JPH09259927A - Manufacture of nomaqueous electrolyte lithium secondary cell - Google Patents

Manufacture of nomaqueous electrolyte lithium secondary cell

Info

Publication number
JPH09259927A
JPH09259927A JP8066674A JP6667496A JPH09259927A JP H09259927 A JPH09259927 A JP H09259927A JP 8066674 A JP8066674 A JP 8066674A JP 6667496 A JP6667496 A JP 6667496A JP H09259927 A JPH09259927 A JP H09259927A
Authority
JP
Japan
Prior art keywords
battery
cell
lithium
lithium secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8066674A
Other languages
Japanese (ja)
Inventor
Masaki Hasegawa
正樹 長谷川
Yoshiyuki Ozaki
義幸 尾崎
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8066674A priority Critical patent/JPH09259927A/en
Publication of JPH09259927A publication Critical patent/JPH09259927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a nonaqueous electrolyte lithium secondary cell without decreasing a cell characteristic, by making a cell provided with a positive/ negative electrode and a nonaqueous electrolyte containing a lithium compound oxide, and leaving the cell left as it is at a specific temperature, thereafter performing a charge. SOLUTION: A positive electrode containing a lithium contained compound oxide of LiMO2 (M is Co, Ni, Mn, Fe, V, B, Al, Mg) and a chargeable/ dischargeable negative electrode of carbon material or the like are wound or layered by interposing a separator, inside a cell case is charged with the electrodes together with a nonaqueous electrolyte, a cell is formed. Thereafter, this cell is charged to a charge condition generating cell voltage exceeding 3.6V. In this case, before this charging, the cell is left as it is at a temperature in a 30 to 85 deg.C range. A time of this leaving the cell as it is preferably is 3 hours to 15 days. In this way, a nonaqueous electrolyte lithium secondary cell, infiltrating a nonaqueous organic electrolyte of high viscosity sufficiently uniformly in a cell charged with the electrolyte in high density and improving a charge/discharge cycle characteristic in a charge process, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液リチウ
ム二次電池、特にリチウム複合酸化物を正極の活物質材
料に用いた電池の改良に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte lithium secondary battery, and more particularly to an improvement in a battery using a lithium composite oxide as an active material for a positive electrode.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポータブル化、コードレス化が急速に進み、こ
れらの駆動用電源として小型、軽量で高エネルギー密度
を有する二次電池への要望が高い。このような点で非水
系二次電池、特にリチウム二次電池は、とりわけ高電
圧、高エネルギー密度を有する電池として期待が大き
い。上記のような高エネルギー密度の非水電解液リチウ
ム二次電池の正極活物質材料として、リチウムをインタ
ーカレーション、デインターカレーションすることので
きるリチウムと遷移金属を主体とする複合酸化物(以
下、リチウム複合酸化物という)が用いられている。特
に、一般式LiNi1-XCoX2(0≦x≦1)やLi
Mn2-2XCo2X4(0≦x≦0.5)で表されるリチ
ウム複合酸化物は、高エネルギー密度を得ることができ
るため盛んに開発が進められている。また、負極活物質
材料としては、低電位での可逆的なリチウムのインター
カレーション、デインターカレーションが可能な材料が
検討され、特に、炭素材料についての開発が進められて
いる。
2. Description of the Related Art In recent years, portable and cordless AV devices or electronic devices such as personal computers have been rapidly developed, and there is a great demand for secondary batteries having a small size, a light weight and a high energy density as a power source for driving these devices. From such a viewpoint, non-aqueous secondary batteries, particularly lithium secondary batteries, are expected to have high voltage and high energy density. As a positive electrode active material for a high energy density non-aqueous electrolyte lithium secondary battery as described above, a lithium-transition metal-based composite oxide (hereinafter referred to as lithium-intercalation capable of intercalating and deintercalating lithium) , Lithium composite oxide) is used. In particular, the general formulas LiNi 1-X Co X O 2 (0 ≦ x ≦ 1) and Li
The lithium composite oxide represented by Mn 2-2X Co 2X 0 4 (0 ≦ x ≦ 0.5) has been actively developed because it can obtain a high energy density. Further, as the negative electrode active material, a material capable of reversible intercalation and deintercalation of lithium at a low potential has been studied, and particularly, a carbon material has been developed.

