of the pixel area is
Although the present invention is applied to the manufacture of T, the present invention can be applied to peripheral drive circuits, that is, the X driver and the Y driver shown in FIG. In this case, the scanning direction of the linear energy beam is set parallel to the extending direction of the X driver so that the X driver does not cross the overlapping region of the linear energy beams of the nth column and the (n + 1) th column. It is preferable to remove the overlap region of the beam from the X driver.

【0031】[0031]

【発明の効果】本発明によればTFTを形成する際に、
線状エネルギービームを複数回走査する場合、重複して
照射される領域を非直線的にすることにより、エネルギ
ービーム照射量による個々のTFTの特性差に起因する
表示ムラを視覚的にとらえにくくすることができ、その
結果、良好な画像を得ることができる。
According to the present invention, when forming a TFT,
When a linear energy beam is scanned a plurality of times, non-linearly irradiating the overlapped area makes it difficult to visually perceive the display unevenness caused by the difference in the characteristics of individual TFTs depending on the energy beam irradiation amount. As a result, a good image can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における液晶表示装置の薄膜ト
ランジスタを示す断面図である。
FIG. 1 is a cross-sectional view showing a thin film transistor of a liquid crystal display device in an example of the present invention.

【図2】図1に示す薄膜トランジスタの製造工程を示す
断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of the thin film transistor shown in FIG.

【図3】本発明の実施例に使用されるエキシマレーザア
ニール装置の外観図である。
FIG. 3 is an external view of an excimer laser annealing apparatus used in an example of the present invention.

【図4】本発明の実施例に使用される線状エネルギービ
ームのX軸方向、Y軸方向それぞれにおける照射幅とエ
ネルギー強度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the irradiation width and the energy intensity in the X-axis direction and the Y-axis direction of the linear energy beam used in the example of the present invention.

【図5】本発明の実施例における第n列と第n+1列の
走査の状態を模式的に示す図である。
FIG. 5 is a diagram schematically showing a scanning state of the n-th column and the (n + 1) -th column in the embodiment of the present invention.

【図6】本発明の実施例における第n列目と第n+1列
目の線状エネルギービーム照射の重複領域を示す拡大図
である。
FIG. 6 is an enlarged view showing an overlapping region of linear energy beam irradiation on the n-th column and the (n + 1) -th column in the embodiment of the present invention.

【図7】本発明の実施例における第n列目と第n+1列
目の線状エネルギービームを重ね合わせた場合のショッ
ト回数の、個別の回数と重ね合わせた回数とを表した図
である。
FIG. 7 is a diagram showing the number of shots when the linear energy beams of the n-th column and the (n + 1) th column are overlapped in the embodiment of the present invention, the individual number of times and the number of times of superimposition.

【図8】本発明の実施例における周辺駆動回路を含む液
晶表示装置を模式的に示す図である。
FIG. 8 is a diagram schematically showing a liquid crystal display device including a peripheral drive circuit in an example of the present invention.

【図9】本発明に適用される線状エネルギービームの重
複領域を非直線的にする他の装置を示す図である。
FIG. 9 is a view showing another device for making the overlapping region of the linear energy beam non-linear, which is applied to the present invention.

【図10】本発明の実施例における液晶表示装置の断面
図である。
FIG. 10 is a cross-sectional view of a liquid crystal display device in an example of the present invention.

【図11】本発明の実施例2における薄膜トランジスタ
の断面図である。
FIG. 11 is a sectional view of a thin film transistor according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、202…絶縁基板 4、209…画素電極 5、207…ソース電極 6、208…ドレイン電極 7、203…半導体層 7a…活性層 8、204…ゲート絶縁膜 11、205…ゲート電極 13…保護膜 21…レーザ発振源 26…結像レンズ 27…ステージ台 28…基板 29…線状ビーム 1, 202 ... Insulating substrate 4, 209 ... Pixel electrode 5, 207 ... Source electrode 6, 208 ... Drain electrode 7, 203 ... Semiconductor layer 7a ... Active layer 8, 204 ... Gate insulating film 11, 205 ... Gate electrode 13 ... Protect Film 21 ... Laser oscillation source 26 ... Imaging lens 27 ... Stage base 28 ... Substrate 29 ... Linear beam

