JPH09259870A - Hydrogen absorbing alloy electrode, and manufacture thereof - Google Patents

Hydrogen absorbing alloy electrode, and manufacture thereof

Info

Publication number
JPH09259870A
JPH09259870A JP8064243A JP6424396A JPH09259870A JP H09259870 A JPH09259870 A JP H09259870A JP 8064243 A JP8064243 A JP 8064243A JP 6424396 A JP6424396 A JP 6424396A JP H09259870 A JPH09259870 A JP H09259870A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
carbon
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8064243A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Yoichiro Tsuji
庸一郎 辻
Toshihiro Yamada
敏弘 山田
Yoshinori Toyoguchi
▲よし▼徳 豊口
Hiroshi Inoue
博史 井上
Chiaki Iwakura
千秋 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8064243A priority Critical patent/JPH09259870A/en
Publication of JPH09259870A publication Critical patent/JPH09259870A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize hydrogen absorbing alloy electrode of high capacity, and of excellent cycle characteristics and high-rate discharge characteristics. SOLUTION: High crystalline carbon of a crystal face interval (d) of 3.45Å or less such as graphite is attached having a diffusion layer by mechanical stress of a planetary ball mill or the like to the surface of a hydrogen absorbing alloy. Peak of carbon exists in powder X-ray diffraction measurement of the hydrogen absorbing alloy to which the high crystalline carbon is attached, and a ration of carbon peak strength/hydrogen absorbing alloy main peak strength is set to be 1/2 or less to a strength ratio at the time of simple mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素蓄電
池の負極に使用される水素吸蔵合金電極およびその製造
法に関する。
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy electrode used for a negative electrode of a nickel-hydrogen storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器、コードレス機器
の発展に伴い、その電源となる電池により一層の高エネ
ルギ−密度が要求されている。この要求を達成するため
に負極に水素吸蔵合金極を用いたニッケル−水素蓄電池
が注目され、今日実用化されている。
2. Description of the Related Art In recent years, with the development of portable equipment and cordless equipment, a battery as a power source thereof has been required to have higher energy density. In order to achieve this requirement, a nickel-hydrogen storage battery using a hydrogen storage alloy electrode as a negative electrode has been drawing attention and has been put into practical use today.

【0003】水素を可逆的に吸収・放出しうる水素吸蔵
合金の中で現在実用化されているものは、高率放電特性
や保存特性等に優れたMm(混合希土)-Ni系の多元
系合金であるAB5型合金のもの(例えばMmMn0.4
0.3Co0.7Ni3.6)が中心である。
Among the hydrogen storage alloys capable of reversibly absorbing and releasing hydrogen, the ones currently in practical use are multi-elements of the Mm (mixed rare earth) -Ni system which are excellent in high rate discharge characteristics and storage characteristics. Of AB 5 type alloys (eg MmMn 0.4 A)
1 0.3 Co 0.7 Ni 3.6 ) is the center.

【0004】ニッケル水素蓄電池の負極用水素吸蔵合金
としては高容量で電極活性が高く、サイクル寿命に優れ
たものが要求されるが、高容量化に対しては希土類やZ
rなどのAサイト元素の比率を増やすことが有効である
が、電極活性やサイクル寿命の点ではNiや銅のような
Bサイト元素の添加が効果的である。この相矛盾した特
性を両立させるために水素吸蔵合金の組成や各種表面処
理が検討されている。
As a hydrogen storage alloy for a negative electrode of a nickel-hydrogen storage battery, one having a high capacity, a high electrode activity and an excellent cycle life is required, but rare earth metals and Z are required for increasing the capacity.
It is effective to increase the ratio of A site elements such as r, but addition of B site elements such as Ni and copper is effective in terms of electrode activity and cycle life. In order to achieve both these contradictory properties, the composition of hydrogen storage alloys and various surface treatments have been studied.

【0005】混合希土系のAB5型合金の場合はこうし
た特性をバランス良く満たしているが、近年機器側から
の高容量化への要望は高く、さらに放電容量の大きい水
素吸蔵合金材料が望まれている。
In the case of the mixed rare earth AB 5 type alloy, these characteristics are well balanced, but in recent years, there has been a great demand from the equipment side for higher capacity, and a hydrogen storage alloy material with a large discharge capacity is desired. It is rare.

【0006】これに対して、理論水素吸蔵量が従来のM
m-Ni系AB5型合金より大きく高容量が期待できる水
素吸蔵合金としてCaNi5合金、AB2型ラーベス相合
金、TiVNi系等の体心立方構造(bcc)の固溶体
型合金およびMg2NiなどのMgNi系合金が検討さ
れている(例えば特開平6−228699号公報)。
On the other hand, the theoretical hydrogen storage amount is M
CaNi 5 alloy, AB 2 type Laves phase alloy, solid solution type alloy of body-centered cubic structure (bcc) such as TiVNi type and Mg 2 Ni etc. as hydrogen storage alloys that can be expected to have a higher capacity than m-Ni type AB 5 type alloy The MgNi-based alloy is being studied (for example, Japanese Patent Laid-Open No. 6-228699).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
高容量タイプの水素吸蔵合金は従来のMm-Ni系AB5
型合金のものに比べて放電容量の点では優れている反
面、サイクル特性が悪く、数十サイクルで放電容量が半
分以下にまで低下する課題や電極活性が低く、高率放電
特性が悪い欠点がある。これらの原因としては、水素吸
蔵合金が電解液のKOHによって腐食されることや合金
中のNi量が少なく電気化学的な水素の吸蔵・放出がし
にくいことが主に考えられる。Mm-Ni系AB5型合金
の場合は、組成的にアルカリに安定で電極活性なNi量
が多く、またCoを添加することで微粉化を抑制すると
ともにLaの酸化物が電解液への腐食も防いでいる。こ
のため、サイクル特性、高率放電特性に優れている。
However, these high-capacity hydrogen storage alloys are not suitable for conventional Mm-Ni type AB 5 alloys.
Although it is superior in terms of discharge capacity compared to those of type alloys, it has poor cycle characteristics, the problem that the discharge capacity drops to less than half in several tens of cycles, the electrode activity is low, and the high rate discharge characteristics are poor. is there. The main causes of these problems are that the hydrogen storage alloy is corroded by KOH of the electrolytic solution and that the amount of Ni in the alloy is small and electrochemical storage and release of hydrogen is difficult. In the case of the Mm-Ni AB 5 type alloy, the composition is stable to alkali and has a large amount of Ni that is active in the electrode, and addition of Co suppresses pulverization and causes La oxide to corrode the electrolytic solution. Is also preventing. Therefore, it has excellent cycle characteristics and high rate discharge characteristics.