【0003】現在では、高エネルギー密度リチウム二次
電池として、前記リチウム複合酸化物正極、および炭素
材料負極を組み合わせた電池系が開発の中心となってお
り、円筒型、角形等の形状の電池が開発されている。こ
れらの電池は、正極、負極ともに粉末状の活物質材料を
用いており、導電剤としての炭素粉末や結着剤としての
樹脂を加え混合した合剤と、集電体としての金属箔とを
用いてシート状の極板を成形して用いている。このよう
な正極板および負極板の組み合わせを電池として機能さ
せるためには、電解液が必要である。リチウム二次電池
では、リチウムが水との反応性が高く水溶液系の電解液
を用いることができない。そこで、非水系の有機溶媒を
用いた電解液が使われている。
At present, as a high energy density lithium secondary battery, a battery system in which the above lithium composite oxide positive electrode and a carbon material negative electrode are combined is at the center of development, and batteries of cylindrical shape, prismatic shape and the like are available. Being developed. These batteries use a powdered active material for both the positive electrode and the negative electrode, and mix a mixture of carbon powder as a conductive agent and resin as a binder, and a metal foil as a current collector. A sheet-shaped electrode plate is formed and used. In order for such a combination of the positive electrode plate and the negative electrode plate to function as a battery, an electrolytic solution is required. In a lithium secondary battery, lithium has a high reactivity with water and an aqueous solution type electrolytic solution cannot be used. Therefore, an electrolytic solution using a non-aqueous organic solvent is used.

【0004】電池内部の構造としては、円筒型ではセパ
レータを挟んで正極シートと負極シートを捲回したスパ
イラル構造、また、角形ではセパレータを挟んで正極シ
ートと負極シートを重ね合わせた積層構造もしくは円筒
型同様のスパイラル構造が中心である。シート状の大面
積の極板構成は、単位面積当たりの電流密度を小さくす
ることができるため、大電流での急速充放電を行う上で
有利である。このことは、ニッケルカドミウム蓄電池、
ニッケル水素蓄電池等の水系電解液の電池と比較し急速
充放電特性の劣る非水電解液電池系では必要不可欠な要
素である。また、より一層の高エネルギー密度を得るた
めには、高密度で電池ケース内に充填する必要がある。
As for the internal structure of the battery, the cylindrical structure has a spiral structure in which a positive electrode sheet and a negative electrode sheet are wound with a separator sandwiched between them, and the prismatic structure has a laminated structure or a cylindrical structure in which a positive electrode sheet and a negative electrode sheet are superposed with a separator in between. The spiral structure is similar to that of the mold. The sheet-like large-area electrode plate structure can reduce the current density per unit area, and is therefore advantageous in performing rapid charging / discharging with a large current. This is a nickel cadmium battery,
It is an indispensable element in non-aqueous electrolyte battery systems that are inferior in rapid charge / discharge characteristics as compared to batteries using nickel-hydrogen storage batteries and other aqueous electrolytes. Further, in order to obtain a higher energy density, it is necessary to fill the battery case with high density.

【0005】上述のような電池構成で正極、負極、セパ
レータおよび有機電解液等の材料を電池ケース中に封入
し密閉することで非水電解液リチウム二次電池が作製さ
れる。さらに、作製後の電池は、使用前に予備的に充放
電を行って仕上げをした後、高エネルギー密度非水電解
液リチウム二次電池として実用に供される。
A non-aqueous electrolyte lithium secondary battery is manufactured by sealing and sealing materials such as a positive electrode, a negative electrode, a separator and an organic electrolytic solution in a battery case with the above-mentioned battery structure. Further, the manufactured battery is put to practical use as a high energy density non-aqueous electrolyte lithium secondary battery after preliminary charging and discharging to finish before use.

【0006】[0006]

【発明が解決しようとする課題】非水電解液リチウム二
次電池の有機電解液は、粘度が高くスパイラル構造や積
層構造で高密度に充填された電池では、電解液が電池内
部の合剤中に均一に浸透しにくい。特に、極板の中心部
分では十分に電解液が浸透せず部分的に電解液が不足し
た状況に陥りやすい。この状態で充放電を行うと、電解
液の不足した部分において、負極では微少量のリチウム
金属の析出、正極では利用率の低下などが起こり、電池
特性の低下を招くことになる。
The non-aqueous electrolyte of the lithium secondary battery has a high viscosity and is densely packed in a spiral structure or a laminated structure. It is difficult to uniformly penetrate into. In particular, in the central portion of the electrode plate, the electrolytic solution does not sufficiently permeate, and the electrolytic solution is likely to partially run short. If charging / discharging is performed in this state, a minute amount of lithium metal will be deposited on the negative electrode and the utilization factor will be decreased on the positive electrode in the portion where the electrolytic solution is insufficient, resulting in deterioration of battery characteristics.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、リチウム含有複合酸化物を含む正極と
リチウムを可逆的に吸蔵放出することのできる炭素材料
粉末を含む負極の少なくとも一方を備えた非水電解液電
池を作製後、3.6Vを越える電池電圧となる充電状態
までの充電を行う前に、30℃以上85℃以下の範囲内
の温度で放置する工程を設けるものである。これにより
電池中の電解液の粘度を低下させ、極板への電解液の浸
透を均一にすることができる。ここに用いるリチウム含
有複合酸化物としては、4V級のリチウム電池を与える
活物質として知られているLiMO2(MはCo、N
i、Mn、Fe、V、B、Al、およびMgからなる群
より選択される少なくとも一種の元素)で表される化合
物が用いられる。
In order to solve the above problems, the present invention provides at least a positive electrode containing a lithium-containing composite oxide and a negative electrode containing a carbon material powder capable of reversibly inserting and extracting lithium. After the non-aqueous electrolyte battery having one of them is prepared, a step of leaving it at a temperature within the range of 30 ° C. to 85 ° C. is provided before charging to a charged state where the battery voltage exceeds 3.6 V. Is. As a result, the viscosity of the electrolytic solution in the battery can be reduced and the electrolytic solution can be made to uniformly permeate into the electrode plate. The lithium-containing composite oxide used here is LiMO 2 (M is Co, N, which is known as an active material for providing a 4 V class lithium battery.
A compound represented by at least one element selected from the group consisting of i, Mn, Fe, V, B, Al, and Mg) is used.

【0008】[0008]

【発明の実施の形態】本発明は、電池作製後に所定の温
度下で一定時間放置することにより電池のサイクル特性
を改善するものである。この一定時間放置する際の温度
条件としては、30℃から85℃の範囲内であることが
好ましい。また、放置時間は、30℃では3日から15
日、85℃では1時間から24時間の範囲内の時間であ
ることが好ましい。これらの処理時間は、処理温度に依
存するため、高温での処理では短時間、低温での処理で
は長時間放置することが好ましい。スパイラル構造およ
び積層構造の電池では、電池内部、特に極板中心部分へ
の電解液の浸透が不十分となりやすい。このような状態
では電池特性が低下してしまうこととなる。特に、サイ
クル特性において著しい特性劣化を招くことがある。こ
れは、充放電サイクルを繰り返すことで電解液の不足し
た部分で液涸れが進行し、負極では微少量のリチウム金
属の析出、正極では利用率の低下などが起こるため、部
分的に充放電可能な容量が低下し、電池全体の容量が低
下してしまうためである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention improves the cycle characteristics of a battery by leaving it at a predetermined temperature for a certain period of time after the battery is manufactured. The temperature condition for leaving this for a certain period of time is preferably in the range of 30 ° C to 85 ° C. Also, the leaving time is 3 days to 15 at 30 ° C.
It is preferable that the time at 85 ° C. is 1 hour to 24 hours. Since the treatment time depends on the treatment temperature, it is preferable to leave the treatment at a high temperature for a short time and the treatment at a low temperature for a long time. In a battery having a spiral structure or a laminated structure, penetration of the electrolytic solution into the battery, particularly in the central portion of the electrode plate, tends to be insufficient. In such a state, the battery characteristics will deteriorate. In particular, the cycle characteristics may be significantly deteriorated. This is because charging and discharging can be partially performed because the liquid spillage progresses in the part where the electrolyte is insufficient by repeating the charge and discharge cycle, the minute amount of lithium metal deposits in the negative electrode, and the utilization factor decreases in the positive electrode. This is because the total capacity decreases, and the capacity of the entire battery decreases.

