JPS58180972A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS58180972A
JPS58180972A JP57063563A JP6356382A JPS58180972A JP S58180972 A JPS58180972 A JP S58180972A JP 57063563 A JP57063563 A JP 57063563A JP 6356382 A JP6356382 A JP 6356382A JP S58180972 A JPS58180972 A JP S58180972A
Authority
JP
Japan
Prior art keywords
radiation
area
substrate
electrode
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57063563A
Other languages
Japanese (ja)
Inventor
Yujiro Naruse
雄二郎 成瀬
Okio Yoshida
吉田 興夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57063563A priority Critical patent/JPS58180972A/en
Publication of JPS58180972A publication Critical patent/JPS58180972A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors

Abstract

PURPOSE:To elevate the reliability with an easy manufacturing process by arranging a plurality of radiation detecting areas for detecting radiation and an electric charge transferring area for storing and reading out output signals obtained from these areas on one semiconductor substrate. CONSTITUTION:A radiation detecting areas A and a CCD area B are formed in on silicon substrate 11. The radiation detection areas A are divided into several parts with several signal electrodes 12, outputs of which are introduced to the CCD area B through a wire on the substrate 11. With such an arrangement, the radiation detecting area and the CCD area are integrated on one substrate thereby elevating the reliability with an easier manufacturing process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はX線# r 49 aα線、β線などを検出
する放射線検出器KIIする。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation detector KII that detects X-rays, #r49aα rays, β rays, and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は放射線の一次元強度分布を測定する従来技術例
の概念図である0図中、1は一次元放射線検出素子、2
はその信号電極であシ、各信号電1ijK得られ出力信
号をリード線3を介してCCD (Charg@C@t
+pled Dsvles ) 4の入力ダート5に導
入し、ζOCCD 4によりて並列出力信号を直列信号
に変換して信号処理部6に転送し、所定C)9号処理を
行りて表示装置1によシ強度分布を”表示するようにな
りている。このように、この測定系は、CODの信号蓄
積・転送機能を利用して一次元放射線強度分布を測定す
ることを目的としておル、−次元放射線検出素子として
は一般的な分離電極を有する半導体放射線検出素子(P
NIi*重、PIN!ll、9面障壁型など)を利用す
ることが可能である。
Figure 1 is a conceptual diagram of a prior art example for measuring the one-dimensional intensity distribution of radiation.
is the signal electrode, and the output signal obtained from each signal electrode is sent to the CCD (Charg@C@t) via the lead wire 3.
+pled Dsvles) 4 is introduced into the input dart 5, the parallel output signal is converted into a serial signal by the ζOCCD 4 and transferred to the signal processing section 6, and the predetermined C) No. 9 processing is performed and the display device 1 displays the signal. In this way, this measurement system aims to measure the one-dimensional radiation intensity distribution by using the signal accumulation and transfer function of COD. The detection element is a semiconductor radiation detection element (P
NIi*ju, PIN! ll, 9-sided barrier type, etc.).

しかしながら第1図の構成では、−次元放射線検出素子
と微小なCCDとをリード線で接続する高度な結線技術
が必要であり、製造コストの面で不利となるだけでなく
信頼性も低くなるとい−)た欠点を有する。
However, the configuration shown in Figure 1 requires advanced wiring technology to connect the -dimensional radiation detection element and the minute CCD with lead wires, which is not only disadvantageous in terms of manufacturing cost but also reduces reliability. -) has some disadvantages.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、信頼性が高く、製造方法が簡単な一
次元あるいは二次元放射線強度分布゛計測用の放射線検
出器を提供するに1)る。
An object of the present invention is to provide a radiation detector for measuring one-dimensional or two-dimensional radiation intensity distribution that is highly reliable and easy to manufacture.

〔発明0Ill! ) 本発明は、一枚の半導体基板に、分離独立した放射線検
出領域とその出力信号を蓄積、転送する電荷転送領域と
を併設したことを特徴とする。
[Invention 0Ill! ) The present invention is characterized in that a separate and independent radiation detection area and a charge transfer area for accumulating and transferring output signals thereof are provided together on a single semiconductor substrate.