【0008】これらの対策として強アルカリの電解液に
も安定なNiやCuを合金表面にメッキする方法(特開
平2−79369号公報)やNi微粉末のメカニカルア
ロイング等(特開昭64−6366号公報、特開平3−
155049号公報)による合金表面被覆さらには炭素
質の被覆(特開昭61−185863号公報)の方法な
どが考案されてきた。しかし、NiやCuによる水素吸
蔵合金表面の被覆はサイクル特性や高率放電特性の改善
には有効であったが反面、比重が大きいため(Niで
8.9)添加量が多すぎると容量の低下を招いた。
As measures against these problems, a method of plating Ni or Cu, which is stable even in a strong alkaline electrolyte, on the alloy surface (JP-A-2-79369), mechanical alloying of Ni fine powder, etc. (JP-A-64- No. 6366, Japanese Patent Laid-Open No. 3-
A method of coating an alloy surface according to Japanese Patent No. 155049) and a coating of carbonaceous material (Japanese Patent Laid-Open No. 61-185863) has been devised. However, the coating of the surface of the hydrogen storage alloy with Ni or Cu was effective in improving the cycle characteristics and the high rate discharge characteristics, but on the other hand, its specific gravity is large (8.9 for Ni), so if the added amount is too large, the capacity of Caused a decline.

【0009】一方、ショ糖に水素吸蔵合金粉末を浸漬し
た後、焼成する方法やスパッタリング法などによって作
製した炭素質は結晶性が低く(粉末X線回折測定でカー
ボンのピークがない)、導電性が低いため、このような
炭素質で被覆した水素吸蔵合金はサイクル特性は改善さ
れるが、集電性が悪いため放電容量や高率放電特性の向
上にはほとんど効かなかった。また、導電材としてグラ
ファイトなどの高結晶性カーボンを負極に添加すること
も広く知られているが、この場合はグラファイトなどが
水素吸蔵合金表面を被覆しているのではなく、単に水素
吸蔵合金粒子間の集電性改善に有効に働くだけであるた
め、放電容量の向上には効くが、高率放電特性やサイク
ル特性改善には効かなかった。
On the other hand, the carbonaceous material produced by the method of immersing the hydrogen-absorbing alloy powder in sucrose and then firing or the sputtering method has low crystallinity (there is no carbon peak in powder X-ray diffraction measurement), and the conductivity is low. The hydrogen storage alloy coated with such a carbonaceous material has improved cycle characteristics due to its low temperature, but has little effect on improving discharge capacity and high rate discharge characteristics due to its poor current collecting property. It is also widely known to add highly crystalline carbon such as graphite to the negative electrode as a conductive material, but in this case, the graphite or the like does not cover the surface of the hydrogen storage alloy, but simply the hydrogen storage alloy particles. Since it only effectively works to improve the current collection property during the period, it is effective in improving the discharge capacity, but not in improving the high rate discharge characteristics and the cycle characteristics.

【0010】上記課題に鑑み本発明は高容量でサイクル
特性、高率放電特性に優れたニッケル水素蓄電池の改善
を目指し、水素吸蔵合金の表面にグラファイトなどの高
結晶性カーボンを強固に付着(カーボンの一部が合金中
に拡散)させることでサイクル特性が改善されるととも
に、導電性が良いため集電性も向上し、放電容量の向上
や高率放電特性の改善も図れるものである。
In view of the above problems, the present invention aims to improve a nickel-hydrogen storage battery having a high capacity and excellent cycle characteristics and high rate discharge characteristics, in which highly crystalline carbon such as graphite is strongly adhered to the surface of a hydrogen storage alloy (carbon (1) is diffused in the alloy), the cycle characteristics are improved, and since the conductivity is good, the current collecting ability is improved, and the discharge capacity and the high rate discharge characteristics are improved.

【0011】[0011]

【課題を解決するための手段】本発明は、水素吸蔵合金
の表面にカーボンの拡散層を有していることを特徴とす
る水素吸蔵合金電極である。また、本発明は、カーボン
を拡散した水素吸蔵合金粉末のX線回折測定において、
カーボンのピークが存在し、かつ、そのカ−ボンピーク
強度/水素吸蔵合金メインピーク強度比が単純混合時の
強度比の1/2以下になっている水素吸蔵合金からなる
水素吸蔵合金電極である。さらに、好ましくは、結晶面
間隔d値が3.45Å以下の高結晶性カ−ボンを用いて
製造することを特徴とする。
The present invention is a hydrogen storage alloy electrode characterized by having a carbon diffusion layer on the surface of a hydrogen storage alloy. The present invention also provides an X-ray diffraction measurement of hydrogen storage alloy powder having carbon diffused,
A hydrogen storage alloy electrode comprising a hydrogen storage alloy having a carbon peak and having a carbon peak strength / hydrogen storage alloy main peak strength ratio of 1/2 or less of the strength ratio during simple mixing. Further, it is preferably characterized by being manufactured by using a highly crystalline carbon having a crystal plane spacing d value of 3.45 Å or less.

【0012】[0012]

【発明の実施の形態】本発明の水素吸蔵合金電極は、C
aNi5系のAB5型合金、AB2ラーベス相合金、体心
立方構造を有する固溶体型合金あるいはMgNi系合金
等の水素吸蔵合金とグラァイトなどの高結晶性カ−ボン
を混ぜて遊星ボールミルなどで機械的応力を加え、カー
ボンの拡散層を形成する。なお、非酸化性雰囲気中で加
熱することによってもカ−ボンの拡散層が得られ、加圧
した状態で加熱すれば拡散層が得られ易い。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy electrode of the present invention comprises C
aNi 5 type AB 5 type alloy, AB 2 Laves phase alloy, solid solution type alloy having a body-centered cubic structure or hydrogen storage alloy such as MgNi type alloy and highly crystalline carbon such as glite are mixed in a planetary ball mill or the like. Mechanical stress is applied to form a carbon diffusion layer. The carbon diffusion layer can also be obtained by heating in a non-oxidizing atmosphere, and the diffusion layer can be easily obtained by heating in a pressurized state.