【0009】このような、電解液の浸透が不十分である
ことに起因する特性劣化を防止するためには、充放電を
行う前に十分に電解液を極板全体に浸透させておく必要
がある。その手段として、本発明では、電池作製後、充
放電を行う前に熱処理を行うものである。リチウム二次
電池に用いる有機電解液は、常温では粘度が高く合剤中
に浸透しにくいが、電池全体を30℃〜85℃の範囲の
温度に保ち一定時間放置すると、電池中の有機電解液の
粘度が低下し極板全体に均等に浸透させることができ
る。ただし、所定温度での放置時間は図1において斜線
で示す範囲内であることが望ましい。その結果、充放電
に伴う電池内部での液涸れを防止し、電池の充放電サイ
クル特性の劣化を抑制することができる。
In order to prevent such characteristic deterioration due to insufficient permeation of the electrolytic solution, it is necessary to sufficiently permeate the electrolytic solution into the entire electrode plate before charging / discharging. is there. As a means for this, in the present invention, heat treatment is performed after the battery is manufactured and before charging and discharging. The organic electrolyte used in the lithium secondary battery has a high viscosity at room temperature and hardly penetrates into the mixture, but if the whole battery is kept at a temperature in the range of 30 ° C to 85 ° C for a certain period of time, the organic electrolyte in the battery is The viscosity of is reduced, and it can be permeated uniformly throughout the electrode plate. However, it is preferable that the standing time at the predetermined temperature is within the range indicated by the diagonal lines in FIG. As a result, it is possible to prevent liquid dripping inside the battery due to charge and discharge, and suppress deterioration of charge and discharge cycle characteristics of the battery.

【0010】[0010]

【実施例】以下に具体的実施例を示すが、本発明はこれ
ら実施例の内容に限定するものではない。 《実施例1》本実施例では正極活物質にLiNiO
2を、また負極活物質に炭素材料を用いたスパイラル構
造の円筒型電池について説明する。まず、正極活物質粉
末と導電剤としてのアセチレンブラックと結着剤として
のポリフッ化ビニリデンを100:4:4の重量比とな
るように混合し、さらにN,N−ジメチルホルムアミド
を加えて十分に混合し正極合剤ペーストとした。これを
アルミニウム箔集電体に塗着し、圧延し、集電用アルミ
ニウムリードを付け正極板とした。正極板一枚に含まれ
る正極活物質重量は5gとなるように調整した。次に、
負極活物質粉末と結着剤としてのスチレンブタジエンゴ
ム(SBR)の水分散液の固形分の重量比が100:7
となるように混合し負極合剤ペーストとした。これを銅
箔集電体に塗着、圧延し集電用ニッケルリードを付け負
極板とした。負極板一枚に含まれる負極活物質量は上記
正極の容量に合わせて調整した。
EXAMPLES Specific examples will be shown below, but the present invention is not limited to the contents of these examples. << Example 1 >> In this example, LiNiO was used as the positive electrode active material.
2 , and a cylindrical battery having a spiral structure using a carbon material as the negative electrode active material will be described. First, positive electrode active material powder, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed in a weight ratio of 100: 4: 4, and N, N-dimethylformamide was further added to sufficiently mix them. The positive electrode mixture paste was mixed. This was applied to an aluminum foil current collector and rolled, and an aluminum lead for current collection was attached to obtain a positive electrode plate. The weight of the positive electrode active material contained in one positive electrode plate was adjusted to be 5 g. next,
The weight ratio of the solid content of the aqueous dispersion of the negative electrode active material powder and styrene-butadiene rubber (SBR) as the binder is 100: 7.
To obtain a negative electrode mixture paste. This was coated on a copper foil current collector and rolled, and a nickel lead for current collection was attached to obtain a negative electrode plate. The amount of the negative electrode active material contained in one negative electrode plate was adjusted according to the capacity of the positive electrode.