〔発明O効果〕[Invention O effect]

(1)放射線検出領域と電荷転送領域が一体化して一枚
の半導体基板に構成されていて、リード線による接続が
不要であるため製造工程が簡略化される。
(1) The radiation detection region and the charge transfer region are integrated into one semiconductor substrate, and connection by lead wires is not required, which simplifies the manufacturing process.

(2)同様な理由で、振動勢に強く信頼性が向上する。(2) For the same reason, it is strong against vibration forces and improves reliability.

〔発明の実施例〕[Embodiments of the invention]

本発明O実施例0IIlt念図を菖2図に示す。(−)
図は平面図、伽)図は概略断面図である。図中。
The mental image of the present invention O Embodiment 0 IIt is shown in Diagram 2 of the irises. (-)
The figure is a plan view, and the figure is a schematic sectional view. In the figure.

JJFiシリコン基板であシ、一枚′の基板11内に放
射線検出領域ムとCCDCD領域大成されている。放射
線検出領域ムは複数個の信号電極11によ〉褌数に分割
されておシ、各信号電極12の出力を基@11上の配線
を通してCOD領域Bに導くようになっている。131
〜131はCCDCD領域大eaむように基板11にP
bを埋込んだ放射−値蔽層である。
A JJFi silicon substrate is used, and a radiation detection area and a CCDCD area are formed within a single substrate 11. The radiation detection area B is divided into a number of loincloths by a plurality of signal electrodes 11, and the output of each signal electrode 12 is guided to the COD area B through wiring on the base 11. 131
~131 is a P on the substrate 11 so as to widen the CCDCD area.
This is a radiation-value shielding layer embedded with b.

動作原理は従来例と大差なく、基板に平行に入射する放
射−によりてシリコン基板中で生ずる電荷を信号電極1
2で収集し、これをCCDCD領域大力して並−直列変
換を行って出力信号を得る方式である。
The operating principle is not much different from that of the conventional example, and charges generated in the silicon substrate due to radiation incident parallel to the substrate are transferred to the signal electrode 1.
In this method, the signals are collected in the CCDCD domain and subjected to parallel-to-serial conversion to obtain an output signal.

動作原理をもう少し詳しく説明するために、p型シリコ
ン基板を用いた場合の要部構造断面図を第3図に示す。
In order to explain the operating principle in more detail, FIG. 3 shows a cross-sectional view of the main structure when a p-type silicon substrate is used.

信号電極12は例えばAj!を用いた障壁電極であって
その下IIK空乏層が形成されることになる。基板裏面
にはオーンツク性電極14として例えばA11−Go電
極が設けられる。16は5to2膜、16はCCDの入
力ダイオードとなる1層であシ、11は入力f−)電極
、18は転送r−)電極を表わしている。放射線が入射
するとシリコン基板11中に電子正孔対が発生し、電子
は信号電極12によシ収集され、一層16゛を通して入
力f−)電極11によシ転送r−)電極18下へ注入さ
れる。各信号電極12から並列に注入された電子は、−
例えば3相り四、りφ1〜φ3が印加される転送r−)
電極xiによりシリコン基板lI中を転送されて直列信
号として出力される。この出力信号は従来と同様に信号
処理部に送られ、最終的に一次元放射線強度分布として
計測されることになる。
The signal electrode 12 is, for example, Aj! A barrier electrode is formed using the IIK depletion layer under the barrier electrode. For example, an A11-Go electrode is provided as the organic electrode 14 on the back surface of the substrate. 16 is a 5to2 film, 16 is a single layer serving as an input diode of the CCD, 11 is an input f-) electrode, and 18 is a transfer r-) electrode. When radiation is incident, electron-hole pairs are generated in the silicon substrate 11, and the electrons are collected by the signal electrode 12 and input through the layer 16゜f-) Transferred to the electrode 11 r-) Injected under the electrode 18 be done. Electrons injected in parallel from each signal electrode 12 are -
For example, 3-phase 4, transfer r-) where φ1 to φ3 are applied
The signal is transferred through the silicon substrate lI by the electrode xi and output as a serial signal. This output signal is sent to the signal processing section as in the conventional case, and is finally measured as a one-dimensional radiation intensity distribution.

このように本実施例によれば、放射線検出領域とCCD
領域とを一枚の基iK一体化しているから、製造が容易
で゛アシ、マた信頼性も高いものとなる。
In this way, according to this embodiment, the radiation detection area and the CCD
Since the area and the area are integrated into a single substrate, manufacturing is easy, and the reliability is also high.

なお本発明は上記実施例に限られるものではなく、以下
に列記するように種々変形が可能である。
Note that the present invention is not limited to the above embodiments, and various modifications can be made as listed below.

(1)半導体基板はSt以外にもG飄Al 、 CdT
・。
(1) Semiconductor substrates include G, Al, and CdT in addition to St.
・.

In 8bなど任意に選択可能である。It can be arbitrarily selected such as In 8b.

(2)実施例社−次元の放射線強度分布を測定する構成
であるが、信号電極を二次元的に細分することKよりて
二次元の放射線強度分布を測定することができる。ただ
し、この場合は放射線の入射方向は半導体基板に垂直で
ある。
(2) Example - This is a configuration for measuring a dimensional radiation intensity distribution, but by subdividing the signal electrode two-dimensionally, a two-dimensional radiation intensity distribution can be measured. However, in this case, the incident direction of the radiation is perpendicular to the semiconductor substrate.

(3)第2図(、)で破線矢印E方向から放射線を入射
するととKより、放射線の透過力を計測してエネルギー
分析を行うことが可能である。
(3) When radiation is incident from the direction of the broken arrow E in FIG. 2 (,), it is possible to measure the penetrating power of the radiation and perform energy analysis.

(4)  電荷転送領域の構成としては、CCDの他に
もMOg型、CID 31(Charge Injea
tion Davies)、BBD型(Buek@t 
Br1gad+e Dsvive )などを応用するこ
とができる。
(4) In addition to CCD, the configuration of the charge transfer region includes MOg type and CID 31 (Charge Injea).
tion Davies), BBD type (Buek@t
Br1gad+e Dsvive) etc. can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の概念図、第2図(a) * (b) 
tま本発明の実施例の平面図および概略断面図、第3図
はその要部構造を詳しく示す断面図である。 11・・・シリコン基板、A−・・放射線検出領域、B
・・・CCD領域、12 ・・・信号電極、131〜1
3゜・・・放射IIa蔽層、14・・・オーミック電極
、15−8102膜、I 6 ・n+層、1 F−・・
入力ff−)電極、18・・・転送r−)電極。
Figure 1 is a conceptual diagram of the conventional example, Figure 2 (a) * (b)
FIG. 3 is a plan view and a schematic cross-sectional view of an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the main structure in detail. 11...Silicon substrate, A-...Radiation detection area, B
... CCD area, 12 ... Signal electrode, 131-1
3゜... Radiation IIa shielding layer, 14... Ohmic electrode, 15-8102 film, I 6 ・n+ layer, 1 F-...
Input ff-) electrode, 18... Transfer r-) electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)一枚の半導体基板に、放射線を検出する複数個の
放射線検出領域と、各検出領域から得られる出力信号の
蓄積、読み出しを行う電荷転送領域とを設置たことを特
徴とする放射線検出器。
(1) Radiation detection characterized in that a single semiconductor substrate is provided with a plurality of radiation detection regions for detecting radiation and a charge transfer region for accumulating and reading output signals obtained from each detection region. vessel.
(2)電荷転送領域は複数個の放射線検出領域から得ら
れる並列出力信号を直列信号に変換するものであること
を特徴とする特許請求の範囲第1項記載の放射線検出器
(2) The radiation detector according to claim 1, wherein the charge transfer region converts parallel output signals obtained from a plurality of radiation detection regions into serial signals.
(3)放射線の入射方向が半導体基板に平行であること
を特徴とする特許請求の範囲第1項記載の放射線検出器
(3) The radiation detector according to claim 1, wherein the incident direction of the radiation is parallel to the semiconductor substrate.
(4)半導体基板の電荷転送領域の周囲に放射線遮蔽用
の物質が埋め込まれていることを特徴とする特許請求の
範囲第1項記載の放射線検出器。
(4) The radiation detector according to claim 1, wherein a radiation shielding material is embedded around the charge transfer region of the semiconductor substrate.
JP57063563A 1982-04-16 1982-04-16 Radiation detector Pending JPS58180972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57063563A JPS58180972A (en) 1982-04-16 1982-04-16 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57063563A JPS58180972A (en) 1982-04-16 1982-04-16 Radiation detector

Publications (1)

Publication Number Publication Date
JPS58180972A true JPS58180972A (en) 1983-10-22

Family

ID=13232819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57063563A Pending JPS58180972A (en) 1982-04-16 1982-04-16 Radiation detector

Country Status (1)

Country Link
JP (1) JPS58180972A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187878A (en) * 1984-03-08 1985-09-25 Res Dev Corp Of Japan Detector for radiation distribution of semiconductor
JPS6474489A (en) * 1987-09-16 1989-03-20 Olympus Optical Co Radiation detecting endoscope
JPH02158176A (en) * 1988-12-12 1990-06-18 Matsushita Electric Ind Co Ltd Radiation detector
JPH0566548U (en) * 1983-02-04 1993-09-03 エヌ・ベー・フィリップス・フルーイランペンファブリケン X-ray analyzer
WO1997012261A1 (en) * 1995-09-28 1997-04-03 Pierre Fessler X-ray intensity measurement device
US6573505B2 (en) * 2001-06-04 2003-06-03 The Boeing Company Detector array structure for eliminating channel spectrum

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566548U (en) * 1983-02-04 1993-09-03 エヌ・ベー・フィリップス・フルーイランペンファブリケン X-ray analyzer
JPS60187878A (en) * 1984-03-08 1985-09-25 Res Dev Corp Of Japan Detector for radiation distribution of semiconductor
JPS6474489A (en) * 1987-09-16 1989-03-20 Olympus Optical Co Radiation detecting endoscope
JPH02158176A (en) * 1988-12-12 1990-06-18 Matsushita Electric Ind Co Ltd Radiation detector
WO1997012261A1 (en) * 1995-09-28 1997-04-03 Pierre Fessler X-ray intensity measurement device
US6573505B2 (en) * 2001-06-04 2003-06-03 The Boeing Company Detector array structure for eliminating channel spectrum

Similar Documents

Publication Publication Date Title
US20120223241A1 (en) Large-Scale X-Ray Detectors
US4521798A (en) Infra-red radiation imaging devices and methods for their manufacture
US7355642B2 (en) Photo-detection device
JP2001318155A (en) Radiation detector and x-ray ct device
WO2004105137A1 (en) Photo-detection device
JP2004530864A5 (en)
US6207944B1 (en) Semiconductor imaging device
JPS58180972A (en) Radiation detector
US4292645A (en) Charge splitting resistive layer for a semiconductor gamma camera
US5369357A (en) CCD imager with test structure
GB2246662A (en) Testing photodetector devices
JPH021522A (en) Radiation detecting element and interferometer
US4197553A (en) Monolithic extrinsic silicon infrared detector structure employing multi-epitaxial layers
US7042008B2 (en) Image sensor and method of manufacturing the same
EP0435509A2 (en) Semiconductor photodetector and method of operation
US4411059A (en) Method for manufacturing a charge splitting resistive layer for a semiconductor gamma camera
US7928398B2 (en) Radiation detecting pixel array signal routing
Ueno et al. PtSi Schottky-barrier infrared focal plane array for ASTER/SWIR
Gibbons et al. Status of CID InSb detector technology
US4259576A (en) Anti-blooming shield for two-dimensional charge-injection devices
JPS603792B2 (en) Multichannel semiconductor radiation detector
JP3561788B2 (en) Radiation detection element and radiation detector
Hoendervoogt et al. Hybrid InSb focal plane array fabrication
US6657180B1 (en) Detector with semiconductor for detecting ionizing radiation having a plane conducting structure
Hietanen et al. Ion-implanted capacitively coupled silicon strip detectors with integrated polysilicon bias resistors processed on a 100 mm wafer