【0013】この場合、水素吸蔵合金と混合する高結晶
性カ−ボン(結晶面間隔d値が3.7Å以下のカ−ボン
を指す)としては、結晶面間隔d値3.45Å以下がよ
り有効である。水素吸蔵合金の表面に付着した高結晶性
カ−ボンの粒径は5μm以下が好適である。
In this case, as the highly crystalline carbon mixed with the hydrogen storage alloy (which indicates carbon having a crystal plane spacing d value of 3.7 Å or less), a crystal plane spacing d value of 3.45 Å or less is more preferable. It is valid. The particle size of the highly crystalline carbon attached to the surface of the hydrogen storage alloy is preferably 5 μm or less.

【0014】この際、カーボンが拡散した水素吸蔵合金
の粉末のX線回折測定においてカーボンのピークが存在
するが、そのカーボンピーク強度/水素吸蔵合金メイン
ピーク強度比が単純に高結晶性カーボンと水素吸蔵合金
を混合しただけの強度比の1/2以下になっている。
At this time, there is a carbon peak in the X-ray diffraction measurement of the hydrogen storage alloy powder in which carbon is diffused, but the carbon peak intensity / hydrogen storage alloy main peak intensity ratio is simply high crystalline carbon and hydrogen. It is 1/2 or less of the strength ratio just by mixing the storage alloy.

【0015】また、水素吸蔵合金表面には部分的にカ−
ボンが拡散した高結晶性カ−ボンの粒子が細かく分散し
た状態で付着している。この付着した高結晶性カーボン
およびカ−ボンの拡散層によって集電性が向上する。こ
れによって電極活性が向上し、放電容量および高率放電
特性の改善が促進されるものと考えられる。
The surface of the hydrogen storage alloy is partially covered.
Particles of highly crystalline carbon in which bon has diffused adhere in a finely dispersed state. The highly crystalline carbon and the carbon diffusion layer thus adhered improve the current collecting property. It is considered that this improves the electrode activity and promotes the improvement of the discharge capacity and the high rate discharge characteristics.

【0016】水素吸蔵合金と、5wt%以上30wt%
以下のグラファイトなどの高結晶性カーボンとを、不活
性ガス中でボールミル、遊星ボールミルあるいはメカノ
フュージョン法を用いて機械的な応力を加えて水素吸蔵
合金表面に高結晶性カーボンを付着させることでカーボ
ンの一部が合金中に拡散し、高容量でサイクル特性、高
率放電特性に優れた水素吸蔵合金電極が得られる。
Hydrogen storage alloy and 5 wt% or more and 30 wt% or more
Highly crystalline carbon such as graphite below is applied to the hydrogen storage alloy surface by applying mechanical stress using a ball mill, planetary ball mill or mechanofusion method in an inert gas to attach the highly crystalline carbon to the carbon. Part of the hydrogen-diffusing alloy diffuses into the alloy, and a hydrogen storage alloy electrode having high capacity and excellent cycle characteristics and high rate discharge characteristics can be obtained.

【0017】すなわち、今までに結晶性の低い炭素質に
よる水素吸蔵合金表面の被覆が検討されたが無定形や低
結晶性のカーボンでは被覆による耐食性の向上によるサ
イクル特性の改善には有効であったが、導電性が高結晶
性カーボンの1000分の1以下と低く集電性が改善さ
れないため、放電容量や高率放電特性の向上はできなか
った。また、導電性の高いグラファイト等を負極ペース
ト中に導電材として混合する方法では、集電性が向上し
放電容量は大きくなるが、水素吸蔵合金とグラファイト
間の結合が弱い(拡散層がない)ため活性点とならず電
極活性が向上せず高率放電特性の改善ができなかった。
また水素吸蔵合金の被覆効果も小さく耐食性改善効果も
少なくサイクル特性は向上しなかった。
That is, the coating of the surface of the hydrogen storage alloy with a carbonaceous material having low crystallinity has been studied so far, but amorphous or low crystalline carbon is effective for improving the cycle characteristics by improving the corrosion resistance by coating. However, since the conductivity is as low as 1/1000 of that of the highly crystalline carbon and the current collecting property is not improved, the discharge capacity and the high rate discharge characteristics cannot be improved. Further, in the method of mixing graphite having high conductivity into the negative electrode paste as a conductive material, the current collecting property is improved and the discharge capacity is increased, but the bond between the hydrogen storage alloy and graphite is weak (there is no diffusion layer). Therefore, it did not become an active point, the electrode activity was not improved, and the high rate discharge characteristics could not be improved.
Further, the effect of covering the hydrogen storage alloy was small and the effect of improving the corrosion resistance was small, and the cycle characteristics were not improved.

【0018】そこで導電性に優れたグラファイトなどの
高結晶性カーボンで水素吸蔵合金表面を細かく、かつ拡
散層を有するほど強固に付着させることで水素吸蔵合金
の耐食性を大幅に改善できるとともに集電性が上がり高
容量となり、さらに水素吸蔵合金表面に付着したカーボ
ンが電極活性点となり高率放電特性の改善も達成できる
ものである。
Therefore, by making the surface of the hydrogen-absorbing alloy finer and more firmly attached to the surface of the hydrogen-absorbing alloy with highly crystalline carbon such as graphite having excellent conductivity, the corrosion resistance of the hydrogen-absorbing alloy can be greatly improved and the current collecting property can be improved. It becomes possible to improve the high-rate discharge characteristics by making the carbon be deposited on the surface of the hydrogen storage alloy to become an electrode active point.

【0019】以下に本発明の実施例を詳しく説明する。 (実施例1)水素吸蔵合金は市販のTi,V,Cr,L
a,Ni金属を原料として、アーク溶解法によってTi
0.30.43Cr0.13La0.05Ni0.09 の組成比を有する
bcc合金を作製した。次に、この合金に水素を十分吸
蔵させて水素化粉砕し、さらに機械粉砕と分級によって
45μm以下の水素吸蔵合金粒子を得た。
Examples of the present invention will be described in detail below. (Example 1) Hydrogen storage alloys are commercially available Ti, V, Cr, L
a, Ni metal as raw material, Ti by arc melting method
A bcc alloy having a composition ratio of 0.3 V 0.43 Cr 0.13 La 0.05 Ni 0.09 was prepared. Next, this alloy was allowed to sufficiently occlude hydrogen, hydro-pulverized, and mechanically pulverized and classified to obtain hydrogen-occluding alloy particles of 45 μm or less.

【0020】このようにして作製した水素吸蔵合金粒子
90gと粒径約10μmのグラファイト(日本黒鉛社製
人造黒鉛SP−10、d値=3.35Å)10gを窒素
ガスで充満させたボールミルで10時間混合し、水素吸
蔵合金粒子表面上にグラファイトをほぼ均一に付着させ
た。電子線マイクロ(EPMA)観察の結果、粒径5μ
m程度のグラファイトの微粒子が水素吸蔵合金表面にほ
ぼ均一に付着しており、且つ断面の組成分析より付着し
ているカーボンが若干(0.1μm程度)合金中に拡散
していることがわかった。
90 g of the hydrogen-absorbing alloy particles thus prepared and 10 g of graphite having a particle size of about 10 μm (manufactured by Nippon Graphite Co., Ltd., artificial graphite SP-10, d value = 3.35 Å) were filled with nitrogen gas in a ball mill 10 After mixing for a while, graphite was allowed to adhere to the surface of the hydrogen storage alloy particles almost uniformly. As a result of electron microscopic (EPMA) observation, the particle size is 5μ.
It was found from the composition analysis of the cross section that a small amount of graphite fine particles of approximately m adhered to the surface of the hydrogen storage alloy almost uniformly, and that some of the adhered carbon had diffused into the alloy (about 0.1 μm). .

【0021】また、図1に粉末X線回折測定の結果を示
すが27゜付近にカーボンに起因したピークが認められ
た。ただし、この時のカーボンのピーク強度は同量のグ
ラファイトを乳鉢で10分間混合した単純混合品(比較
例2)に比べて、bcc合金のメインピーク(40°付
近)を基準として見たカーボンのピーク強度と比べて1
/3程度に低下していた。このピーク強度の低下原因と
してはグラファイトが微粉化されて結晶面が破壊された
ためと水素吸蔵合金中へのカーボンの拡散が考えられ
る。
Further, FIG. 1 shows the result of powder X-ray diffraction measurement, and a peak due to carbon was recognized at around 27 °. However, the peak intensity of carbon at this time was higher than that of the simple peak mixture (Comparative Example 2) in which the same amount of graphite was mixed for 10 minutes in the mortar, based on the main peak of bcc alloy (around 40 °). 1 compared to peak intensity
It was about / 3. The cause of the decrease in peak intensity is considered to be that graphite was pulverized and the crystal plane was destroyed, and that carbon was diffused into the hydrogen storage alloy.

【0022】このようにして作製した水素吸蔵合金粒子
に結着剤としてポリエチレン粉末を3重量%加え、エタ
ノールを加えてペースト状にし、これを多孔度95%、
厚さ0.6mm、縦2cm、横2cmの発泡状ニッケル
板に充填し、乾燥、800kgf/cm2で加圧した後、真空
中で130℃1時間加熱し、結着剤を溶融させて水素吸
蔵合金負極を作製した。
3% by weight of polyethylene powder as a binder was added to the hydrogen-absorbing alloy particles thus produced, and ethanol was added to form a paste, which had a porosity of 95%.
Fill a foamed nickel plate with a thickness of 0.6 mm, length 2 cm, width 2 cm, dry, pressurize at 800 kgf / cm 2 , and heat in vacuum for 1 hour at 130 ° C to melt the binder and hydrogen. A storage alloy negative electrode was produced.

【0023】開放系液リッチ負極規制電池の作製手順を
以下に説明する。ニッケル製のリード線を上記負極に溶
接して負極(合金重量約1.0g)電極を作製し、正極
としては水酸化ニッケルを主成分とする従来の正極合剤
を負極同様多孔度95%、厚さ1mm、縦2cm、横2
cmの発泡式ニッケル板に充填し、ニッケル製のリード
線を溶接し正極を作製した。
The procedure for producing an open system liquid-rich negative electrode regulated battery will be described below. A nickel lead wire was welded to the above negative electrode to prepare a negative electrode (alloy weight: about 1.0 g), and a positive electrode mixture containing a conventional positive electrode mixture containing nickel hydroxide as a main component was used as the positive electrode, and the porosity was 95%, like the negative electrode. Thickness 1mm, length 2cm, width 2
cm foamed nickel plate was filled and a nickel lead wire was welded to produce a positive electrode.

【0024】この正極2枚を厚さ0.15mmの親水性
を付与したポリプロピレン(PP)製のセパレータで各
々包み、負極も同様にセパレータで包み、1枚の負極を
2枚の正極で挟持し両側からアクリル板で締め付けたも
のを電槽に入れ、水酸化カリウム水溶液(密度1.30
g/cm3 )を主成分とする電解液(約200cc)を
その電槽に注液し、負極容量規制の開放型液リッチ電池
を作製した。
The two positive electrodes were each wrapped with a polypropylene (PP) separator having a thickness of 0.15 mm and made hydrophilic, and the negative electrode was similarly wrapped with the separator, and one negative electrode was sandwiched between two positive electrodes. The ones fastened with acrylic plates from both sides are put in a battery case, and a potassium hydroxide aqueous solution (density 1.30
An electrolytic solution (about 200 cc) containing g / cm 3 ) as a main component was poured into the battery case to prepare an open type liquid-rich battery in which the negative electrode capacity was regulated.

【0025】図2に20℃で充電0.1Aで5時間、放
電0.1A、0.8Vカットの条件で充放電サイクルを
行った時の負極合金1g当たりの放電容量の変化を示
す。また図3は高率放電特性を示したもので、0.1A
放電時の容量を1とした時各放電電流での容量比率を示
したものである。
FIG. 2 shows the change in the discharge capacity per 1 g of the negative electrode alloy when the charge / discharge cycle was carried out at 20 ° C. for 5 hours at a charge of 0.1 A for discharge of 0.1 A and 0.8 V cut. Further, FIG. 3 shows high rate discharge characteristics, which is 0.1 A
When the discharge capacity is 1, the capacity ratio at each discharge current is shown.