【0011】上記のようにして作製した正極および負極
を充分に乾燥した後、ポリプロピレン製多孔質膜のセパ
レータを挟んで重ね合わせ、スパイラル状に捲回した。
これを、電池ケース中に挿入し、所定量の電解液を注入
した後、封口し電池を作製した。正極板および負極板の
集電用リードは、それぞれ封口板および電池ケースに溶
接し電気的なコンタクトをとってある。また、電解液と
してはエチレンカーボネートとジエチルカーボネートの
体積比1:1の混合溶媒に1Mの濃度で六フッ化リン酸
リチウムを溶解した有機電解液を用いた。さらに、作製
した電池を30℃、45℃および85℃に設定した恒温
槽中で各々15日間、3日間および10時間放置した後
に取り出し、充放電試験を行った。30℃処理の電池を
電池A1、45℃処理の電池を電池B1、85℃処理の
電池を電池C1とする。
After the positive electrode and the negative electrode produced as described above were sufficiently dried, they were superposed with a separator made of a polypropylene porous film interposed therebetween and wound in a spiral shape.
This was inserted into a battery case, and after pouring a predetermined amount of electrolyte solution, the battery was sealed to produce a battery. The current collecting leads of the positive electrode plate and the negative electrode plate are welded to the sealing plate and the battery case, respectively, to make electrical contact. As the electrolytic solution, an organic electrolytic solution prepared by dissolving lithium hexafluorophosphate at a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used. Further, the produced battery was left for 15 days, 3 days, and 10 hours in a constant temperature bath set at 30 ° C., 45 ° C., and 85 ° C., respectively, and then taken out to perform a charge / discharge test. A battery treated at 30 ° C. is referred to as battery A1, a battery subjected to 45 ° C. is referred to as battery B1, and a battery subjected to 85 ° C. is referred to as battery C1.

【0012】比較例として、同様にして作製した電池を
恒温槽中での処理を行わずに、また、別の電池を90℃
の恒温槽中で8時間放置した後に取り出し、それぞれ充
放電試験を行った。処理を行わない電池を電池D1、9
0℃処理の電池を電池E1とする。さらに、処理を行わ
ずに1サイクルのみ電圧4.2Vまでの充電および2.
5Vまでの放電を行った後、放電状態において45℃で
3日間放置した電池についても同様に充放電試験を行っ
た。この電池を電池F1とする。充放電の条件は充放電
電流1A、電圧範囲3.0V〜4.2Vとし、室温で試
験を行った。表1にそれぞれの電池の初期容量と50サ
イクル目の容量維持率を示す。また、図2にA1、B
1、C1、D1、E1、F1の50サイクル目までのサ
イクル特性を示す。
As a comparative example, a battery produced in the same manner was not treated in a constant temperature bath, and another battery was operated at 90 ° C.
After leaving it in the constant temperature bath for 8 hours, it was taken out and subjected to a charge-discharge test. Batteries that are not treated are batteries D1 and 9
The battery subjected to 0 ° C. treatment is referred to as battery E1. Furthermore, without processing, only for one cycle, charging to a voltage of 4.2 V and 2.
After discharging up to 5 V, a charge / discharge test was similarly performed on the battery left in a discharged state at 45 ° C. for 3 days. This battery is referred to as battery F1. The charge / discharge conditions were a charge / discharge current of 1 A and a voltage range of 3.0 V to 4.2 V, and the test was performed at room temperature. Table 1 shows the initial capacity of each battery and the capacity retention rate at the 50th cycle. In addition, A1 and B in FIG.
The cycle characteristics of 1, C1, D1, E1, and F1 up to the 50th cycle are shown.

【0013】[0013]

【表1】 [Table 1]

【0014】表1および図2に示すように、各電池の5
0サイクル目の容量維持率は、高温での放置を行わずに
充放電サイクルを行った電池D1では80%〜82%で
あった。これに対し、本実施例の電池A1、B1、C1
では、いずれも95%以上であり、大幅なサイクル特性
の改善が見られる。本実施例の電池B1と同様の処理を
行った場合でも、未処理での1サイクルの充放電の後に
処理を行った電池F1では、87%〜89%の容量維持
率であり、程度は小さいが特性の劣化がみられる。これ
は、未処理時の1サイクルの充放電により、極板の電解
液の不足した部分がダメージを受けてしまったためであ
ると推察される。そして、90℃で処理を行った電池E
1〜E3では、89%〜90%の容量維持率であり、処
理温度が高すぎたことによる劣化がみられる。
As shown in Table 1 and FIG. 2, 5 of each battery is used.
The capacity retention ratio at the 0th cycle was 80% to 82% in the battery D1 which was subjected to the charge / discharge cycle without being left at high temperature. On the other hand, the batteries A1, B1, C1 of this example
In both cases, the cycle characteristics are 95% or more, showing a significant improvement in cycle characteristics. Even when the same treatment as that of the battery B1 of this example was performed, the battery F1 that was treated after one cycle of untreated charging / discharging had a capacity retention rate of 87% to 89%, and the degree was small. However, the characteristics are deteriorated. It is speculated that this is because one cycle of charge and discharge when untreated damaged the part of the electrode plate where the electrolyte solution was insufficient. Then, the battery E treated at 90 ° C.
In Nos. 1 to E3, the capacity retention rate was 89% to 90%, and deterioration was observed due to the treatment temperature being too high.

【0015】《実施例2》実施例1と同様に作製した電
池を用い、3.6Vおよび3.8Vの上限電圧まで充電
し、さらにこれらの2種類の充電状態の電池を30℃、
45℃および85℃の温度に設定した恒温槽中に入れ、
それぞれ15日間、3日間および10時間放置した。放
置後、実施例1と同様の充放電試験を行った。3.6V
の充電状態で30℃の処理を行った電池を電池A2、4
5℃の処理を行った電池を電池B2、85℃の処理を行
った電池を電池C2とする。また、3.8Vの充電状態
で30℃の処理を行った電池を電池A3、45℃の処理
を行った電池を電池B3、85℃の処理を行った電池を
電池C3とする。表2にそれぞれの電池の初期容量と5
0サイクル目の容量維持率を示す。
Example 2 Using the battery produced in the same manner as in Example 1, the battery was charged to the upper limit voltage of 3.6 V and 3.8 V, and these two types of batteries in the charged state were stored at 30 ° C.
Put in a constant temperature bath set to the temperature of 45 ℃ and 85 ℃,
It was left for 15 days, 3 days and 10 hours, respectively. After standing, the same charge / discharge test as in Example 1 was performed. 3.6V
Batteries A2 and
The battery treated at 5 ° C. is referred to as battery B2, and the battery treated at 85 ° C. is referred to as battery C2. Further, a battery treated at 30 ° C. in a charged state of 3.8 V is referred to as battery A3, a battery subjected to treatment at 45 ° C. is referred to as battery B3, and a battery subjected to treatment at 85 ° C. is referred to as battery C3. Table 2 shows the initial capacity of each battery and 5
The capacity retention rate at the 0th cycle is shown.

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示すように、3.6Vの充電状態の
電池では、いずれの温度で放置した電池でもサイクル特
性改善の効果が得られている。しかし、3.8Vまで充
電した電池では、いずれの温度で放置した場合も劣化が
大きく特性改善の効果はなかった。
As shown in Table 2, in the battery in the charged state of 3.6 V, the effect of improving the cycle characteristics is obtained in any battery left at any temperature. However, in the battery charged to 3.8 V, the deterioration was large and the effect of improving the characteristics was not observed at any temperature.

【0018】《実施例3》実施例1と同様に作製した電
池を用い30℃、45℃、85℃で放置した。30℃で
放置した電池は2日(電池A4)、3日(電池A5)、
15日(電池A6)および16日(電池A7)、45℃
では45時間(電池B4)、50時間(電池B5)、2
70時間(電池B6)および280時間(電池B7)、
85℃では1時間(電池C4)、2時間(電池C5)、
24時間(電池C6)および25時間(電池C7)の
後、それぞれの電池を取り出し実施例1と同様の充放電
試験を行った。表3にそれぞれの電池の初期容量と50
サイクル目の容量維持率を示す。
Example 3 A battery prepared in the same manner as in Example 1 was used and left at 30 ° C., 45 ° C. and 85 ° C. Batteries left at 30 ° C for 2 days (Battery A4), 3 days (Battery A5),
15 days (battery A6) and 16 days (battery A7), 45 ° C
45 hours (battery B4), 50 hours (battery B5), 2
70 hours (battery B6) and 280 hours (battery B7),
At 85 ° C, 1 hour (battery C4), 2 hours (battery C5),
After 24 hours (battery C6) and 25 hours (battery C7), each battery was taken out and the same charge / discharge test as in Example 1 was performed. Table 3 shows the initial capacity of each battery and 50
The capacity retention rate at the cycle is shown.

【0019】[0019]

【表3】 [Table 3]

【0020】表3に示すように、30℃では3日〜15
日、45℃では50時間〜270時間、そして85℃で
は2時間〜24時間の範囲内の放置時間であることが好
ましい。
As shown in Table 3, at 30 ° C., 3 days to 15 days
Preferably, the standing time is in the range of 50 hours to 270 hours at 45 ° C and 2 hours to 24 hours at 85 ° C.

【0021】なお、本実施例では、正極活物質としてL
iNiO2を用いたが、他のLiMO2(MはCo、N
i、Mn、Fe、V、B、Al、およびMgからなる群
より選択される少なくとも一種の元素)で表される、可
逆的なリチウムのインターカレーション、デインターカ
レーションが可能なリチウム複合酸化物を用いても同様
の効果が得られる。また、負極活物質としても炭素材料
以外に、炭素に異種元素をドープした炭素類縁化合物や
アルミニウム、鉛をはじめとするリチウムと合金化可能
な金属を含む合金を用いた場合でも同様の効果が得られ
る。すなわち、正極および負極の少なくとも一方が、活
物質に粉末の材料を用いて電極を作製した電池系におい
ては、いずれの場合においても同様に効果を得ることが
できる。
In this example, L was used as the positive electrode active material.
iNiO 2 was used, but other LiMO 2 (M is Co, N
lithium composite oxidation capable of reversible lithium intercalation and deintercalation represented by at least one element selected from the group consisting of i, Mn, Fe, V, B, Al, and Mg). The same effect can be obtained by using a product. In addition to the carbon material as the negative electrode active material, the same effect can be obtained by using a carbon analog compound in which carbon is doped with a different element, aluminum, or an alloy containing a metal capable of alloying with lithium such as lead. To be That is, in a battery system in which at least one of the positive electrode and the negative electrode is manufactured by using a powder material as an active material, the same effect can be obtained in any case.

【0022】さらに、実施例では、有機電解液としてエ
チレンカーボネートとジエチルカーボネートの体積比
1:1の混合溶媒に1Mの濃度でLiPF6を溶解した
有機電解液を用いたが、溶媒としてエチレンカーボネー
ト、プロピレンカーボネート、ジエチルカーボネート、
メチルエチルカーボネート、ジメチルカーボネート、ジ
メトキシエタン、γ−ブチロラクトン、テトラヒドロフ
ラン、メチルテトラヒドロフランなどの一種または二種
以上の混合物、電解質塩としてLiClO4、LiB
4、LiPF6、LiAsF6など、リチウム二次電池
用電解液として知られているものを用いた場合について
も同様に効果が得られる。電池の構造についても、スパ
イラル構造の円筒電池について説明したが、スパイラル
構造のみならず積層構造など電解液の浸透しにくい構造
の電池においては同様の効果を得ることができる。
Further, in the examples, as the organic electrolytic solution, an organic electrolytic solution prepared by dissolving LiPF 6 at a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used. Propylene carbonate, diethyl carbonate,
One or a mixture of two or more of methylethyl carbonate, dimethyl carbonate, dimethoxyethane, γ-butyrolactone, tetrahydrofuran, methyltetrahydrofuran, LiClO 4 , LiB as an electrolyte salt
The same effect can be obtained when F 4 , LiPF 6 , LiAsF 6, or the like, which is known as an electrolyte solution for lithium secondary batteries, is used. As for the structure of the battery, the cylindrical battery having the spiral structure has been described, but the same effect can be obtained not only in the spiral structure but also in the battery having a structure in which the electrolyte solution hardly penetrates such as a laminated structure.

【0023】[0023]

【発明の効果】以上のように本発明によれば、充放電サ
イクル特性の向上した非水電解液リチウム二次電池を得
ることができる。
As described above, according to the present invention, a non-aqueous electrolyte lithium secondary battery having improved charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池を放置する時間と温度の好ましい関係を示
す図である。
FIG. 1 is a diagram showing a preferable relationship between a time for leaving a battery and temperature.

