JPH09257946A - Radiation detection element and radiation detector - Google Patents

Radiation detection element and radiation detector

Info

Publication number
JPH09257946A
JPH09257946A JP8071972A JP7197296A JPH09257946A JP H09257946 A JPH09257946 A JP H09257946A JP 8071972 A JP8071972 A JP 8071972A JP 7197296 A JP7197296 A JP 7197296A JP H09257946 A JPH09257946 A JP H09257946A
Authority
JP
Japan
Prior art keywords
series
radiation
junction
substrate
superconducting tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP8071972A
Other languages
Japanese (ja)
Inventor
Masahiko Kurakado
雅彦 倉門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8071972A priority Critical patent/JPH09257946A/en
Publication of JPH09257946A publication Critical patent/JPH09257946A/en
Ceased legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the energy resolution of radiation detector by use of series superconduction tunnel junction and also give a measurement function of radiation at the two-dimensional incident position in a surface of substrate. SOLUTION: A central junction 5 formed by connecting in series one or more superconduction tunnel junctions on a substrate 1 is disposed, and therearound a nonsensitive region 2 is arranged at which no superconduction tunnel junction is formed and which has an area ten times as large as the area of the central junction 5. Around the region 2 one or a plurality of independently operating series junction 3 are positioned so as to surround the region 2. In the case of arranging around the region 2 three or more series junctions independently operating, the incident position of radiation in two dimensions in the surface of substrate can be measured according to the time difference between signals generating from the junctions or the magnitudes of the signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は放射線検出素子に関
するものである。詳しく述べると、本発明はX線、γ
線、荷電粒子などの放射線や、赤外線などの光の検出素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detecting element. More specifically, the present invention relates to X-ray, γ
The present invention relates to a detection element for detecting radiation such as rays and charged particles and light such as infrared rays.

【0002】[0002]

【従来の技術】多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子(図1)(特願平2−73430)では、多数
の超伝導トンネル接合を基板の上のある部分に一様に配
置した場合には信号の大きさが放射線の入射位置に大き
く依存してしまうために、エネルギー分解能が大きく損
なわれてしまうという欠点があった。
2. Description of the Related Art A large number of superconducting tunnel junctions are connected in series on a substrate so that phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junction, whereby a series of superconducting tunnel junctions are obtained. In a radiation detection element using a series superconducting tunnel junction (Fig. 1) (Japanese Patent Application No. 2-73430), in which a signal charge is extracted from the junction and the magnitude of the radiation energy is measured from the magnitude of the charge, If the conduction tunnel junction is evenly arranged on a certain part of the substrate, the signal strength greatly depends on the incident position of the radiation, and the energy resolution is greatly impaired. .

【0003】これは一つには、放射線の入射位置によっ
て信号に寄与するフォノンの割合が異なってしまう、例
えばその部分の端のほうに入射した放射線によるフォノ
ンは接合に吸収されずにその部分から散逸してしまう割
合が高くなるためである。もう一つの理由としては、放
射線の入射位置によってフォノンが主に吸収される接合
が異なってくるが、接合の感度の一様性が充分ではない
ことが考えられる。
One of the reasons for this is that the proportion of phonons contributing to the signal varies depending on the incident position of the radiation. For example, the phonon due to the radiation incident on the end of that portion is not absorbed by the junction and is emitted from that portion. This is because the rate of dissipation is high. Another reason is that the phonons are mainly absorbed in different junctions depending on the incident position of the radiation, but the uniformity of the junction sensitivity is not sufficient.

【0004】基板上に超伝導トンネル接合のない不感領
域を設け、不感領域のさらに周りには不感領域を取り囲
むように1個の直列超伝導トンネル接合を設けた放射線
検出素子(図2)(特願平4−150981)では、不
感領域の中心の近くで発生したフォノンは不感領域内を
拡散し、殆ど全ての接合で同時に吸収されると考えられ
る。そのため、信号の大きさの放射線入射位置依存性は
不感領域のない素子に比べて大幅に低減される。しかし
ながら、エネルギー高分解能を実現する上ではまだ充分
ではなかった。
A radiation detecting element in which a dead region without a superconducting tunnel junction is provided on a substrate, and one series superconducting tunnel junction is provided further around the dead region so as to surround the dead region (FIG. 2) (special feature). In Japanese Patent Application No. 4-150981), it is considered that the phonons generated near the center of the dead region diffuse in the dead region and are absorbed by almost all the junctions at the same time. Therefore, the dependency of the signal intensity on the radiation incident position is significantly reduced as compared with the element having no dead region. However, it was not enough to realize high energy resolution.

【0005】また、図3に示すように、直列超伝導トン
ネル接合を2つ設けた場合には、横方向の1次元の位置
検出能が得られることは知られていたが、縦方向の位置
分解能がなく、縦方向の入射位置によって信号の大きさ
や波形が異なってくるために、横方向の位置分解能も限
られていたし、その位置分解能を利用してエネルギー分
解能を向上させることも困難であった。
Further, as shown in FIG. 3, it has been known that when two series superconducting tunnel junctions are provided, one-dimensional position detecting ability in the lateral direction can be obtained. Since there is no resolution and the signal size and waveform differ depending on the incident position in the vertical direction, the horizontal position resolution was also limited, and it is difficult to improve the energy resolution by using that position resolution. It was

【0006】なお、ここでいう直列超伝導トンネル接合
とは、特願平2−73430にあるように、1列の直列
に接続された接合だけでなく、複数の直列を並列に接続
したものも含んでいる。
The series superconducting tunnel junction mentioned here is not limited to a junction in which one series is connected in series as in Japanese Patent Application No. 2-73430, but a series connection in which a plurality of series are connected in parallel. Contains.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、直列超伝導トンネル接合を用いた放射線検
出器のエネルギー分解能を向上させ、同時に、放射線の
基板面内2次元の入射位置の測定能も付与することであ
る。
The problem to be solved by the present invention is to improve the energy resolution of a radiation detector using a series superconducting tunnel junction, and at the same time, to improve the two-dimensional incidence position of radiation in the plane of the substrate. It is also to give a measuring ability.

【0008】[0008]

【課題を解決するための手段】上記の課題は以下の手段
によって解決できる。多数の超伝導トンネル接合を基板
の上に直列に接続し、放射線の基板への入射によって基
板中で発生したフォノンを超伝導トンネル接合で吸収さ
せ、それによって直列の超伝導トンネル接合から信号電
荷を取り出し、その電荷の大きさから放射線のエネルギ
ーの大きさを測定する直列超伝導トンネル接合を用いた
放射線検出素子において、図4に示すように、基板上に
超伝導トンネル接合のない不感領域を設け、不感領域の
さらに周りには不感領域を取り囲むように独立に作動す
る3つ以上の直列超伝導トンネル接合を設けたことを特
徴とする放射線検出素子。
The above-mentioned problems can be solved by the following means. A large number of superconducting tunnel junctions are connected in series on the substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junctions, so that the signal charges from the series superconducting tunnel junctions are absorbed. In a radiation detecting element using a series superconducting tunnel junction in which the magnitude of the radiation energy is extracted from the magnitude of the electric charge, a dead region having no superconducting tunnel junction is provided on the substrate as shown in FIG. A radiation detecting element, further comprising three or more series superconducting tunnel junctions that operate independently so as to surround the dead region, further around the dead region.

【0009】上記の素子とそれぞれの直列超伝導トンネ
ル接合からの信号を独立に増幅する手段と、それらの信
号の時間差を測定する手段あるいは信号の大きさの比を
測定する手段とを備えていることを特徴とする放射線検
出器。多数の超伝導トンネル接合を基板の上に直列に接
続し、放射線の基板への入射によって基板中で発生した
フォノンを超伝導トンネル接合で吸収させ、それによっ
て直列の超伝導トンネル接合から信号電荷を取り出し、
その電荷の大きさから放射線のエネルギーの大きさを測
定する直列超伝導トンネル接合を用いた放射線検出素子
において、図4に示すように、基板上に超伝導トンネル
接合のない不感領域を設け、不感領域の周りには不感領
域を取り囲むように3個以上の独立に作動する直列超伝
導トンネル接合を設けたことを特徴とする放射線検出素
子。及び図5、図6あるいは図7に示すように、基板上
に1個あるいは複数個の超伝導トンネル接合を直列に接
続して構成した中心接合を設け、その周りには超伝導ト
ンネル接合のない不感領域を設け、不感領域のさらに周
りには不感領域を取り囲むように1個の直列超伝導トン
ネル接合あるいは独立に作動する複数の直列超伝導トン
ネル接合を設けたことを特徴とする放射線検出素子。
It is provided with means for independently amplifying the signals from the above-mentioned elements and respective series superconducting tunnel junctions, and means for measuring the time difference between these signals or means for measuring the ratio of the signal magnitudes. A radiation detector characterized by the above. A large number of superconducting tunnel junctions are connected in series on the substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junctions, so that the signal charges from the series superconducting tunnel junctions are absorbed. take out,
In a radiation detecting element using a series superconducting tunnel junction that measures the magnitude of the radiation energy from the magnitude of the charge, a dead region without a superconducting tunnel junction is provided on the substrate as shown in FIG. A radiation detecting element, wherein three or more independently operating series superconducting tunnel junctions are provided around the dead region so as to surround the dead region. And, as shown in FIG. 5, FIG. 6 or FIG. 7, a central junction constituted by connecting one or more superconducting tunnel junctions in series is provided on the substrate, and there is no superconducting tunnel junction around it. A radiation detecting element, wherein a dead region is provided, and one series superconducting tunnel junction or a plurality of independently operating series superconducting tunnel junctions are provided further around the dead region so as to surround the dead region.

【0010】上記の不感領域の周りに複数の直列超伝導
トンネル接合を設けた素子と、中心接合およびそれぞれ
の直列超伝導トンネル接合からの信号を独立に増幅する
手段と、それらの信号の時間差を測定する手段あるいは
それぞれの信号の大きさを測定する手段とを備えている
ことを特徴とする放射線検出器。
An element in which a plurality of series superconducting tunnel junctions are provided around the dead zone, a means for independently amplifying signals from the central junction and each series superconducting tunnel junction, and a time difference between the signals are shown. A radiation detector comprising: a means for measuring or a means for measuring the magnitude of each signal.

【0011】[0011]

【作用】不感領域の周りに不感領域を取り囲むように独
立に作動する3個以上の直列超伝導トンネル接合(直列
接合)を設け、それぞれの直列接合からの信号の時間差
あるいは信号の大きさを計ることにより、それぞれの不
感領域に入射した放射線の入射位置を2次元で測定でき
る。不感領域の周りの直列接合全体あるいは一部の直列
接合からの信号と中心接合からの信号との時間差あるい
はそれらの信号の大きさの比を計った場合には、入射位
置の素子中心からのずれを測定できる。
[Function] A series of three or more series superconducting tunnel junctions (series junctions), which operate independently so as to surround the dead zone, are provided around the dead zone, and the time difference of signals from each series junction or the magnitude of the signal is measured. Thereby, the incident position of the radiation incident on each dead region can be measured two-dimensionally. Deviation of the incident position from the center of the element when measuring the time difference between the signal from the whole or a part of the series junction around the dead zone and the signal from the center junction or the ratio of the magnitudes of these signals Can be measured.

【0012】また、入射位置が測定できるので、信号の
大きさの入射位置依存性を入射位置に応じて補正するこ
とができ、エネルギー分解能が向上する。より詳しく述
べると、例えば図4の素子で、上の直列接合からの信号
と下の直列接合からの信号の発生時間を比べれば、放射
線が素子中心に入射した場合には放射線によって発生し
たフォノンは両方の直列接合にほぼ同時に到達するため
に信号の発生時間はほとんど同時となり、中心より上に
入射した場合には上の直列接合からの信号の方が早く発
生する。このことを利用して図4の素子での放射線のY
軸入射位置を測定できるし、同様の時間差測定を左右の
直列接合でも同時に行えばX軸方向の入射位置も測定で
き、2次元での入射位置測定ができる。時間差の代わり
にそれぞれの直列接合からの信号の大きさの差を測定し
ても2次元での入射位置測定ができる。この2次元位置
分解能を利用してエネルギー分解能を向上させることが
できる。エネルギーが一定の放射線を用いて、位置
(X,Y)に入射した放射線による全接合からの信号の
大きさの和は中心に入射した場合のそれのA(X,Y)
倍であるという信号の大きさの和の放射線入射位置依存
性を前もって測っておき、実際の測定では入射位置
(X,Y)に応じて信号の大きさの和をA(X,Y)で
割ることによって、信号の大きさが入射位置に依存して
しまうにもかかわらずエネルギーを高精度で測定するこ
とができる。
Further, since the incident position can be measured, the incident position dependency of the signal magnitude can be corrected according to the incident position, and the energy resolution is improved. More specifically, for example, in the element of FIG. 4, comparing the generation time of the signal from the upper series junction and the signal from the lower series junction, when radiation enters the center of the element, the phonons generated by the radiation are The signals are generated almost at the same time because they reach both series junctions almost at the same time, and when incident above the center, the signal from the upper series junction is generated earlier. Taking advantage of this, the radiation Y in the device of FIG.
The axial incident position can be measured, and if the same time difference measurement is simultaneously performed on the left and right series junctions, the incident position in the X-axis direction can be measured and the two-dimensional incident position can be measured. The incident position can be measured in two dimensions by measuring the difference in the magnitude of the signal from each series junction instead of the time difference. The energy resolution can be improved by utilizing this two-dimensional position resolution. Using radiation of constant energy, the sum of the signal magnitudes from all junctions due to the radiation incident on position (X, Y) is A (X, Y) when it is incident on the center.
The radiation incident position dependency of the sum of the signal magnitudes, which is twice, is measured in advance, and in actual measurement, the sum of the signal magnitudes is A (X, Y) according to the incident position (X, Y). By dividing, the energy can be measured with high accuracy even though the magnitude of the signal depends on the incident position.

【0013】例えば図5の素子で、不感領域の周りの直
列接合からの信号と中心接合からの信号の時間差および
これらの信号の大きさの比も入射位置の素子中心からの
ずれに依存する。不感領域の中心に中心接合を設け、中
心接合と不感領域の周りの直列接合からの信号の時間差
あるいは大きさの比を計ることにより、対象性の高い素
子での放射線の入射位置の素子中心からのずれを精度良
く測定することができ、その結果、信号の大きさの入射
位置依存性を入射位置に応じてより高精度に補正するこ
とができる。
For example, in the element of FIG. 5, the time difference between the signal from the series junction and the signal from the central junction around the dead zone and the ratio of the magnitudes of these signals also depend on the deviation of the incident position from the element center. By providing a center junction at the center of the dead zone and measuring the time difference or magnitude ratio of the signals from the center junction and the series junction around the dead zone, the element center of the radiation incident position in the element with high symmetry can be measured. Can be accurately measured, and as a result, the incident position dependency of the signal magnitude can be corrected with higher accuracy according to the incident position.

【0014】[0014]

【実施例】以下、本発明の実施例を示すことにより、本
発明をより詳細に説明する。いずれの実施例において
も、接合は厚さが約400μm、面積が7mm×7mm
のサファイア基板上に下部電極としてNb膜の上にAl
膜を設け、そのAl膜の表面を酸化してトンネル障壁と
し、その上にNb膜を上部電極とする構造とした。放射
線としては、 210Poからの5.3MeVのα粒子を用
い、基板裏面の素子中心部に照射した。また、基板に平
行に磁場を印加し、直流ジョセフソン電流は抑制した。
The present invention will be described in more detail below by showing examples of the present invention. In each of the examples, the joint has a thickness of about 400 μm and an area of 7 mm × 7 mm.
On the sapphire substrate as a lower electrode on the Nb film as Al
A film was provided, the surface of the Al film was oxidized to form a tunnel barrier, and the Nb film was used as an upper electrode on the tunnel barrier. As the radiation, α-particles of 5.3 MeV from 210 Po were used, and the central portion of the device on the back surface of the substrate was irradiated. Moreover, the magnetic field was applied parallel to the substrate to suppress the direct current Josephson current.

【0015】(実施例1)図4に第1の実施例を示す。
3mm×3mmの不感領域の周りに、独立に動作する1
mm×4mmの直列接合を4つ作製した。α粒子は不感
領域の中心の1mm×1mmの領域に裏から照射した。
放射線のエネルギーは4つの直列接合からの信号をそれ
ぞれ増幅し、増幅後の信号の大きさを足し合わせること
により測定した。その場合、エネルギー分解能は図2の
従来素子と同等であり、約70keVであった。
(Embodiment 1) FIG. 4 shows a first embodiment.
Operates independently around a 3mm x 3mm dead zone 1
Four mm × 4 mm series junctions were produced. The α particles were irradiated from the back to a 1 mm × 1 mm area at the center of the dead area.
The energy of the radiation was measured by amplifying the signals from the four series junctions and adding up the magnitudes of the amplified signals. In that case, the energy resolution was equivalent to that of the conventional device of FIG. 2, and was about 70 keV.

【0016】図4で見て上と下、および左と右の直列接
合からの信号の時間差を測定することによって、約0.
2mmの精度で2次元の入射位置を測定することができ
た。上と下の直列接合からの信号の時間差は、それぞれ
の直列接合からの信号を増幅した後で、一方の信号には
遅延を掛けて時間差が負とならないようにしておく。遅
延を掛けていない方の信号をスタート信号とし遅延をか
けた信号をストップ信号として時間−波高変換器(TA
C)に入力することにより、時間差を変換器からの出力
の大きさに変換する。左右の直列接合からの信号も別の
増幅器と遅延器とTACとで同じように処理する。これ
らにより面内での入射位置を測定し、同時に各増幅器か
らの信号の大きさの和も各放射線毎に測定しておく。同
様の方法によって前もって測定しておいた信号の大きさ
の入射位置依存性のデーターを使って各放射線毎の信号
の大きさを補正すると、エネルギー分解能は約55ke
Vに向上した。
By measuring the time difference between the signals from the top and bottom, and the left and right series junctions seen in FIG.
It was possible to measure the two-dimensional incident position with an accuracy of 2 mm. Regarding the time difference between the signals from the upper and lower series junctions, one signal is delayed after amplifying the signals from the respective series junctions so that the time difference does not become negative. The signal without delay is used as a start signal, and the delayed signal is used as a stop signal.
By inputting into C), the time difference is converted into the magnitude of the output from the converter. The signals from the left and right series junctions are similarly processed by another amplifier, delay device and TAC. The incident position in the plane is measured by these, and at the same time, the sum of the magnitudes of the signals from the amplifiers is also measured for each radiation. When the signal magnitude of each radiation is corrected using the incident position dependence data of the signal magnitude measured in advance by the same method, the energy resolution is about 55 ke.
Improved to V.

【0017】(実施例2)実施例1の素子と同じ大きさ
の不感領域の周りの幅1mmの領域に1つの直列接合を
設け、不感領域の中心に50μm×50μmの接合を4
個直列に接続した中心接合を設けた。中心接合のアース
端子は直列接合のそれと共通となっている。図5にその
構造を示す。照射した面積等は実施例1と同じである。
(Embodiment 2) One series junction is provided in a region having a width of 1 mm around a dead region having the same size as that of the device of Embodiment 1, and a 50 μm × 50 μm junction is formed at the center of the dead region.
A central junction was provided, which was connected in series. The ground terminal of the central junction is common with that of the series junction. FIG. 5 shows the structure. The irradiated area and the like are the same as in Example 1.

【0018】中心接合と直列接合からの信号の時間差を
測定することによって、放射線入射位置の素子中心から
のずれを約0.2mmの精度で計ることができた。この
場合、2つの増幅器からの信号を処理するだけであるか
ら、時間−波高変換器も1台ですみ、放射線毎に必要な
データーは1つの時間差と直列接合からの信号の大きさ
だけであり、測定は実施例1の場合より簡単であるとい
う利点があった。ただし、この場合には2次元の位置分
解能はない。
By measuring the time difference between the signals from the central junction and the series junction, the deviation of the radiation incident position from the element center could be measured with an accuracy of about 0.2 mm. In this case, since only the signals from the two amplifiers are processed, only one time-to-peak converter is required, and the only data required for each radiation is one time difference and the magnitude of the signal from the series junction. However, there is an advantage that the measurement is simpler than that of the first embodiment. However, in this case, there is no two-dimensional position resolution.

【0019】また、中心接合と直列接合からの信号の大
きさの比を測定した場合には、放射線入射位置の素子中
心からのずれを約0.1mmの精度で測定することがで
きた。この場合、信号の大きさと入射位置のデーターを
同時に測定して入射位置依存性の分を補正すると、エネ
ルギー分解能は約50keVであった。この場合には、
放射線毎に必要なデーターは直列接合からの信号と中心
接合からの信号だけであり、時間−波高変換器は必要な
いという利点もあった。ただし、この場合にも2次元で
の位置分解能はない。
Further, when the ratio of the signal magnitudes from the central junction and the series junction was measured, the deviation of the radiation incident position from the element center could be measured with an accuracy of about 0.1 mm. In this case, the energy resolution was about 50 keV when the signal magnitude and the incident position data were simultaneously measured to correct the incident position dependency. In this case,
The data required for each radiation is only the signal from the series junction and the signal from the central junction, and there is also an advantage that the time-to-peak converter is not required. However, even in this case, there is no two-dimensional position resolution.

【0020】(実施例3)第3の実施例の素子として、
図6に示すように、不感領域の中心に50μm×50μ
mの中心接合を設けたこと以外は実施例1の素子と同じ
素子を作製した。この素子では実施例2とほぼ同じエネ
ルギー分解能と、実施例1とほぼ同じ2次元の入射位置
分解能が得られた。
(Embodiment 3) As an element of the third embodiment,
As shown in FIG. 6, 50 μm × 50 μ at the center of the dead area
An element similar to the element of Example 1 was prepared except that the central junction of m was provided. With this element, almost the same energy resolution as in Example 2 and almost the same two-dimensional incident position resolution as in Example 1 were obtained.

【0021】(実施例4)実施例4を図7に示す。不感
領域が直径が約3mmの円形に近く、中心接合が直径1
00μmの円形接合であり、各直列接合が0.6mm×
1.25mmの2つの直列からなる素子において、実施
例2と同様の手段によって、中心接合からの信号の大き
さと4個の直列接合からの信号の大きさの和との比とで
直列接合からの信号の大きさを補正すると、この素子で
のエネルギー分解能は45eVであった。
(Embodiment 4) Embodiment 4 is shown in FIG. The dead area is close to a circle with a diameter of about 3 mm, and the central joint has a diameter of 1
It is a circular joint of 00 μm, and each series joint is 0.6 mm ×
In an element consisting of two series of 1.25 mm, by the same means as in Example 2, the ratio of the signal magnitude from the central junction to the sum of the signal magnitudes from the four series junctions is When the magnitude of the signal was corrected, the energy resolution of this device was 45 eV.

【0022】4個の直列接合からの信号の時間差を用い
て2次元分解能を測定した場合は、位置分解能は約0.
1mmであった。 (実施例5)実施例5を図8に示す。3mm×3mmの
不感領域の周りに、1mm×4mmの直列接合を4つ作
製した。ただし、これらの直列接合は互いに直列に接続
されており、4個全体で1つの直列接合として動作す
る。この直列接合のすぐ内側に、位置検出のために、互
いに独立に動作する0.06mm×2.5mmの直列接
合を4個配置した。α粒子は不感領域の中心の1mm×
1mmの領域に裏から照射した。
When the two-dimensional resolution is measured by using the time difference between the signals from the four series junctions, the position resolution is about 0.
1 mm. (Example 5) Example 5 is shown in FIG. Four 1 mm × 4 mm series junctions were produced around the 3 mm × 3 mm dead zone. However, these series junctions are connected in series with each other, and all four of them operate as one series junction. Immediately inside this series junction, four 0.06 mm × 2.5 mm series junctions that operate independently of each other were arranged for position detection. The α particle is 1mm at the center of the dead zone
A 1 mm area was illuminated from the back.

【0023】放射線のエネルギーは外側の1つの直列接
合からの信号の大きさで測定した。その場合、エネルギ
ー分解能は約75keVであった。上と下、および左と
右の位置検出用の直列接合からの信号の大きさの差を測
定することによって、約0.1mmの精度で2次元の入
射位置を測定することができた。この場合、信号の大き
さと入射位置のデータを同時に測定して入射位置依存性
の分を補正すると、エネルギー分解能は約60keVで
あった。
The energy of the radiation was measured by the magnitude of the signal from the outer one series junction. In that case, the energy resolution was about 75 keV. By measuring the difference in signal magnitudes from the top and bottom, and the left and right series junctions for position detection, it was possible to measure the two-dimensional incident position with an accuracy of about 0.1 mm. In this case, the energy resolution was about 60 keV when the signal magnitude and the incident position data were measured at the same time to correct the incident position dependency.

【0024】(実施例6)実施例6を図9に示す。図に
示すように位置検出用の直列接合が4つでなく2つであ
る他は実施例5の素子と同じ構造である。この素子の場
合には、放射線のエネルギーを外側の1つの直列接合で
測定した場合、エネルギー分解能は約80keVであっ
た。また、2つの直列接合からの信号の大きさから約
0.15mmの精度で2次元の入射位置を測定できた。
入射位置依存性を補正するとエネルギー分解能は約65
keVであった。この実施例の素子では、3つの直列接
合からの信号の大きさを同時に測定していくだけで入射
位置の補正ができるという特徴がある。
(Embodiment 6) Embodiment 6 is shown in FIG. As shown in the drawing, the structure is the same as that of the device of the fifth embodiment except that the number of serial junctions for position detection is two instead of four. For this device, the energy resolution was approximately 80 keV when the radiation energy was measured at the outer one series junction. Also, the two-dimensional incident position could be measured with an accuracy of about 0.15 mm from the magnitude of the signal from the two series junctions.
When the incident position dependency is corrected, the energy resolution is about 65.
It was keV. The element of this embodiment is characterized in that the incident position can be corrected simply by simultaneously measuring the magnitudes of the signals from the three series junctions.

【0025】[0025]

【発明の効果】本発明によれば、基板で吸収された放射
線によって発生したフォノンによって不感領域の周りの
直列接合から発生する信号と中心接合からの信号との時
間差あるいは大きさの比を測定して放射線の入射位置の
中心接合位置からのずれを計ることができ、それによっ
て不感層の周りの直列接合からの信号の大きさの入射位
置依存性を補正してエネルギー分解能を高めることがで
きる。
According to the present invention, the time difference or magnitude ratio between the signal generated from the series junction around the dead zone and the signal from the central junction due to the phonons generated by the radiation absorbed in the substrate is measured. The deviation of the incident position of the radiation from the central junction position can be measured, whereby the incident position dependency of the signal magnitude from the series junction around the insensitive layer can be corrected to improve the energy resolution.

【0026】また、不感領域の周りに独立に作動する4
つ以上の直列接合を設けた場合には、それらから発生す
る信号の時間差からも信号の大きさの差からも基板面内
2次元での放射線の入射位置も測定することができる。
なお、中心接合の面積を大きくし過ぎると中心接合で吸
収されてしまうフォノンの割合が大きくなることによ
り、不感領域の周りの直列接合からの信号の大きさが放
射線入射位置の素子中心からのずれにあまりにも大きく
依存するようになるため、特に中心接合の近傍に入射し
た放射線の、エネルギーの補正が困難となる。そのた
め、中心接合の面積は不感領域のそれの10分の1以下
であること、あるいは基板の厚さの二乗以下であること
が好ましい。
In addition, it operates independently around the dead zone 4
When two or more series junctions are provided, it is possible to measure the radiation incident position in the two-dimensional plane of the substrate from the time difference between the signals generated from them and the difference in the magnitude of the signals.
Note that if the area of the central junction is made too large, the proportion of phonons absorbed in the central junction increases, so that the magnitude of the signal from the series junction around the dead zone shifts from the element center at the radiation incident position. Therefore, it becomes difficult to correct the energy of the radiation especially in the vicinity of the central junction. Therefore, it is preferable that the area of the central junction is 1/10 or less of that of the dead area, or less than the square of the thickness of the substrate.

【0027】放射線によって発生したフォノンは0.1
mm程度はほとんど散乱されることもなく極めて急速に
広がるためにその間での時間差の計測は困難であるた
め、不感領域の面積は0.01mm2 以上、より好まし
くは0.2mm2 以上とした方がよい。また、高い位置
分解能を得るためには、不感領域の面積は基板の厚さの
二乗の4倍以上であることが好ましい。
The phonons generated by the radiation are 0.1
Since it is difficult to measure the time difference between about mm mm because it hardly spreads and spreads very rapidly, the area of the dead region should be 0.01 mm 2 or more, more preferably 0.2 mm 2 or more. Is good. Further, in order to obtain high positional resolution, it is preferable that the area of the dead region is four times or more the square of the thickness of the substrate.

【0028】用いる基板としてはフォノンが拡散中にエ
ネルギー的に減衰し難いように、サファイアのような絶
縁体の単結晶基板、あるいはSiやGaAsといった半
導体の単結晶基板、あるいはNbや金といった金属の単
結晶基板が好ましい。
As a substrate to be used, a single crystal substrate of an insulator such as sapphire, a single crystal substrate of a semiconductor such as Si or GaAs, or a metal such as Nb or gold is used so that phonons are not easily attenuated in energy during diffusion. Single crystal substrates are preferred.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来素子の構造の例である。FIG. 1 is an example of a structure of a conventional element.

【図2】従来素子の構造の例である。FIG. 2 is an example of a structure of a conventional element.

【図3】従来素子の構造の例である。FIG. 3 is an example of a structure of a conventional element.

【図4】本発明の第1の実施例の平面構造図である。FIG. 4 is a plan structure diagram of a first embodiment of the present invention.

【図5】本発明の第2の実施例の平面構造図である。FIG. 5 is a plan structural view of a second embodiment of the present invention.

【図6】本発明の第3の実施例の平面構造図である。FIG. 6 is a plan structure diagram of a third embodiment of the present invention.

【図7】本発明の第4の実施例の平面構造図である。FIG. 7 is a plan structural view of a fourth embodiment of the present invention.

【図8】本発明の第5の実施例の平面構造図である。FIG. 8 is a plan structure diagram of a fifth embodiment of the present invention.

【図9】本発明の第6の実施例の平面構造図である。FIG. 9 is a plan structure diagram of a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 不感領域 3 直列超伝導トンネル接合 4 ボンディングパッド 5 中心接合 6 位置検出用直列接合 1 substrate 2 dead region 3 series superconducting tunnel junction 4 bonding pad 5 center junction 6 position detection series junction

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子において、基板上に超伝導トンネル接合のない
不感領域を設け、不感領域のさらに周りには不感領域を
取り囲むように独立に作動する3つ以上の直列超伝導ト
ンネル接合を設けたことを特徴とする放射線検出素子。
1. A large number of superconducting tunnel junctions are connected in series on a substrate, and phonons generated in the substrate due to incidence of radiation on the substrate are absorbed in the superconducting tunnel junction, whereby a series of superconducting tunnels. In a radiation detection element using a series superconducting tunnel junction that extracts the signal charge from the junction and measures the amount of radiation energy from the magnitude of the charge, a dead area without a superconducting tunnel junction is provided on the substrate A radiation detecting element, characterized in that three or more series superconducting tunnel junctions independently operating so as to surround a dead region are provided around the region.
【請求項2】 多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子において、基板上の超伝導トンネル接合のない
不感領域を取り囲むように1つ以上の直列接合を設け、
その内側あるいは外側に放射線の入射位置を2次元的に
測定するための直列接合を2つ以上設けたことを特徴と
する放射線検出器。
2. A plurality of superconducting tunnel junctions are connected in series on a substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junction, whereby the series superconducting tunnels. In a radiation detection element using a series superconducting tunnel junction that extracts the signal charge from the junction and measures the magnitude of the energy of the radiation from the magnitude of the charge, it is necessary to surround a dead region without a superconducting tunnel junction on the substrate. Provide one or more series junctions,
A radiation detector characterized in that two or more series junctions for measuring the incident position of radiation two-dimensionally are provided inside or outside thereof.
【請求項3】 多数の超伝導トンネル接合を基板の上に
直列に接続し、放射線の基板への入射によって基板中で
発生したフォノンを超伝導トンネル接合で吸収させ、そ
れによって直列の超伝導トンネル接合から信号電荷を取
り出し、その電荷の大きさから放射線のエネルギーの大
きさを測定する直列超伝導トンネル接合を用いた放射線
検出素子において、基板上に1個あるいは複数個の超伝
導トンネル接合を直列に接続して構成した中心接合を設
け、その周りには超伝導トンネル接合のない不感領域を
設け、不感領域のさらに周りには不感領域を取り囲むよ
うに1個の直列超伝導トンネル接合あるいは独立に作動
する複数の直列超伝導トンネル接合を設けたことを特徴
とする放射線検出素子。
3. A plurality of superconducting tunnel junctions are connected in series on a substrate, and the phonons generated in the substrate due to the incidence of radiation on the substrate are absorbed by the superconducting tunnel junction, whereby the series superconducting tunnels. In a radiation detection element using a series superconducting tunnel junction that takes out a signal charge from the junction and measures the magnitude of the radiation energy from the magnitude of the charge, one or more superconducting tunnel junctions are connected in series on the substrate. The central junction is configured by connecting to, the dead zone without the superconducting tunnel junction is provided around it, and one series superconducting tunnel junction or independently so as to surround the dead zone further around the dead zone. A radiation detecting element comprising a plurality of series superconducting tunnel junctions that operate.
【請求項4】 請求項1、請求項2あるいは請求項3に
記載の不感領域の周に複数の直列超伝導トンネル接合を
設けた素子と、中心接合およびそれぞれの直列超伝導ト
ンネル接合からの信号を独立に増幅する手段と、信号の
時間差を測定する手段あるいはそれぞれの信号の大きさ
を測定する手段とを備えていることを特徴とする放射線
検出器。
4. An element provided with a plurality of series superconducting tunnel junctions around the dead region according to claim 1, claim 2, or claim 3, and signals from the central junction and each series superconducting tunnel junction. A radiation detector, characterized by comprising: a means for independently amplifying a signal and a means for measuring a time difference between signals or a means for measuring the magnitude of each signal.
JP8071972A 1996-03-27 1996-03-27 Radiation detection element and radiation detector Ceased JPH09257946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8071972A JPH09257946A (en) 1996-03-27 1996-03-27 Radiation detection element and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8071972A JPH09257946A (en) 1996-03-27 1996-03-27 Radiation detection element and radiation detector

Publications (1)

Publication Number Publication Date
JPH09257946A true JPH09257946A (en) 1997-10-03

Family

ID=13475899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8071972A Ceased JPH09257946A (en) 1996-03-27 1996-03-27 Radiation detection element and radiation detector

Country Status (1)

Country Link
JP (1) JPH09257946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109191778A (en) * 2018-09-21 2019-01-11 国家电网有限公司 laboratory security system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109191778A (en) * 2018-09-21 2019-01-11 国家电网有限公司 laboratory security system

Similar Documents

Publication Publication Date Title
TW201448183A (en) Detector, pet system and x-ray ct system
JPH03274772A (en) Radiation detecting element and radiation detector
JP2854550B2 (en) Semiconductor particle detector and manufacturing method thereof
Kenney et al. Observation of beta and X rays with 3-D-architecture silicon microstrip sensors
JP3561788B2 (en) Radiation detection element and radiation detector
JPH09257946A (en) Radiation detection element and radiation detector
Koppel Active‐recording x‐ray crystal spectrometer for laser‐induced plasmas
JPS603792B2 (en) Multichannel semiconductor radiation detector
JPS61271487A (en) Radiation using superconductive tunnel junction and light incident position detector
JP3170650B2 (en) Radiation detection element
US4060822A (en) Strip type radiation detector and method of making same
Kagan et al. Diamond detector technology: status and perspectives
RU2248012C2 (en) Low-energy gamma-ray emission and x-ray radiation registrar
JPS6372116A (en) X-ray exposure device
JPS58180972A (en) Radiation detector
JP2003535476A (en) Photodetector for position detection
Heijne Semiconductor detectors in the low countries
JPS5893292A (en) Manufacture of semiconductor radiation detector
Allier et al. Thin photodiodes for a scintillator-silicon well detector
JPH0221284A (en) Particle beam detector
EP3594723B1 (en) Double response ionizing radiation detector and measuring method using the same
JPH0732968U (en) Radiation detector
RU2730045C2 (en) Hybrid pixel detector of ionizing radiations
JPH0556470B2 (en)
JP2817362B2 (en) Semiconductor β-ray detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20050524