【0026】ここで、比較例1は負極水素吸蔵合金に表
面処理をしなかったもの、比較例2は本実施例で用いた
グラファイトを同量乳鉢で10分間混合したものであ
る。比較例1では最大放電容量が320mAh/g程度
と少なく、サイクル特性も悪く、高率放電特性も0.5
Aでほとんど放電できない状態となった。比較例2では
放電容量は340mAh/g程度でサイクル特性も無処
理のものと比べるとやや向上が見られるがそれ程顕著な
ものではなく、高率放電特性ではほとんど向上は見られ
なかった。
Here, in Comparative Example 1, the negative electrode hydrogen storage alloy was not surface-treated, and in Comparative Example 2, the same amount of the graphite used in this Example was mixed in a mortar for 10 minutes. In Comparative Example 1, the maximum discharge capacity was as small as 320 mAh / g, the cycle characteristics were poor, and the high rate discharge characteristics were 0.5.
In A, almost no discharge was possible. In Comparative Example 2, the discharge capacity was about 340 mAh / g, and the cycle characteristics were slightly improved as compared with those of the untreated type, but they were not so remarkable, and the high rate discharge characteristics were hardly improved.

【0027】一方、本実施例のものは最大放電容量が4
50mAh/gと大きく向上し、サイクル特性も改善さ
れ、高率放電特性においても向上が認められた。これは
導電性と耐食性に優れたグラファイトが水素吸蔵合金の
表面を被覆することで集電性が向上し放電容量の増加と
なり、耐食性の向上によりサイクル特性が向上し、また
合金表面との化学結合で電極活性が増加し高率放電特性
も改善されたものと考えられる。
On the other hand, the maximum discharge capacity of this embodiment is 4
It was significantly improved to 50 mAh / g, the cycle characteristics were improved, and the high rate discharge characteristics were also improved. This is because graphite, which has excellent conductivity and corrosion resistance, coats the surface of the hydrogen storage alloy to improve the current collection performance and increase the discharge capacity, and the corrosion resistance improves the cycle characteristics, as well as the chemical bond with the alloy surface. It is considered that the electrode activity increased and the high rate discharge characteristics were also improved.

【0028】比較例2のように単なる混合だけでは機械
的な応力が弱いためグラファイトの粉砕が十分でなく、
また合金中へのグラファイトの拡散も認められなかっ
た。このため導電性は若干改善でき放電容量は若干向上
するが、高率放電特性はほとんど改善されなかった。こ
れは合金表面に拡散層を有して付着したグラフアイトが
活性点となり電気化学的な水素の吸蔵・放出を容易にし
ているためと考えられる。
As in Comparative Example 2, since mechanical stress is weak with simple mixing, the crushing of graphite is not sufficient.
Further, no diffusion of graphite into the alloy was observed. Therefore, the conductivity was slightly improved and the discharge capacity was slightly improved, but the high rate discharge characteristics were hardly improved. It is considered that this is because graphite attached to the alloy surface with a diffusion layer serves as an active point to facilitate electrochemical hydrogen absorption / desorption.

【0029】また、ボールミルでの混合時間を1時間に
した場合も比較例2と同様、大きな容量の向上は見られ
なかった。これはグラファイト自体の結晶性は良いが混
合後の粉末X線回折における水素吸蔵合金のメインピー
ク強度を基準としたカーボンピーク強度の低下率が1/
2程度にとどまった。これは粉砕不足とカーボンの合金
中への拡散がないため電極活性が不十分であることに起
因していると考えられる。混合時間が6時間の時はカー
ボンのピーク強度比が単純混合時のそれの1/2より少
し低くなった。
Also, when the mixing time in the ball mill was set to 1 hour, a large improvement in capacity was not observed, as in Comparative Example 2. This is because the crystallinity of graphite itself is good, but the decrease rate of the carbon peak intensity based on the main peak intensity of the hydrogen storage alloy in powder X-ray diffraction after mixing is 1 /
It stayed at about 2. This is considered to be due to insufficient electrode activity due to insufficient pulverization and no diffusion of carbon into the alloy. When the mixing time was 6 hours, the peak intensity ratio of carbon was slightly lower than 1/2 of that in the simple mixing.

【0030】この合金の高率放電特性がかなり改善され
たことより、混合後のグラファイトを付着させた水素吸
蔵合金の粉末X線回折測定において合金のメインピーク
を基準として見たカーボンのピーク強度比が単純混合時
の1/2以下にならないと電極活性が向上しないことが
わかった。また、図4にグラファイトの含有率と最大放
電容量の関係を示すが、5wt%以上25wt%以下の
範囲で放電容量の向上が認められた。
Since the high rate discharge characteristics of this alloy were considerably improved, the peak intensity ratio of carbon as seen on the basis of the main peak of the alloy in the powder X-ray diffraction measurement of the hydrogen storage alloy to which graphite after mixing was adhered. It was found that the electrode activity was not improved unless the ratio became less than 1/2 of that in simple mixing. Further, FIG. 4 shows the relationship between the graphite content rate and the maximum discharge capacity, and it was confirmed that the discharge capacity was improved in the range of 5 wt% or more and 25 wt% or less.

【0031】(実施例2)粒径5μmのMg粉末と粒径
数μmのカーボニルNiをアルゴンガス雰囲気で24時
間ボールミルし、メカニカルアロイングを行い、粒径1
0μm程度のMgNi合金粉末をまず作製した。
(Example 2) Mg powder having a particle size of 5 μm and carbonyl Ni having a particle size of several μm were ball-milled in an argon gas atmosphere for 24 hours to perform mechanical alloying to obtain a particle size of 1
First, a MgNi alloy powder of about 0 μm was prepared.

【0032】次に、この合金80gにカーボンマイクロ
ビーズ(日本カーボン社製PC−1028、d値=3.
40Å)を20g添加し、アルゴンガス雰囲気で遊星ボ
ールミルを用いて10分間ハイブリダイゼーションを行
い、MgNi合金表面に高結晶性カーボンを付着させ
た。EPMA観察より合金表面に粒径2μm程度のカー
ボンがほぼ均一に分布し、若干カーボンが合金中に拡散
(0.1μm程度)していた。
Next, 80 g of this alloy was mixed with carbon micro beads (PC-1028 manufactured by Nippon Carbon Co., d value = 3.
20 g of 40 Å) was added, and hybridization was carried out for 10 minutes using a planetary ball mill in an argon gas atmosphere to deposit highly crystalline carbon on the surface of the MgNi alloy. From EPMA observation, carbon with a particle size of about 2 μm was distributed almost uniformly on the surface of the alloy, and some carbon was diffused (about 0.1 μm) in the alloy.

【0033】実施例1と同様の構成で開放系液リッチ負
極規制電池を作製した。(図5)に20℃で充電0.1
Aで5時間、放電0.1A、0.8Vカットの条件で充
放電サイクルを行った時の負極合金1g当たりの放電容
量の変化を示す。比較例3は無処理の時、比較例4は粒
径が0.1μm程度のケッチェンブラック(低結晶性カ
ーボン、d値=3.8Å)を同様の方法で同重量添加し
たものである。
An open system liquid-rich negative electrode regulated battery having the same structure as in Example 1 was produced. (Fig. 5) Charged at 20 ℃ 0.1
The change of the discharge capacity per 1 g of the negative electrode alloy when the charge / discharge cycle was performed under the conditions of discharge of 0.1 A and 0.8 V cut for 5 hours at A is shown. In Comparative Example 3, no treatment was performed, and in Comparative Example 4, Ketjen Black having a particle size of about 0.1 μm (low crystalline carbon, d value = 3.8Å) was added in the same amount by the same method.

【0034】比較例3では最大放電容量が380mAh
/g程度と少なく、サイクル特性も悪く、比較例4では
サイクル特性はやや改善されたが放電容量は400mA
h/g程度で無処理のものとほとんど変わらなかった。
一方、本実施例のものは最大放電容量が500mAh/
gと大きく向上し、サイクル特性および高率放電特性も
改善された。
In Comparative Example 3, the maximum discharge capacity was 380 mAh.
/ G, the cycle characteristics were poor, and in Comparative Example 4, the cycle characteristics were slightly improved, but the discharge capacity was 400 mA.
About h / g, it was almost the same as the untreated one.
On the other hand, the maximum discharge capacity of this example is 500 mAh /
g, and the cycle characteristics and high rate discharge characteristics were also improved.

【0035】また、図6にカーボンマイクロビーズの含
有率と最大放電容量の関係を示すが、10wt%以上3
0wt%以下の範囲で放電容量の向上が認められた。比
較例4のような低結晶性カーボンが付着した場合は導電
性が結晶性のカーボンと比べて1000分の1以下と低
いため集電性が改善されず、放電容量の向上があまり認
められなかった。
FIG. 6 shows the relationship between the carbon microbead content and the maximum discharge capacity.
It was confirmed that the discharge capacity was improved in the range of 0 wt% or less. When the low crystalline carbon as in Comparative Example 4 is attached, the conductivity is lower than 1/1000 or less as compared with the crystalline carbon, so that the current collecting property is not improved and the discharge capacity is not improved so much. It was

【0036】(実施例3)所定量のZr,Mn,V,C
r,Niを高周波溶解炉のルツボに入れ、溶解した後、
水冷された鋳型に溶けた合金を流し込み、主たる合金相
がC15型Laves相であるAB2タイプのZrMn
0.50.1 Cr0.2 Ni1.2を作製した。この様にして
作製した合金を真空中、1100℃で6時間熱処理した
後、機械粉砕と分級で粒径38μm以下の合金粒子を得
た。
(Embodiment 3) Predetermined amounts of Zr, Mn, V and C
After putting r and Ni into the crucible of the high frequency melting furnace and melting them,
Molten alloy is poured into a water-cooled mold, and the main alloy phase is C15 type Laves phase, AB 2 type ZrMn.
0.5 V 0.1 Cr 0.2 Ni 1.2 was produced. The alloy thus produced was heat-treated in vacuum at 1100 ° C. for 6 hours, and then mechanically pulverized and classified to obtain alloy particles having a particle diameter of 38 μm or less.

【0037】この水素吸蔵合金粒子70gにカーボンマ
イクロビーズ(日本カーボン社製PC−1020、d値
=3.45Å)を30g添加し、アルゴン雰囲気中で2
0分間のメカノフュージョン(ホソカワミクロン製使
用)を行って合金表面にカーボンを付着させた。EPM
A観察より水素吸蔵合金表面に粒径0.3μm程度のカ
ーボンがほぼ均一に分布していることがわかった。
To 70 g of the hydrogen-absorbing alloy particles, 30 g of carbon microbeads (PC-1020 manufactured by Nippon Carbon Co., d value = 3.45 Å) was added, and the amount was 2 in an argon atmosphere.
Mechanofusion (made by Hosokawa Micron) was performed for 0 minutes to deposit carbon on the alloy surface. EPM
From the observation of A, it was found that carbon having a particle size of about 0.3 μm was distributed almost uniformly on the surface of the hydrogen storage alloy.

【0038】実施例1と同様の構成で開放系液リッチ負
極規制電池を作製した。(図7)に20℃で充電0.1
Aで5時間、放電0.1A、0.8Vカットの条件で充
放電サイクルを行った時の負極合金1g当たりの放電容
量の変化を示す。比較例5は無処理の時、比較例6はケ
ッチェンブラックを同様の方法で同重量添加したもので
ある。
An open system liquid-rich negative electrode regulated battery having the same structure as in Example 1 was produced. (Fig. 7) Charged at 20 ℃ 0.1
The change of the discharge capacity per 1 g of the negative electrode alloy when the charge / discharge cycle was performed under the conditions of discharge of 0.1 A and 0.8 V cut for 5 hours at A is shown. In Comparative Example 5, no treatment was applied, and in Comparative Example 6, Ketjen Black was added in the same amount by the same method.