【図2】各種処理をした電池のサイクル特性を示す図で
ある。
FIG. 2 is a diagram showing cycle characteristics of a battery that has undergone various treatments.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物粉末を含む正
極、充放電可能な負極、および非水電解液を具備する電
池を作製後、3.6Vを越える電池電圧となる充電状態
までの充電を行う前に、30℃以上85℃以下の範囲内
の温度で放置する工程を有する非水電解液リチウム二次
電池の製造方法。
1. A battery including a positive electrode containing a lithium-containing composite oxide powder, a chargeable / dischargeable negative electrode, and a non-aqueous electrolyte is prepared, and then charged to a charged state in which the battery voltage exceeds 3.6 V. A method for producing a non-aqueous electrolyte lithium secondary battery, which comprises a step of leaving at a temperature in the range of 30 ° C. to 85 ° C. inclusive.
【請求項2】 充放電可能な正極、リチウムを可逆的に
吸蔵、放出することのできる炭素材料粉末を含む負極、
および非水電解液を具備する電池を作製後、3.6Vを
越える電池電圧となる充電状態までの充電を行う前に、
30℃以上85℃以下の範囲内の温度で放置する工程を
有する非水電解液リチウム二次電池の製造方法。
2. A chargeable / dischargeable positive electrode, a negative electrode containing a carbon material powder capable of reversibly occluding and releasing lithium.
And after charging the battery including the non-aqueous electrolyte solution and before charging to a charged state where the battery voltage exceeds 3.6 V,
A method for producing a non-aqueous electrolyte lithium secondary battery, comprising a step of leaving the temperature of the non-aqueous electrolyte lithium battery at a temperature in the range of 30 ° C to 85 ° C.
【請求項3】 放置時間が3時間以上15日以下である
請求項1または2記載の非水電解液リチウム二次電池の
製造方法。
3. The method for producing a non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the leaving time is 3 hours or more and 15 days or less.
【請求項4】 リチウム含有複合酸化物が、LiMO2
(MはCo、Ni、Mn、Fe、V、B、Al、および
Mgからなる群より選択される少なくとも一種の元素)
で表される化合物である請求項1または3記載の非水電
解液リチウム二次電池の製造方法。
4. The lithium-containing composite oxide is LiMO 2
(M is at least one element selected from the group consisting of Co, Ni, Mn, Fe, V, B, Al, and Mg)
The method for producing a non-aqueous electrolyte lithium secondary battery according to claim 1, which is a compound represented by:
JP8066674A 1996-03-22 1996-03-22 Manufacture of nomaqueous electrolyte lithium secondary cell Pending JPH09259927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066674A JPH09259927A (en) 1996-03-22 1996-03-22 Manufacture of nomaqueous electrolyte lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066674A JPH09259927A (en) 1996-03-22 1996-03-22 Manufacture of nomaqueous electrolyte lithium secondary cell

Publications (1)

Publication Number Publication Date
JPH09259927A true JPH09259927A (en) 1997-10-03

Family

ID=13322711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066674A Pending JPH09259927A (en) 1996-03-22 1996-03-22 Manufacture of nomaqueous electrolyte lithium secondary cell

Country Status (1)

Country Link
JP (1) JPH09259927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273503B2 (en) * 2000-09-29 2007-09-25 Sharp Corporation Lithium polymer secondary battery and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273503B2 (en) * 2000-09-29 2007-09-25 Sharp Corporation Lithium polymer secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
JP4412778B2 (en) Polymer electrolyte battery
JP2000502831A (en) Electrode materials for lithium interlayer electrochemical cells
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
EP2277230A2 (en) High energy lithium ion secondary batteries
CN101621138A (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2003308880A (en) Method of manufacturing lithium secondary battery
JP3999890B2 (en) Lithium secondary battery
JP3668579B2 (en) Slurry for electrode
JPH06349524A (en) Secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JPH10302766A (en) Lithium ion secondary battery
JPH08180875A (en) Lithium secondary battery
WO2022133837A1 (en) Electrochemical device and electronic device
JPH11102693A (en) Lithium secondary battery
JPH11154512A (en) Nonaqueous electrolyte secondary battery
JPH09259927A (en) Manufacture of nomaqueous electrolyte lithium secondary cell
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3650016B2 (en) Lithium battery
CN111902975A (en) Anode active material for lithium-sulfur secondary battery and method for preparing same