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基板上に非晶質シリコン層を形成する工
程と、前記非晶質シリコン層に線状ビームを照射及び走
査して、非晶質シリコン層を多結晶シリコン層に変換
し、前記線状エネルギービームの照射及び走査は、多結
晶シリコン層に変換される領域全体を覆うように、その
位置をシフトして複数回行われる工程と、を備えたアレ
イ基板を形成する工程と、 前記アレイ基板と対向基板とを貼り合わせその間隙に液
晶を封入する工程と、を備えた液晶表示装置の製造方法
において、 前記エネルギービームは複数回の線状エネルギービーム
の走査の隣接する各回数の端部照射領域を重複させて走
査され、重複領域と非重複領域との境界が非直線状とな
るように走査される液晶表示装置の製造方法。
1. A step of forming an amorphous silicon layer on a substrate, irradiating and scanning a linear beam on the amorphous silicon layer to convert the amorphous silicon layer into a polycrystalline silicon layer, Irradiation with the linear energy beam and scanning are performed a plurality of times by shifting the position so as to cover the entire region converted into the polycrystalline silicon layer, and a step of forming an array substrate, A method of manufacturing a liquid crystal display device comprising a step of bonding the array substrate and a counter substrate together and enclosing a liquid crystal in a gap between the array substrate and the counter substrate, wherein the energy beam is a plurality of times of adjacent linear energy beam scans. A method of manufacturing a liquid crystal display device, wherein scanning is performed by overlapping edge irradiation areas, and scanning is performed so that a boundary between an overlapping area and a non-overlapping area becomes non-linear.
【請求項2】 前記線状エネルギービームの走査は、走
査方向に対し垂直に振動させながら行われることを特徴
とする請求項1記載の液晶表示装置の製造方法。
2. The method of manufacturing a liquid crystal display device according to claim 1, wherein the scanning of the linear energy beam is performed while vibrating in a direction perpendicular to the scanning direction.
【請求項3】 前記複数回の走査のうち、n回目とn+
1回目の少なくとも一方が走査方向に対し垂直に振動さ
せながら走査し、照射することを特徴とする請求項1記
載の液晶表示装置の製造方法。
3. The n-th scan and the n + scan among the plurality of scans
2. The method of manufacturing a liquid crystal display device according to claim 1, wherein at least one of the first scanning is performed while oscillating while oscillating perpendicularly to the scanning direction.
【請求項4】 前記線状エネルギービームは一定の方向
に走査し、前記基板は走査方向に対して垂直な方向に振
動させることを特徴とする請求項1記載の液晶表示装置
の製造方法。
4. The method of manufacturing a liquid crystal display device according to claim 1, wherein the linear energy beam scans in a fixed direction, and the substrate is vibrated in a direction perpendicular to the scanning direction.
【請求項5】 線状エネルギービームが照射される前記
基板は基板の周辺部に長軸方向に略平行なX駆動回路
部、及び短軸方向に略平行なY駆動回路部とを有し、線
状エネルギービームの走査方向は少なくとも一方の駆動
回路部に略平行であることを特徴とする請求項1記載の
液晶表示装置の製造方法。
5. The substrate on which the linear energy beam is irradiated has an X drive circuit portion substantially parallel to the major axis direction and a Y drive circuit portion substantially parallel to the minor axis direction at a peripheral portion of the substrate, The method of manufacturing a liquid crystal display device according to claim 1, wherein the scanning direction of the linear energy beam is substantially parallel to at least one of the drive circuit units.
【請求項6】 少なくとも一方の駆動回路部には、線状
エネルギービームが一度の走査のみで照射されることを
特徴とする請求項5記載の液晶表示装置の製造方法。
6. The method for manufacturing a liquid crystal display device according to claim 5, wherein at least one of the drive circuit portions is irradiated with the linear energy beam by only one scanning.
【請求項7】 線状エネルギービームの走査方向はX駆
動回路部に略平行であることを特徴とする請求項5記載
の液晶表示装置の製造方法。
7. The method of manufacturing a liquid crystal display device according to claim 5, wherein the scanning direction of the linear energy beam is substantially parallel to the X drive circuit section.
【請求項8】 前記重複領域と非重複領域との境界の形
状は周期関数曲線に近似することを特徴とする請求項1
記載の液晶表示装置の製造方法。
8. The shape of the boundary between the overlapping region and the non-overlapping region is approximate to a periodic function curve.
The manufacturing method of the liquid crystal display device according to the above.
【請求項9】 前記線状エネルギービームは、エキシマ
レーザビームであることを特徴とする請求項1記載の液
晶表示装置の製造方法。
9. The method of manufacturing a liquid crystal display device according to claim 1, wherein the linear energy beam is an excimer laser beam.
【請求項10】 前記線状エネルギービームの光路に、
屈折率又は透過率を変化可能な複数の光変調素子からな
る光変調素子アレイを配置し、線状エネルギービームの
端部に対応する位置にある光変調素子の屈折率又は透過
率を変化させることにより、前記重複領域と非重複領域
との境界を非直線的にすることを特徴とする請求項1記
載の液晶表示装置の製造方法。
10. The optical path of the linear energy beam comprises:
Arranging a light modulation element array composed of a plurality of light modulation elements capable of changing the refractive index or the transmittance, and changing the refractive index or the transmittance of the light modulation element at the position corresponding to the end of the linear energy beam. The method for manufacturing a liquid crystal display device according to claim 1, wherein the boundary between the overlapping region and the non-overlapping region is made non-linear by the above method.
JP33056096A 1996-01-17 1996-12-11 Manufacturing method of liquid crystal display device Expired - Lifetime JP3825515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33056096A JP3825515B2 (en) 1996-01-17 1996-12-11 Manufacturing method of liquid crystal display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP533596 1996-01-17
JP8-5335 1996-01-17
JP33056096A JP3825515B2 (en) 1996-01-17 1996-12-11 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH09260684A true JPH09260684A (en) 1997-10-03
JP3825515B2 JP3825515B2 (en) 2006-09-27

Family

ID=26339256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33056096A Expired - Lifetime JP3825515B2 (en) 1996-01-17 1996-12-11 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3825515B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338598A (en) * 1998-06-09 1999-12-22 Lg Lcd Inc Method of crystallising an amorphous silicon layer for a thin film transistor by a laser scanning technique
GB2338597A (en) * 1998-06-09 1999-12-22 Lg Lcd Inc Method of forming a thin film transistor by laser induced crystallisation in a predetermined direction
US6300175B1 (en) 1998-06-09 2001-10-09 Lg. Philips Lcd., Co., Ltd. Method for fabricating thin film transistor
US6326286B1 (en) 1998-06-09 2001-12-04 Lg. Philips Lcd Co., Ltd. Method for crystallizing amorphous silicon layer
US6521473B1 (en) 1999-10-29 2003-02-18 Lgphilips Lcd Co., Ltd. Method of fabricating a liquid crystal display
JP2004349415A (en) * 2003-05-21 2004-12-09 Hitachi Ltd Method of manufacturing active matrix substrate, and image display apparatus using same
JP2005045209A (en) * 2003-07-09 2005-02-17 Mitsubishi Electric Corp Laser annealing method
JP2005183699A (en) * 2003-12-19 2005-07-07 Sony Corp Method for crystallizing semiconductor thin film, thin film semiconductor device and display unit
KR100495812B1 (en) * 1998-01-21 2005-09-30 삼성전자주식회사 Manufacturing method using thin film transistor and laser beam for liquid crystal display
KR100502794B1 (en) * 1997-12-06 2005-10-14 삼성전자주식회사 Panel manufacturing method of liquid crystal display device
KR100560978B1 (en) * 1998-06-09 2006-06-20 삼성전자주식회사 Exposure method and manufacturing method of liquid crystal display panel using the same
WO2007116576A1 (en) * 2006-03-30 2007-10-18 The Japan Steel Works, Ltd. Laser irradiation device
KR101135535B1 (en) * 2009-10-26 2012-04-17 삼성모바일디스플레이주식회사 Silicon crystallizing system and silicon crystallizing method using laser
US8337618B2 (en) 2009-10-26 2012-12-25 Samsung Display Co., Ltd. Silicon crystallization system and silicon crystallization method using laser
US11335561B2 (en) 2019-11-11 2022-05-17 Samsung Display Co., Ltd. Apparatus for laser irradiation and method for laser irradiation

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502794B1 (en) * 1997-12-06 2005-10-14 삼성전자주식회사 Panel manufacturing method of liquid crystal display device
KR100495812B1 (en) * 1998-01-21 2005-09-30 삼성전자주식회사 Manufacturing method using thin film transistor and laser beam for liquid crystal display
US6300175B1 (en) 1998-06-09 2001-10-09 Lg. Philips Lcd., Co., Ltd. Method for fabricating thin film transistor
US6177301B1 (en) 1998-06-09 2001-01-23 Lg.Philips Lcd Co., Ltd. Method of fabricating thin film transistors for a liquid crystal display
GB2338597A (en) * 1998-06-09 1999-12-22 Lg Lcd Inc Method of forming a thin film transistor by laser induced crystallisation in a predetermined direction
US6235614B1 (en) 1998-06-09 2001-05-22 Lg. Philips Lcd Co., Ltd. Methods of crystallizing amorphous silicon layer and fabricating thin film transistor using the same
GB2338598A (en) * 1998-06-09 1999-12-22 Lg Lcd Inc Method of crystallising an amorphous silicon layer for a thin film transistor by a laser scanning technique
US6326286B1 (en) 1998-06-09 2001-12-04 Lg. Philips Lcd Co., Ltd. Method for crystallizing amorphous silicon layer
GB2338598B (en) * 1998-06-09 2001-01-17 Lg Lcd Inc Methods of crystalizing amorphous silicon layer and fabricating thin film transistors using the same
GB2338597B (en) * 1998-06-09 2001-01-03 Lg Lcd Inc Method of fabricating thin film transistors for a liquid crystal display
KR100560978B1 (en) * 1998-06-09 2006-06-20 삼성전자주식회사 Exposure method and manufacturing method of liquid crystal display panel using the same
US6521473B1 (en) 1999-10-29 2003-02-18 Lgphilips Lcd Co., Ltd. Method of fabricating a liquid crystal display
US7655950B2 (en) 2003-05-21 2010-02-02 Hitachi Displays, Ltd. Method of manufacturing an active matrix substrate and an image display device using the same
JP4583004B2 (en) * 2003-05-21 2010-11-17 株式会社 日立ディスプレイズ Manufacturing method of active matrix substrate
JP2004349415A (en) * 2003-05-21 2004-12-09 Hitachi Ltd Method of manufacturing active matrix substrate, and image display apparatus using same
JP2005045209A (en) * 2003-07-09 2005-02-17 Mitsubishi Electric Corp Laser annealing method
JP2005183699A (en) * 2003-12-19 2005-07-07 Sony Corp Method for crystallizing semiconductor thin film, thin film semiconductor device and display unit
WO2007116576A1 (en) * 2006-03-30 2007-10-18 The Japan Steel Works, Ltd. Laser irradiation device
JP2007273539A (en) * 2006-03-30 2007-10-18 Japan Steel Works Ltd:The Laser irradiation apparatus
JP4549996B2 (en) * 2006-03-30 2010-09-22 株式会社日本製鋼所 Laser irradiation device
KR101028598B1 (en) * 2006-03-30 2011-04-11 더 재팬 스틸 워크스 엘티디 Laser irradiation device
KR101135535B1 (en) * 2009-10-26 2012-04-17 삼성모바일디스플레이주식회사 Silicon crystallizing system and silicon crystallizing method using laser
US8337618B2 (en) 2009-10-26 2012-12-25 Samsung Display Co., Ltd. Silicon crystallization system and silicon crystallization method using laser
US11335561B2 (en) 2019-11-11 2022-05-17 Samsung Display Co., Ltd. Apparatus for laser irradiation and method for laser irradiation

Also Published As

Publication number Publication date
JP3825515B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
KR100356424B1 (en) Method for manufacturing liquid crystal dispaly
JP3825515B2 (en) Manufacturing method of liquid crystal display device
US6602744B1 (en) Process for fabricating thin film semiconductor device
JP6503458B2 (en) METHOD FOR MANUFACTURING THIN FILM TRANSISTOR AND DISPLAY PANEL
JP3897965B2 (en) Laser apparatus and laser annealing method
US20020094008A1 (en) Laser annealing method and semiconductor device fabricating method
US7474679B2 (en) Laser apparatus and manufacturing method of thin film transistor using the same
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
US8853590B2 (en) Device for irradiating a laser beam
US6759628B1 (en) Laser annealing apparatus
KR20010062198A (en) Liquid crystal display apparatus and tft panel
KR20140018081A (en) Method of manufacturing thin film semiconductor device, method of manufacturing thin film semiconductor array substrate, method of forming crystalline silicon thin film and apparatus for forming crystalline silicon thin film
KR100697497B1 (en) Semiconductor device and method for producing the same
US6265290B1 (en) Method for fabricating a thin film transistor and a substrate and thin film transistor manufactured using the same
KR20050013928A (en) Thin film transistor and manufacturing method thereof
JP3005918B2 (en) Active matrix panel
JPH11121392A (en) Manufacture of semiconductor device and manufacture of liquid crystal display device
JP3550805B2 (en) Method for manufacturing thin film semiconductor device
JPH11121751A (en) Manufacture of thin-film semiconductor device
JP2010165744A (en) Semiconductor device and method for manufacturing the same
JPH08186268A (en) Manufacturing method for thin film semiconductor device
JP2000340506A (en) Method for crystallizing semiconductor thin film and laser irradiation apparatus
JP3920065B2 (en) Method for manufacturing thin film transistor
JP3242867B2 (en) Method for manufacturing semiconductor element and method for manufacturing liquid crystal display device
KR20050121549A (en) Method and apparatus for crystallizing silicon and method of manufactureing tft substrate using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term