【0039】比較例5では最大放電容量が360mAh
/g程度と少なく、サイクル特性も悪く、比較例6では
サイクル特性は若干改善できたが放電容量は380mA
h/g程度で無処理のものとほとんど変わらなかった。
一方、本実施例のものは最大放電容量が410mAh/
gと向上し、初期活性およびサイクル特性も改善され
た。また、高率放電特性も向上していた。図8にカーボ
ンマイクロビーズの含有率と最大放電容量の関係を示す
が、10wt%以上30wt%以下の範囲で放電容量の
向上が認められた。
In Comparative Example 5, the maximum discharge capacity is 360 mAh.
/ G, the cycle characteristics were poor, and in Comparative Example 6, the cycle characteristics were slightly improved, but the discharge capacity was 380 mA.
About h / g, it was almost the same as the untreated one.
On the other hand, the maximum discharge capacity of this example is 410 mAh /
g, and the initial activity and cycle characteristics were also improved. Also, the high rate discharge characteristics were improved. FIG. 8 shows the relationship between the content rate of carbon microbeads and the maximum discharge capacity. The improvement of the discharge capacity was observed in the range of 10 wt% or more and 30 wt% or less.

【0040】(実施例4) 所定量のCa(粒径25μ
m)とNi(粒径数μm)の粉末を実施例2と同様にボ
ールミルを用いてアルゴン中で20時間混合し、粒径約
35μmのCaNi5合金粒子を作製した。
Example 4 Predetermined amount of Ca (particle size 25 μm
m) and Ni (particle size: several μm) were mixed in argon using a ball mill for 20 hours in the same manner as in Example 2 to produce CaNi 5 alloy particles having a particle size of about 35 μm.

【0041】次に、この水素吸蔵合金粒子80gにグラ
ファイト(日本黒鉛社製SP−10)を20g添加し、
アルゴン雰囲気中で8分間遊星ボールミルを用いて混合
した。EPMA観察より合金表面に粒径1μm程度のカ
ーボンがほぼ均一に分布し、断面の定性分析よりカーボ
ンが0.2μm程度合金中に拡散していることがわかっ
た。
Next, 20 g of graphite (SP-10 manufactured by Nippon Graphite Co., Ltd.) was added to 80 g of the hydrogen storage alloy particles,
The mixture was mixed using a planetary ball mill for 8 minutes in an argon atmosphere. From EPMA observation, it was found that carbon having a particle size of about 1 μm was distributed almost uniformly on the alloy surface, and carbon was diffused into the alloy by about 0.2 μm by qualitative analysis of the cross section.

【0042】このようにして作製した合金粉末より実施
例1と同様の構成で開放系液リッチ負極規制電池を作製
した。図9に20℃で充電0.1Aで5時間、放電0.
1A、0.8Vカットの条件で充放電サイクルを行った
時の負極合金1g当たりの放電容量の変化を示す。比較
例7はグラファイトを添加しなかったものである。
An open system liquid-rich negative electrode regulated battery was produced from the alloy powder thus produced in the same structure as in Example 1. As shown in FIG.
4 shows changes in discharge capacity per 1 g of the negative electrode alloy when a charge / discharge cycle was performed under the conditions of 1 A and 0.8 V cut. Comparative Example 7 is one in which graphite was not added.

【0043】比較例7では1サイクル目の放電容量が3
80mAh/g程度とかなり大きいが、サイクル特性が
極端に悪かった。これは合金中のCaが電解液と反応し
たためと考えられる。一方、本実施例のものは最大放電
容量が400mAh/gとやや向上し、サイクル特性も
大幅に改善された。
In Comparative Example 7, the discharge capacity in the first cycle was 3
Although it was considerably large at about 80 mAh / g, the cycle characteristics were extremely poor. It is considered that this is because Ca in the alloy reacted with the electrolytic solution. On the other hand, in the case of this example, the maximum discharge capacity was slightly improved to 400 mAh / g, and the cycle characteristics were also greatly improved.

【0044】以上のようにd値が3.45Å以下のグラ
ファイトを5wt%以上30wt%以下水素吸蔵合金表
面に付着させることで高容量かつサイクル特性、高率放
電特性に優れた電極が得られた。この時、高結晶性カー
ボンが付着した水素吸蔵合金の粉末X線回折測定におけ
るカーボンピーク強度/水素吸蔵合金メインピーク強度
比が単純混合時のその強度比の1/2以下にならないと
その効果が顕著に現れず、d値が3.5Å以上の高結晶
性カーボンを用いた場合は、導電性がやや低いため、特
性改善効果(特に、放電容量)がやや低下することがわ
かった。また、混合処理後のカーボンの粒径が5μmを
超える大きさの時は混合・付着が十分でなく、高率放電
特性がほとんど改善されなかった。
As described above, by adhering graphite having a d value of 3.45 Å or less to the surface of the hydrogen storage alloy of 5 wt% or more and 30 wt% or less, an electrode having a high capacity and excellent cycle characteristics and high rate discharge characteristics was obtained. . At this time, if the carbon peak intensity / hydrogen storage alloy main peak intensity ratio in the powder X-ray diffraction measurement of the hydrogen storage alloy to which the highly crystalline carbon is adhered is not less than 1/2 of the intensity ratio during simple mixing, the effect is obtained. It was found that when high crystalline carbon having a d value of 3.5 Å or more was used, which did not appear remarkably, the conductivity was slightly low, and therefore the characteristic improving effect (particularly, the discharge capacity) was slightly lowered. Further, when the particle size of carbon after the mixing treatment was larger than 5 μm, the mixing and adhesion were not sufficient, and the high rate discharge characteristics were hardly improved.

【0045】[0045]

【発明の効果】上記実施例から明らかなように、本発明
の水素吸蔵合金電極は従来の水素吸蔵合金電極に比べ集
電性が高く、耐食性や電極活性も向上し、高容量で、サ
イクル特性や高率放電特性に優れた電極が得られるもの
である。
As is clear from the above examples, the hydrogen storage alloy electrode of the present invention has a higher current collecting ability than conventional hydrogen storage alloy electrodes, improved corrosion resistance and electrode activity, high capacity, and cycle characteristics. And an electrode excellent in high rate discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および比較例2の粉末X線回折測定の
結果を示した図
FIG. 1 is a diagram showing the results of powder X-ray diffraction measurements of Example 1 and Comparative Example 2.

【図2】実施例1および比較例1、2の充放電サイクル
における負極合金1g当たりの放電容量の変化を示した
FIG. 2 is a diagram showing a change in discharge capacity per 1 g of a negative electrode alloy during charge / discharge cycles of Example 1 and Comparative Examples 1 and 2.

【図3】実施例1および比較例1、2の高率放電特性を
示した図
FIG. 3 is a diagram showing high rate discharge characteristics of Example 1 and Comparative Examples 1 and 2.

【図4】実施例1におけるグラファイト含有率と最大放
電容量の関係を示した図
FIG. 4 is a graph showing the relationship between the graphite content and the maximum discharge capacity in Example 1.

【図5】実施例2および比較例3、4の充放電サイクル
における負極合金1g当たりの放電容量の変化を示した
FIG. 5 is a graph showing changes in discharge capacity per 1 g of negative electrode alloy in charge / discharge cycles of Example 2 and Comparative Examples 3 and 4.

【図6】実施例2におけるカーボンマイクロビーズ含有
率と最大放電容量の関係を示した図
FIG. 6 is a graph showing the relationship between the carbon microbead content and the maximum discharge capacity in Example 2.

【図7】実施例3および比較例5、6の充放電サイクル
における負極合金1g当たりの放電容量の変化を示した
FIG. 7 is a graph showing changes in discharge capacity per 1 g of negative electrode alloy during charge / discharge cycles of Example 3 and Comparative Examples 5 and 6.

【図8】実施例3におけるカーボンマイクロビーズ含有
率と最大放電容量の関係を示した図である。
8 is a diagram showing the relationship between the carbon microbead content and the maximum discharge capacity in Example 3. FIG.

【図9】実施例4および比較例7の充放電サイクルにお
ける負極合金1g当たりの放電容量の変化を示した図
FIG. 9 is a graph showing changes in discharge capacity per 1 g of negative electrode alloy during charge / discharge cycles of Example 4 and Comparative Example 7.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲よし▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 井上 博史 大阪府堺市百舌鳥梅北町5−17−305号 (72)発明者 岩倉 千秋 大阪府堺市新檜尾台3丁3−4−105号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ No. 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Issue (72) Inventor Chiaki Iwakura 3-3-4-105 Shin-Hinodai, Sakai City, Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金の表面にカーボンの拡散層を
有していることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode, comprising a carbon diffusion layer on the surface of the hydrogen storage alloy.
【請求項2】カーボンを拡散した水素吸蔵合金粉末のX
線回折測定において、カーボンのピークが存在し、かつ
そのカ−ボンピーク強度/水素吸蔵合金メインピーク強
度比が単純混合時の強度比の1/2以下になっている水
素吸蔵合金からなる水素吸蔵合金電極。
2. X of a hydrogen storage alloy powder in which carbon is diffused
A hydrogen storage alloy comprising a hydrogen storage alloy having a carbon peak in the line diffraction measurement and having a carbon peak intensity / hydrogen storage alloy main peak intensity ratio of 1/2 or less of the intensity ratio during simple mixing. electrode.
【請求項3】水素吸蔵合金粒子に高結晶性カーボンを5
wt%以上30wt%以下添加し、機械的な応力を加え
て水素吸蔵合金表面にカ−ボンを拡散させた水素吸蔵合
金からなる水素吸蔵合金電極の製造法。
3. Highly crystalline carbon is added to the hydrogen storage alloy particles.
A method for producing a hydrogen storage alloy electrode, which comprises a hydrogen storage alloy in which a carbon is diffused on the surface of the hydrogen storage alloy by adding mechanical stress to the hydrogen storage alloy in an amount of 30 wt% or more.
【請求項4】高結晶性カ−ボンの結晶面間隔d値が3.
45Å以下であることを特徴とする請求項3記載の水素
吸蔵合金電極の製造法。
4. The crystal plane spacing d value of highly crystalline carbon is 3.
The method for producing a hydrogen storage alloy electrode according to claim 3, wherein the method is 45 Å or less.
【請求項5】機械的な応力を不活性ガス雰囲気でボール
ミル、遊星ボールミルあるいはメカノフュージョン法を
用いて加えたことを特徴とする請求項3または4記載の
水素吸蔵合金電極の製造法。
5. The method for producing a hydrogen storage alloy electrode according to claim 3, wherein mechanical stress is applied by using a ball mill, a planetary ball mill, or a mechanofusion method in an inert gas atmosphere.
JP8064243A 1996-03-21 1996-03-21 Hydrogen absorbing alloy electrode, and manufacture thereof Pending JPH09259870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8064243A JPH09259870A (en) 1996-03-21 1996-03-21 Hydrogen absorbing alloy electrode, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8064243A JPH09259870A (en) 1996-03-21 1996-03-21 Hydrogen absorbing alloy electrode, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09259870A true JPH09259870A (en) 1997-10-03

Family

ID=13252521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8064243A Pending JPH09259870A (en) 1996-03-21 1996-03-21 Hydrogen absorbing alloy electrode, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09259870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340003A (en) * 2004-05-27 2005-12-08 Nippon Telegr & Teleph Corp <Ntt> Electrode for nickel-hydrogen secondary battery
CN100370648C (en) * 2001-01-17 2008-02-20 日清纺织株式会社 Battery active material powder mixture, battery electrode composition, secondary battery electrode, secondary battery, carbon powder mixture polarizable electrode composition for bioelectric layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370648C (en) * 2001-01-17 2008-02-20 日清纺织株式会社 Battery active material powder mixture, battery electrode composition, secondary battery electrode, secondary battery, carbon powder mixture polarizable electrode composition for bioelectric layer
JP2005340003A (en) * 2004-05-27 2005-12-08 Nippon Telegr & Teleph Corp <Ntt> Electrode for nickel-hydrogen secondary battery

Similar Documents

Publication Publication Date Title
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
US5753054A (en) Hydrogen storage alloy and electrode therefrom
JPH09259870A (en) Hydrogen absorbing alloy electrode, and manufacture thereof
US6309779B1 (en) Hydrogen storage alloy electrode and method for manufacturing the same
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS6119063A (en) Hydrogen occlusion electrode
JP3491872B2 (en) Hydrogen storage alloy electrode
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP3454615B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3533766B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3198896B2 (en) Nickel-metal hydride battery
JP3189361B2 (en) Alkaline storage battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JP3369838B2 (en) Hydrogen storage alloy electrode
JP2000096177A (en) Hydrogen storage alloy, hydrogen storage alloy electrode and nickel - hydrogen secondary battery
JPS63301461A (en) Non-sintered positive electrode for alkali storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode