JP2005340003A - Electrode for nickel-hydrogen secondary battery - Google Patents

Electrode for nickel-hydrogen secondary battery Download PDF

Info

Publication number
JP2005340003A
JP2005340003A JP2004157505A JP2004157505A JP2005340003A JP 2005340003 A JP2005340003 A JP 2005340003A JP 2004157505 A JP2004157505 A JP 2004157505A JP 2004157505 A JP2004157505 A JP 2004157505A JP 2005340003 A JP2005340003 A JP 2005340003A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen
secondary battery
nickel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157505A
Other languages
Japanese (ja)
Inventor
Toshihiko Kondo
利彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004157505A priority Critical patent/JP2005340003A/en
Publication of JP2005340003A publication Critical patent/JP2005340003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode (electrode for a nickel-hydrogen secondary battery) with high capacity, on which, the problem of extreme lowering of discharging capacity due to repeated charging and discharging cycles is solved. <P>SOLUTION: As the most important factor, the nickel-hydrogen secondary battery uses the hydrogen storage alloy electrode composed of Mg, Ca, and V, having a body-centered cubic lattice crystal structure as a main component. Especially, the hydrogen storage alloy is expressed by general formula: Mg<SB>1-x</SB>Ca<SB>x</SB>V<SB>y</SB>(0<x≤0.35, 1<y≤5). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はニッケル水素二次電池用電極、更に詳細には高容量ニッケル水素二次電池を構成するための水素吸蔵合金電極に関するものである。   The present invention relates to an electrode for a nickel metal hydride secondary battery, and more particularly to a hydrogen storage alloy electrode for constituting a high capacity nickel metal hydride secondary battery.

水素吸蔵合金を負極として用いるニッケル水素二次電池は電気化学的な水素吸蔵放出反応を利用したものであり、高信頼かつ小型軽量化が可能な電池として携帯機器から大型用途にまで広範囲に使用されてきた。近年、更なる高容量化の要求に応えるべく、電極材料の研究開発が精力的に展開されている。   Nickel metal hydride rechargeable batteries using hydrogen storage alloys as negative electrodes are based on electrochemical hydrogen storage and release reactions, and are used in a wide range of applications from portable devices to large-sized applications as batteries that can be highly reliable and reduced in size and weight. I came. In recent years, research and development of electrode materials has been energetically deployed to meet the demand for higher capacity.

現行のニッケル水素電池負極にはMmNiに代表されるAB系合金が用いられており、圧倒的なシェアを誇っているが、その容量は既に理論容量372mAh/gの85%以上に達しており、更なる大幅な高容量化のためには、新規な合金系の材料開発が必要である。最近、水素吸蔵量の高いMg系及びV系合金の適用が検討されている。 The current of the nickel hydrogen battery negative electrode have been used AB 5 type alloy represented by MmNi 5, but boasts an overwhelming share, its capacity is already reached more than 85% of the theoretical capacity 372 mAh / g In order to further increase the capacity, it is necessary to develop a new alloy material. Recently, application of Mg-based and V-based alloys having a high hydrogen storage capacity has been studied.

例えばMgNi及びMgNiの理論容量は高くそれぞれ約1000及び670mAh/gであるが、これらの合金は室温での水素吸蔵放出が困難であり、実際の放電容量はそれぞれ750及び500mAh/g程度である。しかも、電解液として用いられる強アルカリ水溶液中においては充放電サイクルにともないMg(OH)が生成し、急激な容量低下が見られる(例えば非特許文献1及び2参照)。一方で、充放電サイクルにともなう容量低下を抑制したVTiNi0.56系合金が種々開発されているが、放電容量は400mAh/g程度であり、大幅な高容量化は達成できていない(例えば非特許文献3参照)。 For example, Mg 2 Ni and MgNi have high theoretical capacities of about 1000 and 670 mAh / g, respectively, but these alloys are difficult to store and release hydrogen at room temperature, and the actual discharge capacities are about 750 and 500 mAh / g, respectively. is there. Moreover, in the strong alkaline aqueous solution used as the electrolytic solution, Mg (OH) 2 is generated along with the charge / discharge cycle, and a rapid capacity reduction is observed (for example, see Non-Patent Documents 1 and 2). On the other hand, various V 3 TiNi 0.56 alloys have been developed in which the capacity reduction accompanying the charge / discharge cycle is suppressed, but the discharge capacity is about 400 mAh / g, and a significant increase in capacity has not been achieved ( For example, refer nonpatent literature 3).

以上のように、高容量でかつサイクル特性に優れた水素吸蔵合金を備えたニッケル水素二次電池用電極の開発には至っていない。
T.Kohno,M.Kanda,J.Electrochem.Soc.143(1996)L198。 Y.Q.Lei,Y.M.Wu,Q.M.Yang,J.Wu,Q.D.Wang,Z.Phys.Chem.183(1994)379。 M.Tsukahara,K.Takahashi,T.Mishima,A.Isomura,T.Sakai,J.Alloys Comp.253(1997)583。
As described above, the development of an electrode for a nickel hydride secondary battery having a hydrogen storage alloy having a high capacity and excellent cycle characteristics has not been developed.
T.A. Kohno, M .; Kanda, J .; Electrochem. Soc. 143 (1996) L198. Y. Q. Lei, Y .; M.M. Wu, Q. M.M. Yang, J. et al. Wu, Q. D. Wang, Z .; Phys. Chem. 183 (1994) 379. M.M. Tsukahara, K .; Takahashi, T .; Misima, A .; Isomura, T .; Sakai, J. et al. Alloys Comp. 253 (1997) 583.

本発明は上記のような技術の現状のもとでなされたものであって、本発明の目的は充放電サイクルに伴い放電容量が著しく減少するという点を解決した高容量水素吸蔵合金電極(ニッケル水素二次電池用電極)を提供することにある。   The present invention has been made under the above-described state of the art, and an object of the present invention is to solve the problem that the discharge capacity is remarkably reduced with the charge / discharge cycle. It is to provide an electrode for a hydrogen secondary battery.

本発明はMg、Ca及びVから構成された体心立方格子の結晶構造を有する合金が主成分である水素吸蔵合金を用いることを最も主要な特徴とするニッケル水素二次電池用電極である。   The present invention is an electrode for a nickel hydride secondary battery characterized by using a hydrogen storage alloy mainly composed of an alloy having a body-centered cubic lattice crystal structure composed of Mg, Ca and V.

本発明のニッケル水素二次電池用電極はMg,Ca及びVから構成された体心立方格子の結晶構造を有する合金が主成分である水素吸蔵合金を用いることを最も主要な特徴とする。この水素吸蔵合金は軽量で、かつ大量の水素を吸蔵可能なMg及びCaを構成元素として含み、室温で水素吸蔵可能なVと同様な体心立方格子の結晶構造を有し、更には金属原子が歪んだ体心立方格子構造を有する不安定な水素化物を形成するので、大量の水素を電気化学的に吸蔵放出し、また、Mg、V及びCaの合金化により電解液に対する耐腐食性が向上するため、従来からの問題であった、充放電サイクルにともなう放電容量低下が少ない高容量ニッケル水素二次電池用電極を実現できる。   The electrode for a nickel hydride secondary battery of the present invention is characterized by using a hydrogen storage alloy mainly composed of an alloy having a body-centered cubic lattice crystal structure composed of Mg, Ca and V. This hydrogen storage alloy is lightweight and contains Mg and Ca, which can store a large amount of hydrogen as constituent elements, and has a body-centered cubic lattice crystal structure similar to V which can store hydrogen at room temperature. Forms an unstable hydride having a distorted body-centered cubic lattice structure, so that a large amount of hydrogen is electrochemically occluded and released, and the corrosion resistance to the electrolyte is improved by alloying Mg, V and Ca. In order to improve, the electrode for high capacity | capacitance nickel metal hydride secondary batteries with few discharge capacity falls with the charging / discharging cycle which was a problem from the past is realizable.

Mg、V及びCaは単独でそれぞれ約7.6wt%、3.8wt%及び4.8wt%の水素を吸蔵するが、Mg及びCaの水素化物は非常に安定であり、電気化学的な水素放出、すなわち放電が困難である。一方で、体心立方格子の結晶構造を有するVは室温で水素をVHまで吸蔵し、理論容量は1018mAh/gに達する。水素吸蔵過程では、金属原子の結晶構造が体心正方格子構造及び面心立方格子構造である二種類の水素化物が存在する。前者が安定であるため、実際には理論容量の半分程度の放電容量しか得られない。 Mg, V and Ca alone absorb about 7.6 wt%, 3.8 wt% and 4.8 wt% hydrogen, respectively, but Mg and Ca hydrides are very stable and electrochemical hydrogen release That is, it is difficult to discharge. On the other hand, V having a body-centered cubic lattice crystal structure absorbs hydrogen up to VH 2 at room temperature, and the theoretical capacity reaches 1018 mAh / g. In the hydrogen storage process, there are two types of hydrides in which the crystal structure of metal atoms is a body-centered tetragonal lattice structure and a face-centered cubic lattice structure. Since the former is stable, only a discharge capacity of about half the theoretical capacity can be obtained in practice.

本発明のニッケル水素二次電池用電極を構成する水素吸蔵合金はVと同様な体心立方格子の結晶構造を有し、Vより軽量でかつ潜在的に高水素吸蔵量であるMg及びCaを構成元素として含むため、Vに比べ、室温で多くの水素を電気化学的に吸蔵することが可能となる。また、Vの一部がVより大きな原子半径を有するMg及びCaで置換されているため、V結晶格子が大きく歪み、金属原子が体心正方格子構造を有する安定な水素化物を形成せず、歪んだ体心立方格子構造を有する不安定な水素化物を形成する。よって、吸蔵水素のほぼ全てを電気化学的に放出することが可能となる。   The hydrogen storage alloy constituting the electrode for the nickel metal hydride secondary battery of the present invention has a body-centered cubic lattice crystal structure similar to V, is lighter than V, and has a potentially high hydrogen storage amount of Mg and Ca. Since it is contained as a constituent element, more hydrogen can be occluded electrochemically at room temperature than V. Further, since a part of V is substituted with Mg and Ca having an atomic radius larger than V, the V crystal lattice is greatly distorted, and the metal atom does not form a stable hydride having a body-centered tetragonal lattice structure, An unstable hydride having a distorted body-centered cubic lattice structure is formed. Therefore, almost all of the stored hydrogen can be electrochemically released.

更に、Mg、V及びCaは合金化しているため、アルカリ電解液に対する耐腐食性が向上し、充放電サイクルにともなう容量低下を抑制される。なお、Mg、Ca及びVから構成された体心立方格子の結晶構造を有する合金が主成分である水素吸蔵合金はボールミル装置を用いて、各金属成分の粉末をミリングし、機械的に混合かつ合金化を行うメカニカルアロイング(MA)により製造できる。   Furthermore, since Mg, V, and Ca are alloyed, the corrosion resistance with respect to the alkaline electrolyte is improved, and the capacity reduction due to the charge / discharge cycle is suppressed. Note that a hydrogen storage alloy composed mainly of an alloy having a body-centered cubic lattice crystal structure composed of Mg, Ca, and V is milled using a ball mill device, and mechanically mixed and mixed. It can be manufactured by mechanical alloying (MA) for alloying.

本発明において、Mg、Ca及びVから構成された体心立方格子の結晶構造を有する合金は好ましくは一般式Mg1−xCa(0<x≦0.35、1≦y≦5)で示されるものである。Caの原子半径はVと比較してかなり大きいため、Ca量が0.35を超える場合には全てのCaがVと置換できず、体心立方格子構造以外の副生成物が多くなるため単位重量当りの実質的な放電容量は小さくなってしまう。また、V量が1より小さい場合にもMg及びCaの完全置換が困難である。一方、V量が5を超える場合には軽量なMg及びCaの割合が減少するため単位重量当りの実質的な放電容量は小さくなってしまう。 In the present invention, the alloy having a body-centered cubic lattice crystal structure composed of Mg, Ca and V is preferably represented by the general formula Mg 1-x Ca x V y (0 <x ≦ 0.35, 1 ≦ y ≦ 5). ). Since the atomic radius of Ca is considerably larger than V, when the Ca content exceeds 0.35, all Ca cannot be replaced with V, and there are many by-products other than the body-centered cubic lattice structure. The substantial discharge capacity per weight is reduced. Further, even when the V amount is smaller than 1, it is difficult to completely replace Mg and Ca. On the other hand, when the amount of V exceeds 5, the ratio of lightweight Mg and Ca decreases, so the substantial discharge capacity per unit weight becomes small.

また、Mg、Ca及びVから構成された体心立方格子の結晶構造を有する合金が主成分である水素吸蔵合金をボールミル装置により炭素材料とともにミリング処理すると合金表面の酸化膜が除去されるとともに、合金表面に炭素原子が部分的に固溶し、相界面が多数形成される。よって、水素拡散経路が増大し、水素吸蔵合金電極(ニッケル水素二次電池用電極)における反応抵抗が小さくなり、充放電特性が著しく改善される。炭素材料はグラファイト、アモルファスカーボン、活性炭、活性炭素繊維及びカーボンナノチューブから選ばれた少なくとも一種以上であることが好ましい。   In addition, when a hydrogen storage alloy mainly composed of an alloy having a body-centered cubic lattice crystal structure composed of Mg, Ca and V is milled together with a carbon material by a ball mill apparatus, an oxide film on the alloy surface is removed. Carbon atoms partially dissolve on the alloy surface, and a large number of phase interfaces are formed. Therefore, the hydrogen diffusion path is increased, the reaction resistance in the hydrogen storage alloy electrode (nickel metal hydride secondary battery electrode) is reduced, and the charge / discharge characteristics are remarkably improved. The carbon material is preferably at least one selected from graphite, amorphous carbon, activated carbon, activated carbon fiber, and carbon nanotube.

前記炭素材料は重量比で合金粉末:炭素材料=9:1以下で添加されるのが好ましい。炭素材料は水素を吸わないため、炭素材料が多くなると単位重量当たりの水素吸蔵量が実質的に低下してしまうおそれがある。   The carbon material is preferably added at a weight ratio of alloy powder: carbon material = 9: 1 or less. Since the carbon material does not absorb hydrogen, if the amount of the carbon material increases, the hydrogen storage amount per unit weight may be substantially reduced.

また、Mg、Ca及びVから構成された体心立方格子の結晶構造を有する合金の少なくとも表面に水素解離触媒物質を存在させると、触媒効果により電気化学的な水素吸蔵放出反応がより容易に進行するようになるため、ニッケル水素二次電池用電極における充放電特性の改善が達成できる。   In addition, when a hydrogen dissociation catalytic material is present on at least the surface of an alloy composed of Mg, Ca and V and having a body-centered cubic lattice crystal structure, the electrochemical hydrogen storage / release reaction proceeds more easily due to the catalytic effect. Therefore, the improvement of the charge / discharge characteristic in the electrode for nickel metal hydride secondary batteries can be achieved.

水素解離触媒物質はその触媒効果が特に高いTi、Cr、Mn、Fe、Co、Ni、Cu、Rh、Pd、Ru及びPtから選ばれた少なくとも一種以上であることが好ましい。水素解離触媒物質の存在割合は水素解離触媒物質を構成する全原子数が水素吸蔵合金を構成する全原子数の1%以上10%以下とするのがよい。1%より小さい場合には触媒効果が十分に発揮されず、10%を超える場合には単位重量当りの実質的な放電容量は小さくなってしまうからである。また、表面に存在させる方法は特に限定されるものではなく、ミリングによる機械的混合、メッキ、溶射、真空蒸着、スパッタリング、及びイオンプレーティング等の中から適宜選択すればよい。   The hydrogen dissociation catalyst material is preferably at least one selected from Ti, Cr, Mn, Fe, Co, Ni, Cu, Rh, Pd, Ru and Pt, which have a particularly high catalytic effect. The abundance ratio of the hydrogen dissociation catalyst material is preferably such that the total number of atoms constituting the hydrogen dissociation catalyst material is 1% or more and 10% or less of the total number of atoms constituting the hydrogen storage alloy. This is because if it is less than 1%, the catalytic effect is not sufficiently exhibited, and if it exceeds 10%, the substantial discharge capacity per unit weight becomes small. The method of existing on the surface is not particularly limited, and may be appropriately selected from mechanical mixing by milling, plating, thermal spraying, vacuum deposition, sputtering, ion plating, and the like.

以下に本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

Mg粉末(平均粒径800μm)とCa粉末(平均粒径2mm)をモル比2:1で、クロム鋼製ボール(7mmφ×22個)とともにクロム鋼製遊星型ボールミル装置用容器(容量45ml)の中に入れ、遊星型ボールミル装置を用いて、Arガス雰囲気下、室温で、80時間メカニカルアロイング(MA)を行った。   Mg powder (average particle size 800 μm) and Ca powder (average particle size 2 mm) in a molar ratio of 2: 1 and a chromium steel planetary ball mill device container (capacity 45 ml) together with chrome steel balls (7 mmφ × 22) Then, mechanical alloying (MA) was performed for 80 hours at room temperature under an Ar gas atmosphere using a planetary ball mill.

ボールと試料の重量比は30:1とし、遊星型ボールミル装置の回転数は600rpmとした。容器内の粉末をX線回折(XRD)により、分析した結果、CaMgの生成が確認された。 The weight ratio of the ball to the sample was 30: 1, and the rotational speed of the planetary ball mill device was 600 rpm. As a result of analyzing the powder in the container by X-ray diffraction (XRD), the production of CaMg 2 was confirmed.

このCaMgとV粉末(平均粒径50μm)をモル比1:3でクロム鋼製ボール(7mmφ×22個)とともにクロム鋼製遊星型ボールミル装置用容器(容量45ml)の中に入れ、遊星型ボールミル装置を用いて、Arガス雰囲気下、室温で、1〜40時間MAを行った。ボールと試料の重量比は30:1とし、遊星型ボールミル装置の回転数は600rpmとした。得られた合金粉末をXRDにより、分析した結果を図1に示す。図1中、1はMA前の試料におけるXRDパターン、2はMAを1時間行った試料におけるXRDパターン、3はMAを2時間行った試料におけるXRDパターン、4はMAを5時間行った試料におけるXRDパターン、5はMAを10時間行った試料におけるXRDパターンを示す。 The CaMg 2 and V powder (average particle size 50 μm) are put in a chrome steel planetary ball mill container (capacity 45 ml) together with chrome steel balls (7 mmφ × 22) in a molar ratio of 1: 3. Using a ball mill apparatus, MA was performed for 1 to 40 hours at room temperature in an Ar gas atmosphere. The weight ratio of the ball to the sample was 30: 1, and the rotational speed of the planetary ball mill device was 600 rpm. The result of analyzing the obtained alloy powder by XRD is shown in FIG. In FIG. 1, 1 is an XRD pattern in a sample before MA, 2 is an XRD pattern in a sample that has been subjected to MA for 1 hour, 3 is an XRD pattern in a sample that has been subjected to MA for 2 hours, and 4 is a sample that has been subjected to MA for 5 hours An XRD pattern 5 indicates an XRD pattern in a sample subjected to MA for 10 hours.

Vの体心立方格子構造に対応する(011)面、(002)面及び(112)面のピークがMA時間の増大と伴に低角度側にシフトし、また、CaMgに帰属されるピークが消失していったことから、体心立方格子構造を保持したままVの一部が原子半径のより大きいMg、Caに徐々に置換されていることがわかった。図2にはX線回折ピークから見積った格子定数変化を示すが、MA時間と伴に格子定数が10時間までは増大し、それ以降はほぼ一定の値を示した。従って、本系においては合金の調製のためには10時間のMAで十分であることがわかった。 The peaks of the (011) plane, the (002) plane, and the (112) plane corresponding to the body-centered cubic lattice structure of V shift to a low angle side with an increase in MA time, and peaks attributed to CaMg 2 Disappeared, and it was found that a part of V was gradually replaced with Mg and Ca having larger atomic radii while maintaining the body-centered cubic lattice structure. FIG. 2 shows the change in the lattice constant estimated from the X-ray diffraction peak. The lattice constant increased up to 10 hours with the MA time, and after that, showed a substantially constant value. Therefore, it was found that 10 hours of MA was sufficient for the preparation of the alloy in this system.

また、エネルギー分散型X線分光法(EDS)により、合金粉末における元素分布を調べたところ、Mg、Ca及びVの各元素は均一に分布しており、単なるCaMgとVの偏析ではなく、確かにMg、Ca及びVの3元素が合金化していることがわかった。この10時間のMAにより作製した合金粉末を合金Aとする。 Further, when the element distribution in the alloy powder was examined by energy dispersive X-ray spectroscopy (EDS), each element of Mg, Ca, and V was uniformly distributed, not just segregation of CaMg 2 and V, It was confirmed that the three elements Mg, Ca, and V were indeed alloyed. This alloy powder produced by MA for 10 hours is referred to as Alloy A.

また、合金Aとグラファイト粉末を重量比9:1で混合し、クロム鋼製ボール(7mmφ×22個)とともにクロム鋼製遊星型ボールミル装置用容器(容量45ml)の中に封入した。ボールと混合粉末の重量比は30:1とした。遊星型ボールミル装置を用いて、Arガス雰囲気下、室温で、機械的ミリング処理を30分間行った。遊星型ボールミル装置の回転数は400rpmとした。これにより得られた試料を合金Bとする。   Further, alloy A and graphite powder were mixed at a weight ratio of 9: 1 and sealed together with a chromium steel ball (7 mmφ × 22) in a chromium steel planetary ball mill device container (capacity 45 ml). The weight ratio of the balls to the mixed powder was 30: 1. Using a planetary ball mill apparatus, mechanical milling was performed for 30 minutes at room temperature in an Ar gas atmosphere. The rotation speed of the planetary ball mill device was 400 rpm. The sample thus obtained is named Alloy B.

また、合金Bに水素解離触媒物質としてPd粉末を合金B内の全原子数に対して、2原子数%となるように添加し、クロム鋼製ボール(7mmφ×22個)とともにクロム鋼製遊星型ボールミル装置用容器(容量45ml)の中に封入した。ボールと混合粉末の重量比は30:1とした。遊星型ボールミル装置を用いて、Arガス雰囲気下、室温で、機械的ミリング処理を400rpmの回転数で1時間行い合金Bの表面に触媒物質を担持した。得られた試料を合金Cとする。合金Cの表面を電子プローブX線マイクロアナライザー(EPMA)により分析した結果、Pdの微細な粒子が表面に均一に分散していることがわかった。   Further, Pd powder as a hydrogen dissociation catalyst material is added to alloy B so that the number of atoms in the alloy B is 2 atomic%, and a chromium steel planet with chrome steel balls (7 mmφ × 22). It was enclosed in a container for a mold ball mill (capacity 45 ml). The weight ratio of the balls to the mixed powder was 30: 1. Using a planetary ball mill apparatus, a mechanical milling treatment was carried out at a rotation speed of 400 rpm for 1 hour in an Ar gas atmosphere at room temperature, and the catalyst material was supported on the surface of the alloy B. The obtained sample is referred to as Alloy C. As a result of analyzing the surface of the alloy C with an electron probe X-ray microanalyzer (EPMA), it was found that fine particles of Pd were uniformly dispersed on the surface.

また、合金Aを1g秤量し、合金A内の全原子数の5原子数%に当るNiを真空蒸着した。蒸着は5回に分けて行い、できるだけ均一に蒸着するために各蒸着の間に合金粉末を撹拌した。得られた試料の表面をEPMAにより分析した結果、合金表面がNiで均一に被覆されていることがわかった。得られた試料を合金Dとする。   Further, 1 g of the alloy A was weighed, and Ni corresponding to 5 atomic% of the total number of atoms in the alloy A was vacuum deposited. Vapor deposition was performed in five steps, and the alloy powder was stirred between the vapor depositions in order to deposit as uniformly as possible. As a result of analyzing the surface of the obtained sample by EPMA, it was found that the alloy surface was uniformly coated with Ni. The obtained sample is referred to as Alloy D.

次にニッケル水素二次電池用電極を作製し、充放電試験を行った。まず、電極の作製について説明する。上記合金粉末とCu粉末を重量比1:3の割合で乳鉢により混合し、1gを秤量し、プレス機により10t/cmの荷重をかけて直径13mmのペレットとした。このペレットをNi網で挟みスポット溶接を施し、電極とした。合金A〜Dを用いて作製したニッケル水素二次電池用電極をそれぞれ電極A〜Dとする。 Next, an electrode for a nickel metal hydride secondary battery was prepared and a charge / discharge test was performed. First, production of an electrode will be described. The alloy powder and Cu powder were mixed with a mortar at a weight ratio of 1: 3, 1 g was weighed, and a load of 10 t / cm 2 was applied by a press to obtain a pellet having a diameter of 13 mm. The pellet was sandwiched between Ni nets and subjected to spot welding to obtain an electrode. The electrodes for nickel metal hydride secondary batteries produced using alloys A to D are referred to as electrodes A to D, respectively.

これらの電極を負極とし、対極に過剰の電気容量を有するNi板を、また、参照極としてHg/HgO電極を配し、電解液として6M水酸化カリウム水溶液を用い、ニッケル水素二次電池用電極で容量規制をかけた開放系三極式セルで25℃において充放電試験を行った。水素吸蔵合金重量当りで電流密度100mA/gで13時間充電を行い、電流密度50mA/gで終止電圧−0.6Vvs.Hg/HgOまで放電した。各ステップ間の休止時間は30分とした。以上の充放電サイクルを所定回数繰り返した。   These electrodes are used as a negative electrode, a Ni plate having an excessive electric capacity at the counter electrode, a Hg / HgO electrode as a reference electrode, a 6M potassium hydroxide aqueous solution as an electrolyte, and an electrode for a nickel hydrogen secondary battery The charge / discharge test was conducted at 25 ° C. in an open triode cell with a capacity restriction. Charging was performed at a current density of 100 mA / g for 13 hours per weight of the hydrogen storage alloy, and at a current density of 50 mA / g, the final voltage was -0.6 Vvs. Discharge to Hg / HgO. The pause time between each step was 30 minutes. The above charge / discharge cycle was repeated a predetermined number of times.

各電極の初期放電曲線及び充放電サイクルに伴う放電容量の変化を図3及び4に示す。図中、6は電極Aの初期放電曲線、7は電極Bの初期放電曲線、8は電極Cの初期放電曲線、9は電極Dの初期放電曲線を示す。また、10は電極Aの放電容量変化、11は電極Bの放電容量変化、12は電極Cの放電容量変化、13は電極Dの放電容量変化を示す。   FIGS. 3 and 4 show the initial discharge curve of each electrode and the change in discharge capacity accompanying the charge / discharge cycle. In the figure, 6 is an initial discharge curve of the electrode A, 7 is an initial discharge curve of the electrode B, 8 is an initial discharge curve of the electrode C, and 9 is an initial discharge curve of the electrode D. Further, 10 indicates a change in the discharge capacity of the electrode A, 11 indicates a change in the discharge capacity of the electrode B, 12 indicates a change in the discharge capacity of the electrode C, and 13 indicates a change in the discharge capacity of the electrode D.

いずれの電極の場合にも一つの平坦部分を持つ放電曲線となり、サイクル数の増大に伴う放電容量の低下は小さかった。電極Aの初期容量は950mAh/gであり、電極B〜Dでは、水素拡散経路の増大あるいは水素解離触媒物質の触媒効果により放電容量は1010〜1050mAh/gまで増大した。電極Cにおいてサイクル数の増大に伴う放電容量の低下が最も小さく、充放電サイクルを20サイクル行った後においても初期容量を保持していた。   In any of the electrodes, the discharge curve had one flat portion, and the decrease in discharge capacity with an increase in the number of cycles was small. The initial capacity of the electrode A was 950 mAh / g, and in the electrodes B to D, the discharge capacity increased to 1010 to 1050 mAh / g due to the increase of the hydrogen diffusion path or the catalytic effect of the hydrogen dissociation catalyst material. In the electrode C, the decrease in discharge capacity accompanying the increase in the number of cycles was the smallest, and the initial capacity was maintained even after 20 charge / discharge cycles.

また、上記ニッケル水素二次電池用電極において、グラファイト以外で、グラファイト、アモルファスカーボン、活性炭、活性炭素繊維及びカーボンナノチューブから選ばれた少なくとも一種以上と機械的ミリング処理を行った場合や、Pd以外で、水素解離触媒物質としてTi、Cr、Mn、Fe、Co、Ni、Cu、Rh、Pd、Ru及びPtから選ばれた少なくとも一種以上の物質を用いた場合や、Ni以外で、蒸着物質としてTi、Cr、Mn、Fe、Co、Ni、Cu、Rh、Pd、Ru及びPtから選ばれた少なくとも一種以上の物質を用いた場合にも同様の結果が得られた。   Further, in the above nickel-hydrogen secondary battery electrode, when mechanical milling treatment is performed with at least one selected from graphite, amorphous carbon, activated carbon, activated carbon fiber and carbon nanotube other than graphite, or other than Pd In the case of using at least one material selected from Ti, Cr, Mn, Fe, Co, Ni, Cu, Rh, Pd, Ru and Pt as a hydrogen dissociation catalyst material, or Ti as a deposition material other than Ni Similar results were obtained when at least one substance selected from Cr, Mn, Fe, Co, Ni, Cu, Rh, Pd, Ru and Pt was used.

以上のように、Mg、Ca及びVから構成された体心立方格子の結晶構造を有
する合金が主成分である水素吸蔵合金を用いることを特徴とするニッケル水素二次電池用電極は高容量でかつ充放電サイクルにともなう放電容量の低下が小さいことが明らかとなった。
As described above, the electrode for a nickel hydride secondary battery using a hydrogen storage alloy mainly composed of an alloy having a body-centered cubic lattice structure composed of Mg, Ca and V has a high capacity. And it became clear that the reduction of the discharge capacity accompanying a charge / discharge cycle was small.

Mg粉末(平均粒径800μm)Ca粉末(平均粒径2mm)及びV粉末(平均粒径50μm)を種々のモル比で、クロム鋼製ボール(7mmφ×22個)とともにクロム鋼製遊星型ボールミル装置用容器(容量45ml)の中に入れ、遊星型ボールミル装置を用いて、Arガス雰囲気下、室温で、40時間MAを行った。ボールと試料の重量比は30:1とし、遊星型ボールミル装置の回転数は600rpmとした。   Mg powder (average particle size 800 μm) Ca powder (average particle size 2 mm) and V powder (average particle size 50 μm) in various molar ratios, together with chromium steel balls (7 mmφ × 22), planetary ball mill device made of chromium steel The sample was placed in a container (capacity 45 ml), and MA was performed for 40 hours at room temperature under an Ar gas atmosphere using a planetary ball mill apparatus. The weight ratio of the ball to the sample was 30: 1, and the rotational speed of the planetary ball mill device was 600 rpm.

得られた合金粉末の構造をXRDにより分析すると伴に、得られた合金粉末を用いて実施例1と同様の手順でニッケル水素二次電池用電極を作製し、同様の条件で充放電試験を行った。その結果を表1に示す。Mg0.8Ca0.2、Mg0.65Ca0.35、Mg0.65Ca0.35及びMg0.65Ca0.35では体心立方格子構造を有する合金の形成が見られ、初期放電容量は833〜1100mAh/gであった。 When the structure of the obtained alloy powder was analyzed by XRD, a nickel-hydrogen secondary battery electrode was prepared using the obtained alloy powder in the same procedure as in Example 1, and the charge / discharge test was performed under the same conditions. went. The results are shown in Table 1. Mg 0.8 Ca 0.2 V 1 , Mg 0.65 Ca 0.35 V 1 , Mg 0.65 Ca 0.35 V 2 and Mg 0.65 Ca 0.35 V 5 have a body-centered cubic lattice structure. The formation of an alloy was observed, and the initial discharge capacity was 833 to 1100 mAh / g.

一方で、Mg0.6Ca0.4ではCaが未反応のまま残存し、体心立方格子構造以外の副生成物の形成がXRDにより観測され、初期放電容量は小さかった。また、Mg0.65Ca0.350.5ではVが不足するため、CaMgが副生成物として出現し、初期放電容量の著しい低下が見られた。一方、Mg0.65Ca0.35では体心立方格子構造を有する合金を形成するが、Mg及びCaの置換量が少ないため、実質的な放電容量の増大には至らなかった。 On the other hand, in Mg 0.6 Ca 0.4 V 1 , Ca remained unreacted, formation of by-products other than the body-centered cubic lattice structure was observed by XRD, and the initial discharge capacity was small. Moreover, since Mg 0.65 Ca 0.35 V 0.5 lacks V, CaMg 2 appeared as a by-product, and a significant decrease in the initial discharge capacity was observed. On the other hand, Mg 0.65 Ca 0.35 V 6 forms an alloy having a body-centered cubic lattice structure. However, since the substitution amount of Mg and Ca is small, the discharge capacity is not substantially increased.

Figure 2005340003
Figure 2005340003

以上のように、Mg、Ca及びVから構成された体心立方格子の結晶構造を有し、一般式Mg1−xCa(0<x≦0.35、1≦y≦5)で示される水素吸蔵合金を用いることを特徴とするニッケル水素二次電池用電極は高い放電容量を示すことが明らかとなった。 As described above, it has a crystal structure of a body-centered cubic lattice composed of Mg, Ca, and V, and has the general formula Mg 1-x Ca x V y (0 <x ≦ 0.35, 1 ≦ y ≦ 5) It has been clarified that the electrode for nickel-metal hydride secondary battery characterized by using the hydrogen storage alloy shown in FIG.

本発明によるニッケル水素二次電池用電極の水素吸蔵合金は、構成元素として、軽量で、かつ大量の水素を吸蔵可能なMg及びCaを含み、室温で水素吸蔵可能なVと同様な体心立方格子の結晶構造を有し、更には金属原子が歪んだ体心立方格子構造を有する不安定な水素化物を形成するので、大量の水素を電気化学的に吸蔵放出し、また、Mg、V及びCaの合金化により電解液に対する耐腐食性が向上するため、従来からの問題であった、充放電サイクルにともなう放電容量低下が少ない高容量ニッケル水素二次電池用電極を実現できる。   The hydrogen storage alloy for nickel-metal hydride secondary battery electrodes according to the present invention contains Mg and Ca that are lightweight and can store a large amount of hydrogen as constituent elements, and is a body-centered cube similar to V that can store hydrogen at room temperature. It forms an unstable hydride having a lattice crystal structure and a body-centered cubic lattice structure in which metal atoms are distorted, so that a large amount of hydrogen is electrochemically occluded and released, and Mg, V and Since the corrosion resistance to the electrolytic solution is improved by the alloying of Ca, an electrode for a high-capacity nickel metal hydride secondary battery, which has been a conventional problem and has a small decrease in the discharge capacity accompanying the charge / discharge cycle, can be realized.

実施例1のMg−Ca−V合金作製時におけるXRDパターンの経時変化を示す図。The figure which shows the time-dependent change of the XRD pattern at the time of Mg-Ca-V alloy production of Example 1. FIG. 実施例1のMg−Ca−V合金作製時における合金結晶格子の格子定数の経時変化を示す図。The figure which shows a time-dependent change of the lattice constant of the alloy crystal lattice at the time of Mg-Ca-V alloy preparation of Example 1. FIG. 実施例1における各ニッケル水素二次電池用電極の初期放電曲線を示す図。The figure which shows the initial stage discharge curve of each electrode for nickel-hydrogen secondary batteries in Example 1. FIG. 実施例1における各ニッケル水素二次電池用電極の放電容量変化を示す図。The figure which shows the discharge capacity change of each electrode for nickel-hydrogen secondary batteries in Example 1. FIG.

符号の説明Explanation of symbols


1 MA前の試料におけるXRDパターン
2 MAを1時間行った試料におけるXRDパターン
3 MAを2時間行った試料におけるXRDパターン
4 MAを5時間行った試料におけるXRDパターン
5 MAを10時間行った試料におけるXRDパターン
6 電極Aの初期放電曲線
7 電極Bの初期放電曲線
8 電極Cの初期放電曲線
9 電極Dの初期放電曲線
10 電極Aの放電容量変化
11 電極Bの放電容量変化
12 電極Cの放電容量変化
13 電極Dの放電容量変化

1 XRD pattern in sample before MA
2 XRD pattern in a sample that was subjected to MA for 1 hour
3 XRD pattern of sample after 2 hours of MA
4 XRD pattern in sample subjected to MA for 5 hours
5 XRD pattern of sample subjected to MA for 10 hours
6 Initial discharge curve of electrode A
7 Initial discharge curve of electrode B
8 Initial discharge curve of electrode C
9 Initial discharge curve of electrode D
10 Change in discharge capacity of electrode A
11 Discharge capacity change of electrode B
12 Change in discharge capacity of electrode C
13 Discharge capacity change of electrode D

Claims (9)

Mg、Ca及びVから構成された体心立方格子の結晶構造を有する合金が主成分である水素吸蔵合金を用いることを特徴とするニッケル水素二次電池用電極。 An electrode for a nickel hydride secondary battery using a hydrogen storage alloy composed mainly of an alloy having a body-centered cubic lattice crystal structure composed of Mg, Ca and V. 前記体心立方格子の結晶構造を有する合金が一般式Mg1−xCa(0<x≦0.35、1≦y≦5)で示されることを特徴とする請求項1記載のニッケル水素二次電池用電極。 According to claim 1, wherein the alloy having a crystal structure of the body-centered cubic lattice is represented by the general formula Mg 1-x Ca x V y (0 <x ≦ 0.35,1 ≦ y ≦ 5) Electrode for nickel metal hydride secondary battery. 前記水素吸蔵合金は炭素材料と伴にミリング処理したものであることを特徴とする請求項1または2記載のニッケル水素二次電池用電極。 3. The electrode for a nickel-metal hydride secondary battery according to claim 1, wherein the hydrogen storage alloy is milled together with a carbon material. 前記炭素材料は重量比で合金:炭素材料=9:1以下で添加されることを特徴とする請求項3記載のニッケル水素二次電池用電極。 The electrode for a nickel metal hydride secondary battery according to claim 3, wherein the carbon material is added at a weight ratio of alloy: carbon material = 9: 1 or less. 前記炭素材料がグラファイト、アモルファスカーボン、活性炭、活性炭素繊維及びカーボンナノチューブから選ばれた少なくとも一種以上であることを特徴とする請求項3または4記載のニッケル水素二次電池用電極。 The nickel-hydrogen secondary battery electrode according to claim 3 or 4, wherein the carbon material is at least one selected from graphite, amorphous carbon, activated carbon, activated carbon fiber, and carbon nanotube. 前記体心立方格子の結晶構造を有する水素吸蔵合金の少なくとも表面に水素解離触媒物質を存在させたことを特徴とする請求項1から5のいずれか1項記載のニッケル水素二次電池用電極。 6. The electrode for a nickel hydride secondary battery according to claim 1, wherein a hydrogen dissociation catalyst substance is present on at least the surface of the hydrogen storage alloy having a crystal structure of the body-centered cubic lattice. 前記水素解離触蝶物質の存在割合は水素解離触媒物質を構成する全原子数が水素吸蔵合金を構成する全原子数の1%以上10%以下であることを特徴とする請求項6記載のニッケル水素二次電池用電極。 7. The nickel according to claim 6, wherein the hydrogen dissociating butterfly substance is present in such a manner that the total number of atoms constituting the hydrogen dissociation catalyst substance is 1% or more and 10% or less of the total number of atoms constituting the hydrogen storage alloy. Electrode for hydrogen secondary battery. 前記水素解離触媒物質がTi、Cr、Mn、Fe、Co、Ni、Cu、Rh、Pd、Ru及びPtから選ばれた少なくとも一種以上であることを特徴とする請求項6又は7記載のニッケル水素二次電池用電極。 The nickel hydride according to claim 6 or 7, wherein the hydrogen dissociation catalyst material is at least one selected from Ti, Cr, Mn, Fe, Co, Ni, Cu, Rh, Pd, Ru and Pt. Secondary battery electrode. 前記水素解離触媒物質は真空蒸着により前記水素吸蔵合金表面に設けられる請求項6から8のいずれか1項記載のニッケル水素二次電池用電極。 The electrode for a nickel hydride secondary battery according to any one of claims 6 to 8, wherein the hydrogen dissociation catalyst material is provided on a surface of the hydrogen storage alloy by vacuum deposition.
JP2004157505A 2004-05-27 2004-05-27 Electrode for nickel-hydrogen secondary battery Pending JP2005340003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157505A JP2005340003A (en) 2004-05-27 2004-05-27 Electrode for nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157505A JP2005340003A (en) 2004-05-27 2004-05-27 Electrode for nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JP2005340003A true JP2005340003A (en) 2005-12-08

Family

ID=35493324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157505A Pending JP2005340003A (en) 2004-05-27 2004-05-27 Electrode for nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2005340003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742331A (en) * 2018-12-18 2019-05-10 深圳市量能科技有限公司 A kind of negative electrode tab of secondary Ni-MH battery and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222210A (en) * 1995-02-16 1996-08-30 Matsushita Electric Ind Co Ltd Metal oxide/hydrogen storage battery
JPH09259870A (en) * 1996-03-21 1997-10-03 Matsushita Electric Ind Co Ltd Hydrogen absorbing alloy electrode, and manufacture thereof
JP2002241884A (en) * 2001-02-20 2002-08-28 Mitsui Mining & Smelting Co Ltd Hydrogen storage alloy
JP2002334695A (en) * 2001-03-09 2002-11-22 Canon Inc Secondary battery and manufacturing method of secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222210A (en) * 1995-02-16 1996-08-30 Matsushita Electric Ind Co Ltd Metal oxide/hydrogen storage battery
JPH09259870A (en) * 1996-03-21 1997-10-03 Matsushita Electric Ind Co Ltd Hydrogen absorbing alloy electrode, and manufacture thereof
JP2002241884A (en) * 2001-02-20 2002-08-28 Mitsui Mining & Smelting Co Ltd Hydrogen storage alloy
JP2002334695A (en) * 2001-03-09 2002-11-22 Canon Inc Secondary battery and manufacturing method of secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742331A (en) * 2018-12-18 2019-05-10 深圳市量能科技有限公司 A kind of negative electrode tab of secondary Ni-MH battery and preparation method thereof
CN109742331B (en) * 2018-12-18 2021-03-30 深圳市量能科技有限公司 Negative plate of secondary nickel-metal hydride battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Liu et al. Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries
Kleperis et al. Electrochemical behavior of metal hydrides
Ruggeri et al. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni-MH batteries
Wang et al. The interaction of subunits inside superlattice structure and its impact on the cycling stability of AB4-type La–Mg–Ni-based hydrogen storage alloys for nickel-metal hydride batteries
TWI443200B (en) Hydrogen storage alloys having reduced pct hysteresis
US20050051244A1 (en) Modified electrochemical hydrogen storage alloy
WO2007011572A1 (en) Hydrogen storage alloys having improved cycle life and low temperature operating characteristics
Wang et al. A promising anode candidate for rechargeable nickel metal hydride power battery: An A5B19-type La–Sm–Nd–Mg–Ni–Al-based hydrogen storage alloy
Kazakov et al. Hydrogen storage and electrochemical properties of annealed low-Co AB5 type intermetallic compounds
Lota et al. Electrochemical properties of modified negative electrode for Ni-MH cell
Kalisvaart et al. Mg–Ti based materials for electrochemical hydrogen storage
Cao et al. Effect and mechanism of Mg on crystal structures and electrochemical cyclic stability of Ce2Ni7-type LaMgNi-based hydrogen storage alloys
Zang et al. Effect of half substitution of R (R= Nd, Gd and Er) for Ca on crystal structure and hydrogen storage properties of CaMgNi4
Brutti et al. Magnesium hydride as negative electrode active material in lithium cells: A review
Zhao et al. Effect of AB2-based alloy addition on structure and electrochemical properties of La0. 5Pr0. 2Zr0. 1Mg0. 2Ni2. 75Co0. 45Fe0. 1Al0. 2 hydrogen storage alloy
Zhang et al. Systematic investigation of mechanically alloyed Ti-Mg-Ni used as negative electrode in Ni-MH battery
RU2671942C1 (en) Anode material and accumulator
Han et al. Synthesis of composite metal hydride alloy of A2B and AB type by mechanical alloying
JP2005340003A (en) Electrode for nickel-hydrogen secondary battery
Karaoud et al. Electrochemical properties of the CaNi4. 8M0. 2 (M Mg, Zn, and Mn) mechanical milling alloys used as anode materials in nickel‐metal hydride batteries
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery
US20170346086A1 (en) Activation of laves phase-related bcc metal hydride alloys for electrochemical applications
JPH10147827A (en) Hydrogen storage alloy and its production
CN110088314B (en) Active material for negative electrode of nickel/metal hydride alkaline battery
Huanhuan et al. Crystal structure and electrochemical performance of La0. 75Ce0. 25Ni3. 46-Al0. 17Mn0. 04Co1. 33 alloy for high-power-type 29 Ah Ni-MH battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615