JPH0732968U - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH0732968U
JPH0732968U JP6399293U JP6399293U JPH0732968U JP H0732968 U JPH0732968 U JP H0732968U JP 6399293 U JP6399293 U JP 6399293U JP 6399293 U JP6399293 U JP 6399293U JP H0732968 U JPH0732968 U JP H0732968U
Authority
JP
Japan
Prior art keywords
characteristic
generated
ray
radiation
detection region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6399293U
Other languages
Japanese (ja)
Other versions
JP2604114Y2 (en
Inventor
賢治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1993063992U priority Critical patent/JP2604114Y2/en
Publication of JPH0732968U publication Critical patent/JPH0732968U/en
Application granted granted Critical
Publication of JP2604114Y2 publication Critical patent/JP2604114Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 簡単な構成で特性X線の隣接する検出領域へ
のエスケープを防止し、より精度の高い入射放射線の濃
度分布の測定が可能な放射線検出器を提供する。 【構成】 放射線5が化合物半導体基板4に入射する
と、検出領域4n で誘導電荷qが発生すると共に特性X
線6を発生させ、発生した特性X線6は隣接する検出領
域4n-1 へ向かう。このとき、ダミー電極・・3n-1,3
n ・・が特性X線の平均自由行程程度の幅を持って形成
されているため、特性X線6は隣接する検出領域4n-1
へ到達することなく干渉領域4’n-1 で誘導電荷q’を
発生させる。発生した誘導電荷はダミー電極3n-1 に引
き寄せられるため、隣接する検出領域4n 等で発生した
特性X線6による検出誤差がほとんどなくなり入射放射
線の濃度分布の正確な測定が可能となる。
(57) [Summary] [Object] To provide a radiation detector capable of preventing a characteristic X-ray from escaping to an adjacent detection region with a simple structure and measuring the concentration distribution of incident radiation with higher accuracy. [Structure] When the radiation 5 is incident on the compound semiconductor substrate 4, an induced charge q is generated in the detection region 4n and the characteristic X
The line 6 is generated, and the generated characteristic X-ray 6 is directed to the adjacent detection region 4n-1. At this time, dummy electrodes ... 3n-1, 3
Since n ··· is formed with a width of about the mean free path of the characteristic X-ray, the characteristic X-ray 6 is adjacent to the detection region 4n-1.
The induced electric charge q'is generated in the interference region 4'n-1 without reaching to. Since the generated induced charges are attracted to the dummy electrode 3n-1, there is almost no detection error due to the characteristic X-ray 6 generated in the adjacent detection region 4n or the like, and the concentration distribution of incident radiation can be accurately measured.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、医療用放射線受像装置、被破壊検査用放射線検査装置等に用いられ る放射線検出器に関する。 The present invention relates to a radiation detector used for a radiation image receiving device for medical use, a radiation inspection device for destructive inspection, and the like.

【0002】[0002]

【従来の技術】[Prior art]

一般に、放射線検出器は、図5に示されるように、例えばCdTe結晶、Ga As結晶等の化合物半導体基板51の両面側に電極52、53を備えており、そ の電極52、53間に所定レベルの電圧を印加するよう構成されている。そして 、放射線γの入射により発生した誘導電荷qによって生じる電流やパルスを検出 することで放射線の入射量を検知することができる。そして、従来においては被 検体の一次元または二次元撮影等を行うべく、図6に示すように化合物半導体基 板64の一方の面に多数の信号取出電極・・62n-1,62n,62n+1 ・・を形成 することで多数の検出チャンネルをアレイ化した構成が採用されている。 Generally, as shown in FIG. 5, a radiation detector is provided with electrodes 52 and 53 on both sides of a compound semiconductor substrate 51 such as a CdTe crystal or a Ga As crystal, and a predetermined distance between the electrodes 52 and 53. It is configured to apply a level voltage. Then, the amount of incident radiation can be detected by detecting a current or a pulse generated by the induced electric charge q generated by the incidence of the radiation γ. Conventionally, in order to perform one-dimensional or two-dimensional imaging of an object, a large number of signal extraction electrodes ... 62n-1, 62n, 62n + are formed on one surface of the compound semiconductor substrate 64 as shown in FIG. By forming 1 ..., a large number of detection channels are arrayed.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、このように多数の検出チャンネルをアレイ化した構成では、例 えば、入射放射線65により検出領域64n で発生した特性X線66が隣接する 検出領域64n-1 へエスケープすることで、この隣接する検出領域64n-1 に誘 導電荷qを発生させるため、隣接する検出領域からエスケープした特性X線によ る入射放射線の検出誤差が発生して空間分解能を低下させるという問題があった 。 However, in such a configuration in which a large number of detection channels are arrayed, for example, the characteristic X-ray 66 generated in the detection region 64n due to the incident radiation 65 is escaped to the adjacent detection region 64n-1 so as to be adjacent to this. Since the induced conductive charge q is generated in the detection region 64n-1, there is a problem that the detection error of the incident radiation due to the characteristic X-ray escaped from the adjacent detection region occurs and the spatial resolution is lowered.

【0004】 そこで、本考案はこれらの問題点を解決するため、簡単な構成で特性X線の隣 接する検出領域へのエスケープを防止し、より精度の高い入射放射線の濃度分布 の測定が可能な放射線検出器を提供することを目的とする。Therefore, in order to solve these problems, the present invention prevents the characteristic X-rays from escaping to the adjacent detection area with a simple structure, and enables more accurate measurement of the concentration distribution of incident radiation. An object is to provide a radiation detector.

【0005】[0005]

【課題を解決するための手段】 化合物半導体基板の両面に電極を形成し、両電極間に所定電圧を印加すること により入射放射線を検出する放射線検出器において、 前記化合物半導体基板の一方の面に信号取出電極と特性X線の平均自由行程程 度の幅を持ったダミー電極とを交互に複数個形成したことを特徴とする。In a radiation detector for detecting incident radiation by forming electrodes on both surfaces of a compound semiconductor substrate and applying a predetermined voltage between the electrodes, one surface of the compound semiconductor substrate is provided. It is characterized in that a plurality of signal extraction electrodes and a plurality of dummy electrodes having a width of the mean free path of characteristic X-rays are alternately formed.

【0006】[0006]

【作用】[Action]

本考案の作用を図2に基づいて説明する。 放射線5が化合物半導体基板4に入射すると、検出領域4n で誘導電荷qが発 生すると共に特性X線6を発生させ、発生した特性X線6は隣接する検出領域4 n-1 へ向かう。このとき、ダミー電極・・3n-1,3n ・・が特性X線の平均自由 行程程度の幅を持って形成されているため、特性X線6は隣接する検出領域4n- 1 へ到達することなく干渉領域4’n-1 で誘導電荷q’を発生させる。発生した 誘導電荷はダミー電極3n-1 に引き寄せられるため、隣接する検出領域4n 等で 発生した特性X線6による検出誤差がほとんどなくなり入射放射線の濃度分布の 正確な測定が可能となる。 The operation of the present invention will be described with reference to FIG. When the radiation 5 is incident on the compound semiconductor substrate 4, the induced charges q are generated in the detection region 4n and the characteristic X-ray 6 is generated, and the generated characteristic X-ray 6 is directed to the adjacent detection region 4n-1. At this time, since the dummy electrodes ... 3n-1, 3n ... Are formed with a width of about the mean free path of the characteristic X-rays, the characteristic X-rays 6 reach the adjacent detection area 4n-1. However, the induced charge q'is generated in the interference region 4'n-1. Since the generated induced charges are attracted to the dummy electrode 3n-1, there is almost no detection error due to the characteristic X-ray 6 generated in the adjacent detection region 4n or the like, and the concentration distribution of incident radiation can be accurately measured.

【0007】[0007]

【実施例】【Example】

本考案の実施例を、図1〜図4に基づいて説明する。 An embodiment of the present invention will be described with reference to FIGS.

【0008】 図1は、本考案を1次元アレイ状の放射線検出器に応用した場合を示す一例で あり、図1aはその正面図、また図1bは信号取出電極側から見た平面図である 。同図において、1はバイアス電極で化合物半導体基板4の放射線の入射面側に その面全体を覆うように形成されている。2は信号取出電極で、前記バイアス電 極1と対向する面に多数形成されており、それぞれの電極で入射放射線5により 発生した誘導電荷を検出する。3は前記多数形成された信号取出電極2と交互に 配置して形成されたダミー電極で、それぞれ特性X線の平均自由行程程度の幅を 持って形成されており、化合物半導体基板4で発生した特性X線により生じる誘 導電荷を吸収する。なお、上述したバイアス電極1と信号取出電極2との間には バイアス電極1が陰極となるよう所定の電圧が印加されており、またダミー電極 3は共通のダミー電位供給用電極6に接続され、発生した誘導電荷を有効に吸収 できるよう所定の電位に保持されている。FIG. 1 is an example showing a case where the present invention is applied to a one-dimensional array type radiation detector. FIG. 1a is a front view thereof, and FIG. 1b is a plan view seen from the signal extraction electrode side. . In the figure, reference numeral 1 denotes a bias electrode formed on the radiation incident surface side of the compound semiconductor substrate 4 so as to cover the entire surface thereof. Reference numeral 2 denotes a signal extraction electrode, which is formed in a large number on the surface facing the bias electrode 1, and detects the induced charge generated by the incident radiation 5 at each electrode. 3 is a dummy electrode formed by alternately arranging with the signal extraction electrodes 2 formed in large numbers, each having a width of about the mean free path of the characteristic X-ray, and generated in the compound semiconductor substrate 4. Absorbs the induced conductive load generated by characteristic X-rays. A predetermined voltage is applied between the bias electrode 1 and the signal extraction electrode 2 so that the bias electrode 1 serves as a cathode, and the dummy electrode 3 is connected to a common dummy potential supply electrode 6. , It is held at a predetermined potential so that the generated induced charges can be effectively absorbed.

【0009】 図2は1次元アレイ状の放射線検出器の正面図を示す図1aの詳細図である。 同図において、化合物半導体基板4はそれぞれ信号取出電極・・2n-1,2n,2n+ 1 ・・の位置に応じた放射線の検出領域・・4n-1,4n,4n+1 ・・、及びダミー 電極・・3n-1,3n,3n+1 ・・の位置に応じた干渉領域・・4’n-1,4’n,4’ n+1 ・・の領域に区分される。そして、化合物半導体基板4に入射した放射線5 は、例えば検出領域4n で誘導電荷qを発生させると共に特性X線6を発生させ 、発生した特性X線6は隣接する検出領域4n-1 へ向かう。このとき、ダミー電 極・・3n-1,3n,3n+1 ・・は特性X線の平均自由行程程度の幅を持って形成さ れているため、検出領域4n で発生した特性X線6は隣接する検出領域4n-1 に 到達することなく干渉領域4’n-1 で誘導電荷q’を発生させる。発生した誘導 電荷はダミー電極3n-1 に引き寄せられ吸収されるため、隣接する検出領域4n 等で発生した特性X線による誘導電荷の発生を防止でき検出誤差のほとんどない 正確な入射放射線の濃度分布の測定が可能となる。FIG. 2 is a detailed view of FIG. 1a showing a front view of a one-dimensional array of radiation detectors. In the figure, the compound semiconductor substrate 4 has a radiation detection region corresponding to the positions of the signal extraction electrodes, 2n-1, 2n, 2n + 1, ..., 4n-1, 4n, 4n + 1 ,. .. 3n-1, 3n, 3n + 1 .. are divided into interference regions according to the positions of the electrodes ... 4'n-1, 4'n, 4'n + 1. Then, the radiation 5 incident on the compound semiconductor substrate 4 causes, for example, the induced charges q in the detection region 4n to generate the characteristic X-ray 6, and the generated characteristic X-ray 6 travels to the adjacent detection region 4n-1. At this time, since the dummy electrodes 3n-1, 3n, 3n + 1 ... Are formed with a width of about the mean free path of the characteristic X-rays, the characteristic X-rays 6 generated in the detection region 4n Generates induced charge q'in the interference region 4'n-1 without reaching the adjacent detection region 4n-1. The generated induced charges are attracted to and absorbed by the dummy electrode 3n-1. Therefore, it is possible to prevent the generation of induced charges due to the characteristic X-rays generated in the adjacent detection region 4n, etc. Can be measured.

【0010】 ここで、化合物半導体基板4にCdTe結晶を用いた場合では約30keV、 GaAs結晶を用いた場合では約10keV以上のX線が入射した時にそれぞれ 約30keV、約10keVの特性X線が発生し、その平均自由行程はCdTe で約80μm、GaAsで約50μmである。従って、ダミー電極3の電極幅は 化合物半導体基板4に用いる材料等に応じて定まる特性X線の平均自由行程に基 づき適宜定めればよい。Characteristic X-rays of about 30 keV and about 10 keV are generated when an X-ray of about 30 keV is used when the CdTe crystal is used for the compound semiconductor substrate 4 and about 10 keV or more is used when the GaAs crystal is used, respectively. The mean free path is about 80 μm for CdTe and about 50 μm for GaAs. Therefore, the electrode width of the dummy electrode 3 may be appropriately determined based on the mean free path of the characteristic X-ray that is determined according to the material used for the compound semiconductor substrate 4.

【0011】 なお、上述したように、入射放射線5の入射側にバイアス電極1を、その対向 側に信号取出電極2及びダミー電極3を設けることで、信号取出電極2からバイ アス電極1に向かう電界は矢印7のようになる。このとき、誘導電荷のほとんど が入射放射線5の入射側であるバイアス電極1の近傍付近で発生するため、入射 放射線5の入射側に信号取出電極2及びダミー電極3を設ける場合に比べて検出 領域4nと干渉領域3n-1 入射放射線5の入射側であるバイアス電極1の近傍で 発生した誘導電荷をより確実に検知することが可能となる。As described above, by providing the bias electrode 1 on the incident side of the incident radiation 5 and the signal extraction electrode 2 and the dummy electrode 3 on the opposite side, the signal extraction electrode 2 is directed to the bias electrode 1. The electric field is as shown by arrow 7. At this time, most of the induced charges are generated in the vicinity of the bias electrode 1 on the incident side of the incident radiation 5, so that the detection area is larger than when the signal extraction electrode 2 and the dummy electrode 3 are provided on the incident side of the incident radiation 5. 4n and the interference region 3n-1 It is possible to more reliably detect the induced charges generated in the vicinity of the bias electrode 1 on the incident side of the incident radiation 5.

【0012】 図3は、図1、図2で示した1次元アレイ状の放射線検出器を実際に使用する 場合の模式図を示している。放射線検出器は配線基板7にバンプや接着剤等を用 いて接続され、複数の信号取出電極2から得られる検出信号は、アンプアレイ7 aで増幅されると共に、コンパレータアレイ7bでパルス化されカウンターアレ イ7cにて計数される。この時、それぞれのダミー電極3はダミー電位供給用電 極6を介して、0電位、または、アンプアレイ7aの入力ゲートと等電位、また は、その他の適当な電位に固定される。FIG. 3 is a schematic diagram when the one-dimensional array radiation detector shown in FIGS. 1 and 2 is actually used. The radiation detector is connected to the wiring board 7 by using bumps or adhesives, and the detection signals obtained from the plurality of signal extraction electrodes 2 are amplified by the amplifier array 7a and pulsed by the comparator array 7b and countered. It is counted in array 7c. At this time, each dummy electrode 3 is fixed to 0 potential, the same potential as the input gate of the amplifier array 7a, or another appropriate potential via the dummy potential supply electrode 6.

【0013】 図4は本考案を2次元のアレイ状放射線検出器に応用した場合の一例を示す変 形実施例で、信号取出電極42の方向から見た平面図である。同図に示されるよ うに平面状の化合物半導体基板44に略正方形の信号取出電極42が所定間隔で 2次元状に形成されており、ダミー電極43はダミー電位供給用電極46を共通 電極として信号取出電極42を囲むように格子状に形成されている。これにより 、信号取出電極42のそれぞれに対応する化合物半導体基板4の検出領域で発生 した特性X線は、上述した一次元アレイ状に形成された放射線検出器の場合と同 様に、それぞれのダミー電極3に対応する干渉領域で誘導電荷を発生させ、発生 した誘導電荷はそれぞれのダミー電極3に吸収される。FIG. 4 is a plan view seen from the direction of the signal extraction electrode 42, which is a modified embodiment showing an example in which the present invention is applied to a two-dimensional array type radiation detector. As shown in the figure, substantially square signal extraction electrodes 42 are two-dimensionally formed at predetermined intervals on a planar compound semiconductor substrate 44, and the dummy electrode 43 uses the dummy potential supply electrode 46 as a common electrode for signal generation. It is formed in a lattice shape so as to surround the extraction electrode 42. As a result, the characteristic X-rays generated in the detection region of the compound semiconductor substrate 4 corresponding to each of the signal extraction electrodes 42 are generated in the same manner as in the case of the radiation detector formed in the one-dimensional array described above. Induced charges are generated in the interference region corresponding to the electrodes 3, and the generated induced charges are absorbed by the respective dummy electrodes 3.

【0014】[0014]

【考案の効果】[Effect of device]

本考案によれば、化合物半導体基板の一方の面に多数形成した信号取出電極間 に特性X線の平均自由行程程度の幅を持ったダミー電極を交互に形成する構成を 採用したため、隣接した電極部分で生じた特性X線のエスケープを防止できると 共に、エスケープした特性X線によって生じた誘導電荷をこのダミー電極によっ て吸収できる。このため、特性X線に入射放射線の検出誤差を大幅に削減でき、 より簡単な構成で高精度な入射放射線の濃度分布の測定が可能となる。 According to the present invention, since the dummy electrodes having a width of about the mean free path of the characteristic X-rays are alternately formed between the plurality of signal extraction electrodes formed on one surface of the compound semiconductor substrate, adjacent electrodes are formed. The escape of the characteristic X-ray generated in the part can be prevented, and the induced charge generated by the escaped characteristic X-ray can be absorbed by the dummy electrode. Therefore, the detection error of the incident radiation on the characteristic X-ray can be greatly reduced, and the concentration distribution of the incident radiation can be measured with high accuracy by a simpler configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案を一次元アレイ状の放射線検出器に適用
した場合を示す図である。
FIG. 1 is a diagram showing a case where the present invention is applied to a one-dimensional array radiation detector.

【図2】本考案の作用を示す図である。FIG. 2 is a view showing the operation of the present invention.

【図3】本考案を実際に使用する場合の模式図を示す図
である。
FIG. 3 is a view showing a schematic diagram when the present invention is actually used.

【図4】本考案の変形実施例を示す図である。FIG. 4 is a view showing a modified embodiment of the present invention.

【図5】従来の放射線検出器を示す図である。FIG. 5 is a diagram showing a conventional radiation detector.

【図6】従来の放射線検出器を示す図である。FIG. 6 is a diagram showing a conventional radiation detector.

【符号の説明】[Explanation of symbols]

1・・・バイアス電極 2・・・信号取出電極 3・・・ダミー電極 4・・・化合物半導体基板 5・・・入射放射線 1 ... Bias electrode 2 ... Signal extraction electrode 3 ... Dummy electrode 4 ... Compound semiconductor substrate 5 ... Incident radiation

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 化合物半導体基板の両面に電極を形成
し、両電極間に所定電圧を印加することにより入射放射
線を検出する放射線検出器において、 前記化合物半導体基板の一方の面に信号取出電極と特性
X線の平均自由行程程度の幅を持ったダミー電極とを交
互に複数個形成したことを特徴とする放射線検出器。
1. A radiation detector for detecting incident radiation by forming electrodes on both surfaces of a compound semiconductor substrate and applying a predetermined voltage between both electrodes, wherein a signal extraction electrode is provided on one surface of the compound semiconductor substrate. A radiation detector characterized in that a plurality of dummy electrodes having a width of the mean free path of characteristic X-rays are alternately formed.
JP1993063992U 1993-11-30 1993-11-30 Radiation detector Expired - Fee Related JP2604114Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993063992U JP2604114Y2 (en) 1993-11-30 1993-11-30 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993063992U JP2604114Y2 (en) 1993-11-30 1993-11-30 Radiation detector

Publications (2)

Publication Number Publication Date
JPH0732968U true JPH0732968U (en) 1995-06-16
JP2604114Y2 JP2604114Y2 (en) 2000-04-17

Family

ID=13245287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993063992U Expired - Fee Related JP2604114Y2 (en) 1993-11-30 1993-11-30 Radiation detector

Country Status (1)

Country Link
JP (1) JP2604114Y2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316280A (en) * 1997-12-31 1999-11-16 General Electric Co <Ge> Direct conversion photon detector
JP2001502424A (en) * 1996-10-15 2001-02-20 シマゲ オユ Imaging device for radiation imaging
JP2001257335A (en) * 2000-01-07 2001-09-21 Nippon Sheet Glass Co Ltd Photodetector array
JP2002257936A (en) * 2001-03-02 2002-09-11 Hamamatsu Photonics Kk Radiation detection module
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medical diagnosis device, and radiation detection method in nuclear medical diagnosis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502424A (en) * 1996-10-15 2001-02-20 シマゲ オユ Imaging device for radiation imaging
JPH11316280A (en) * 1997-12-31 1999-11-16 General Electric Co <Ge> Direct conversion photon detector
JP2001257335A (en) * 2000-01-07 2001-09-21 Nippon Sheet Glass Co Ltd Photodetector array
JP2002257936A (en) * 2001-03-02 2002-09-11 Hamamatsu Photonics Kk Radiation detection module
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medical diagnosis device, and radiation detection method in nuclear medical diagnosis device
JP4594855B2 (en) * 2005-11-30 2010-12-08 株式会社日立製作所 Nuclear medicine diagnostic apparatus, radiation camera, and radiation detection method in nuclear medicine diagnostic apparatus

Also Published As

Publication number Publication date
JP2604114Y2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US6621084B1 (en) Pixelated photon detector
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
US6765213B2 (en) Gamma-ray detector for coincidence detection
US11002864B2 (en) Depth correction in pixellated detectors of ionizing radiation
US20030035510A1 (en) Sensor arrangement and method in digital x-ray imaging
US8927939B2 (en) Radiation measurement apparatus and nuclear medicine diagnosis apparatus
US7518118B2 (en) Depth sensing in CdZnTe pixel detectors
CN103097913B (en) There is the radiation detector of steering electrode
US6365900B1 (en) Sensing head and collimator for gamma-camera
JP2604114Y2 (en) Radiation detector
US7705318B2 (en) Device and method for measuring the energy and position of an incident ionising particle in a detector
US20230010663A1 (en) Imaging methods using multiple radiation beams
JPH0627852B2 (en) Radiation detector
JP3978389B2 (en) Radiation position detector and radiation position detection method
RU2730045C2 (en) Hybrid pixel detector of ionizing radiations
US20230346332A1 (en) Imaging methods using multiple radiation beams
WO2023130199A1 (en) Image sensors and methods of operation
US11779296B2 (en) Photon counting detector based edge reference detector design and calibration method for small pixelated photon counting CT apparatus
Narita et al. Development of prototype pixellated PIN CdZnTe detectors
US20230411433A1 (en) Imaging systems with image sensors having multiple radiation detectors
EP1717603A1 (en) PIixelated proton detector
Bolotnikov et al. Position-Sensitive Virtual Frisch-Grid Detectors for Imaging and Spectroscopy of Gamma Rays
WO2023122921A1 (en) Image sensors with small and thin integrated circuit chips
Tousignant et al. Energy and position resolution of a CdZnTe gamma-ray detector with orthogonal coplanar anodes
JPH02218990A (en) Radiation detecting element array and radiation image pickup device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees