JPH09257385A - Heat transfer pipe - Google Patents

Heat transfer pipe

Info

Publication number
JPH09257385A
JPH09257385A JP6773996A JP6773996A JPH09257385A JP H09257385 A JPH09257385 A JP H09257385A JP 6773996 A JP6773996 A JP 6773996A JP 6773996 A JP6773996 A JP 6773996A JP H09257385 A JPH09257385 A JP H09257385A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
groove
transfer tube
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6773996A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Mitsunori Taniguchi
光徳 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6773996A priority Critical patent/JPH09257385A/en
Publication of JPH09257385A publication Critical patent/JPH09257385A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a heat transfer rate between a refrigerant and a heat transfer pipe by providing main grooves extending spirally axially of a pipe and a plurality of fine auxiliary grooves coupling the main grooves with each other in an internal surface. SOLUTION: Main grooves 4 are provided spirally and continuously in the direction of a pipe axis in an internal surface of a heat transfer pipe, and are coupled with each other in the direction of the pipe axis with a plurality of fine auxiliary grooves 5. The width of the auxiliary groove 5 is smaller than that of tire main groove 4, while the cross sectional area of a flow passage is smaller than that of the main groove 4. A liquid refrigerant flowing in the heat transfer pipe is held in the main groove 4 and the auxiliary groove 5 with the aid of surface tension whereby there is increased an effectual heat transfer area over which the heat transfer pipe and the liquid refrigerant effective for heat transfer make contact with each other. In a region where the degree of drying of the refrigerant is small and much liquid refrigerant is existent, an excess liquid refrigerant where the refrigerant has a smaller velocity flows through the main groove 4, while in a region where the same degree is large and the liquid refrigerant is little, most of the liquid refrigerant flows through the auxiliary groove 5 while forming a liquid film, and a proper amount of the liquid refrigerant flows through time auxiliary groove 5 at all times. Here, a heat transfer rate between the refrigerant and the heat transfer pipe is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空気調和機や冷凍機
器、自動車機器等の冷媒と空気等の流体間で熱の授受を
行う熱交換器に用いられる伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used in a heat exchanger for exchanging heat between a refrigerant such as an air conditioner, a refrigeration equipment, an automobile equipment and a fluid such as air.

【0002】[0002]

【従来の技術】近年、熱交換器は機器設計の面からコン
パクト化が要求されており、熱交換器の冷媒側流路を形
成する伝熱管についても内面に螺旋状の溝を設ける等の
工夫により高効率化が図られている。
2. Description of the Related Art In recent years, heat exchangers have been required to be compact from the viewpoint of equipment design, and the heat transfer tubes forming the refrigerant side flow path of the heat exchanger are also provided with a spiral groove on the inner surface. The high efficiency is achieved by.

【0003】従来の内面に螺旋状の溝を設けた伝熱管と
しては、実公昭55−14956号公報や実公昭55−
26706号公報に示されたものが知られている。
As a conventional heat transfer tube having a spiral groove on its inner surface, Japanese Utility Model Publication No. 55-14956 and Japanese Utility Model Publication No. 55-
The one disclosed in Japanese Patent No. 26706 is known.

【0004】以下、図面を参照しながら上記従来の伝熱
管を説明する。図10は従来の伝熱管の管軸と垂直方向
の断面図、図11は同伝熱管の管軸方向の断面図であ
る。図10と図11において、1は伝熱管の内面に設け
られた微細な台形状の溝で、管軸方向に対して螺旋状に
連続して多数設けられている。
Hereinafter, the conventional heat transfer tube will be described with reference to the drawings. FIG. 10 is a sectional view of the conventional heat transfer tube in a direction perpendicular to the tube axis, and FIG. 11 is a sectional view of the heat transfer tube in the tube axis direction. In FIGS. 10 and 11, reference numeral 1 is a fine trapezoidal groove provided on the inner surface of the heat transfer tube, and a large number of grooves are continuously provided in a spiral shape in the tube axis direction.

【0005】以上のように構成された伝熱管について、
蒸発器として使用される場合を例に取り、以下その動作
を説明する。
Regarding the heat transfer tube constructed as described above,
The operation will be described below by taking the case of use as an evaporator as an example.

【0006】図12は伝熱管を用いた蒸発器を示してい
る。図12において、2は一定間隔で平行に並べられた
フィンである。3は従来の伝熱管で、フィン2に直角に
挿入されている。この蒸発器では、フィン2の間を流れ
る気流と伝熱管3の管内を水平方向に流れる冷媒との間
で熱交換が行なわれる。そして、気流は冷媒に熱を奪わ
れて冷却され、冷媒は気流から熱を得て蒸発し、液から
蒸気に相変化する。このとき、水平な伝熱管3の管内を
流れる液冷媒は、重力の影響で管底部を流れるようとす
るが、螺旋状の溝1に沿って流れるために重力に逆らっ
て管頂部へ引き上げられることとなり、伝熱管3と伝熱
に有効な液冷媒とが接する有効伝熱面積が増大すること
と、溝1に薄い液膜が形成されることにより、伝熱管3
と冷媒との熱伝達が促進されていた。
FIG. 12 shows an evaporator using a heat transfer tube. In FIG. 12, 2 is a fin arranged in parallel at regular intervals. Reference numeral 3 denotes a conventional heat transfer tube, which is inserted into the fin 2 at a right angle. In this evaporator, heat exchange is performed between the airflow flowing between the fins 2 and the refrigerant flowing horizontally in the heat transfer tubes 3. Then, the airflow is cooled by the heat taken by the refrigerant, and the refrigerant obtains heat from the airflow and evaporates, and the phase changes from liquid to vapor. At this time, the liquid refrigerant flowing inside the horizontal heat transfer tube 3 tries to flow at the bottom of the tube due to the influence of gravity, but since it flows along the spiral groove 1, it must be pulled up to the top of the tube against gravity. Therefore, the effective heat transfer area where the heat transfer tube 3 and the liquid refrigerant effective for heat transfer are in contact with each other is increased, and a thin liquid film is formed in the groove 1.
The heat transfer between the refrigerant and the refrigerant was promoted.

【0007】[0007]

【発明が解決しようとする課題】この伝熱管において
は、伝熱管の全体にわたって同じ形状の溝が設けられて
いるため、蒸発器全体の中で理想的な薄い液膜が溝に形
成されている領域は狭い。例えば蒸発器の冷媒入口側す
なわち液冷媒が多い領域では、液膜は厚くなっており、
条件によっては液膜は形成されずに溝は液に埋もれてい
る。逆に蒸発器の冷媒出口側すなわち液冷媒が少ない領
域では、溝での冷媒の蒸発に液冷媒の供給が追いつかな
い状態になって溝が乾いてしまう傾向にある。従って、
冷媒と伝熱管との間の熱伝達率が全領域で十分に高くは
ないという欠点があった。また、伝熱管の全体にわたっ
て連続した溝が設けられているため、溝に形成される液
膜は非常に整流された流れとなっており、このことによ
っても、冷媒と伝熱管との間の熱伝達率が全領域で十分
に高くはないという欠点があった。さらに,管軸方向に
対する溝の螺旋角度が伝熱管の全体にわたって一定に設
けられているため、圧力損失を抑えるために溝の螺旋角
度は大きくできず、従って、冷媒の流れの旋回力を強く
できないために溝に保持される液膜を伝熱管の周方向に
対して十分に均一に分布させることはできず、このこと
によっても、冷媒と伝熱管との間の熱伝達率が全領域で
十分に高くはないという欠点があった。
In this heat transfer tube, since the groove of the same shape is provided over the entire heat transfer tube, an ideal thin liquid film is formed in the groove in the entire evaporator. The area is small. For example, in the refrigerant inlet side of the evaporator, that is, in the region where the amount of liquid refrigerant is large, the liquid film is thick,
Depending on the conditions, the liquid film is not formed and the groove is buried in the liquid. On the other hand, in the refrigerant outlet side of the evaporator, that is, in the region where the amount of the liquid refrigerant is small, the supply of the liquid refrigerant cannot keep up with the evaporation of the refrigerant in the groove, and the groove tends to dry. Therefore,
There is a drawback in that the heat transfer coefficient between the refrigerant and the heat transfer tube is not sufficiently high in all regions. In addition, since the continuous groove is provided over the entire heat transfer tube, the liquid film formed in the groove has a highly rectified flow, which also contributes to the heat between the refrigerant and the heat transfer tube. There was a drawback that the transmissivity was not high enough in all areas. Furthermore, since the spiral angle of the groove with respect to the tube axis direction is fixed over the entire heat transfer tube, the spiral angle of the groove cannot be increased to suppress pressure loss, and therefore the swirling force of the refrigerant flow cannot be increased. Therefore, the liquid film held in the groove cannot be distributed sufficiently evenly in the circumferential direction of the heat transfer tube, which also ensures that the heat transfer coefficient between the refrigerant and the heat transfer tube is sufficient in all regions. It had the drawback of not being expensive.

【0008】本発明は従来の課題を解決するもので、冷
媒と伝熱管との間の熱伝達率をさらに高くした伝熱管を
提供することを目的とする。
The present invention solves the conventional problems, and an object of the present invention is to provide a heat transfer tube having a higher heat transfer coefficient between the refrigerant and the heat transfer tube.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明の伝熱管は、管軸方向に対して螺旋状に連続す
る主溝と、主溝相互を連結する複数の微細な補助溝とを
内面に備えたものである。この発明により、冷媒の乾き
度の大小にかかわらず冷媒と伝熱管との間の熱伝達率を
全領域で高くすることができる。
In order to solve this problem, a heat transfer tube of the present invention comprises a main groove spirally continuous in the axial direction of the tube, and a plurality of fine auxiliary grooves connecting the main grooves to each other. It is equipped with and inside. According to the present invention, the heat transfer coefficient between the refrigerant and the heat transfer tube can be increased in all regions regardless of the degree of dryness of the refrigerant.

【0010】また、本発明の伝熱管は、管軸方向に対し
て螺旋状に連続する主溝と、主溝相互を連結する複数の
微細な補助溝とを内面に備え、かつ補助溝を管軸に対し
て主溝の連続する方向と逆の方向に傾斜させたものであ
る。この発明により、冷媒の乾き度の大小にかかわらず
冷媒と伝熱管との間の熱伝達率を全領域で高くし、かつ
蛇行した流れにより冷媒液膜の乱れを促進して冷媒と伝
熱管との間の熱伝達率をさらに高くすることができる。
Further, the heat transfer tube of the present invention is provided with a main groove spirally continuous in the tube axial direction and a plurality of fine auxiliary grooves connecting the main grooves to each other on the inner surface, and the auxiliary groove is provided in the tube. The main groove is inclined in the direction opposite to the continuous direction of the main groove. According to the present invention, regardless of the degree of dryness of the refrigerant, the heat transfer coefficient between the refrigerant and the heat transfer tube is increased in the entire region, and the turbulent flow promotes the turbulence of the refrigerant liquid film and the refrigerant and the heat transfer tube. The heat transfer coefficient between the two can be further increased.

【0011】また、本発明の伝熱管は、管軸方向に対し
て螺旋状に連続する主溝と、主溝相互を連結する複数の
微細な補助溝とを内面に備え、かつ補助溝を管軸に対し
て主溝の連続する方向と同じ方向に傾斜させたものであ
る。この発明により、冷媒の乾き度の大小にかかわらず
冷媒と伝熱管との間の熱伝達率を全領域で高くし、かつ
補助溝の角度を比較的小さくして圧力損失を抑えながら
冷媒の旋回流れを強く得ることにより、補助溝に形成さ
れる薄い液膜を周方向に均一に分布させて冷媒と伝熱管
との間の熱伝達率をさらに高くすることができる。
Further, the heat transfer tube of the present invention is provided with a main groove spirally continuous in the tube axis direction and a plurality of fine auxiliary grooves connecting the main grooves to each other on the inner surface, and the auxiliary groove is provided in the tube. It is inclined with respect to the axis in the same direction as the continuous direction of the main groove. According to the present invention, regardless of the degree of dryness of the refrigerant, the heat transfer coefficient between the refrigerant and the heat transfer tube is increased in all areas, and the angle of the auxiliary groove is made relatively small to suppress the pressure loss and swirl the refrigerant. By obtaining a strong flow, the thin liquid film formed in the auxiliary groove can be evenly distributed in the circumferential direction, and the heat transfer coefficient between the refrigerant and the heat transfer tube can be further increased.

【0012】さらに、本発明の伝熱管は、主溝の流路断
面積を補助溝の流路断面積よりも大きくするものであ
る。この発明により、主溝から補助溝への液冷媒の分配
量を最適化して、冷媒と伝熱管との間の熱伝達率をさら
に高めることができる。
Further, in the heat transfer tube of the present invention, the flow passage cross-sectional area of the main groove is made larger than that of the auxiliary groove. According to the present invention, the distribution amount of the liquid refrigerant from the main groove to the auxiliary groove can be optimized, and the heat transfer coefficient between the refrigerant and the heat transfer tube can be further increased.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、伝熱管内に管軸方向に対して螺旋状に連続する主溝
と、前記主溝相互を連結する複数の微細な補助溝とを備
えたものであり、冷媒の乾き度が小さく液冷媒が多い領
域では、冷媒の速度が小さいので補助溝で液膜を形成す
るのに障害となる余剰液冷媒は主溝を流れ、冷媒の乾き
度が大きく液冷媒が少ない領域では、冷媒の速度が大き
くなるので液冷媒のほとんどは補助溝を流れることにな
る。従って、冷媒の乾き度の大小にかかわらず、常に適
量の液冷媒が補助溝を液膜の状態で流れることになり、
冷媒と伝熱管との間の熱伝達率が向上するとういう作用
を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a main groove spirally continuous in the heat transfer tube with respect to the tube axis direction, and a plurality of fine auxiliary members connecting the main grooves to each other. With the groove, in a region where the degree of dryness of the refrigerant is small and the amount of liquid refrigerant is large, since the speed of the refrigerant is low, excess liquid refrigerant that is an obstacle to forming a liquid film in the auxiliary groove flows through the main groove, In a region where the degree of dryness of the refrigerant is high and the amount of the liquid refrigerant is low, the speed of the refrigerant is high, so that most of the liquid refrigerant flows through the auxiliary groove. Therefore, regardless of the degree of dryness of the refrigerant, an appropriate amount of liquid refrigerant always flows in the auxiliary groove in the state of a liquid film,
It has an effect of improving the heat transfer coefficient between the refrigerant and the heat transfer tube.

【0014】本発明の請求項2に記載の発明は、請求項
1に記載の発明の補助溝を管軸に対して主溝の連続する
方向と逆の方向に傾斜させたものであり、請求項1の作
用に加えて、伝熱管内を流れる液冷媒は主溝から補助溝
への分岐と補助溝から主溝への合流とを繰り返して蛇行
しながら流れるので、補助溝に形成される液膜の乱れが
促進されることになり、このことによっても、冷媒と伝
熱管との間の熱伝達率が向上するとういう作用を有す
る。
According to a second aspect of the present invention, the auxiliary groove of the first aspect of the invention is inclined with respect to the tube axis in a direction opposite to the direction in which the main groove is continuous. In addition to the effect of item 1, the liquid refrigerant flowing in the heat transfer tube flows while meandering by repeatedly branching from the main groove to the auxiliary groove and merging from the auxiliary groove to the main groove. Disturbance of the film is promoted, and this also has the effect of improving the heat transfer coefficient between the refrigerant and the heat transfer tube.

【0015】本発明の請求項3に記載の発明は、請求項
1に記載の発明の補助溝を管軸に対して主溝の連続する
方向と同じ方向に傾斜させたものであり、請求項1の作
用に加えて、主溝と補助溝が管軸に対して同じ方向に傾
斜しているために、補助溝の角度を比較的小さくして圧
力損失を抑えながら冷媒の旋回流れを強く得ることがで
き、補助溝に形成される薄い液膜を周方向に均一に分布
させることができることになり、このことによっても、
冷媒と伝熱管との間の熱伝達率が向上するとういう作用
を有する。
According to a third aspect of the present invention, the auxiliary groove of the first aspect is inclined with respect to the pipe axis in the same direction as the main groove continues. In addition to the effect of 1, the main groove and the auxiliary groove are inclined in the same direction with respect to the tube axis, so that the angle of the auxiliary groove is made relatively small to suppress the pressure loss and to obtain a strong swirling flow of the refrigerant. The thin liquid film formed in the auxiliary groove can be evenly distributed in the circumferential direction.
It has an effect of improving the heat transfer coefficient between the refrigerant and the heat transfer tube.

【0016】本発明の請求項4に記載の発明は、主溝の
流路断面積を補助溝の流路断面積よりも大きくしたもの
であり、補助溝は微細な溝のため、高い熱伝達率が得ら
れる薄い液膜が形成でき、主溝は比較的大きい溝のた
め、複数の補助溝に対して余剰な液冷媒を排水しかつ液
冷媒を十分に混合でき、冷媒と伝熱管との間の熱伝達率
がさらに向上するという作用を有する。
In the invention according to claim 4 of the present invention, the flow passage cross-sectional area of the main groove is made larger than the flow passage cross-sectional area of the auxiliary groove, and since the auxiliary groove is a fine groove, high heat transfer is achieved. Since a thin liquid film that can obtain a high rate can be formed and the main groove is a relatively large groove, excess liquid refrigerant can be drained to a plurality of auxiliary grooves and the liquid refrigerant can be sufficiently mixed, and the refrigerant and heat transfer tube This has the effect of further improving the heat transfer coefficient between them.

【0017】以下、本発明の実施の形態について、図1
から図9を用いて説明する。 (実施の形態1)図1は、本発明の実施の形態1の伝熱
管の管軸と垂直方向の断面図、図2は、同実施の形態の
伝熱管の管軸方向の断面図である。図1と図2におい
て、4は伝熱管の内面に設けられた主溝で、管軸方向に
対して螺旋状に連続して設けられている。5は主溝4相
互を連結する複数の微細な補助溝で、管軸方向に連結し
ている。また、補助溝5は、その幅が主溝4の幅よりも
小さく、流路断面積が主溝4よりも小さい構成になって
いる。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. (Embodiment 1) FIG. 1 is a cross-sectional view of a heat transfer tube according to a first embodiment of the present invention in a direction perpendicular to a tube axis, and FIG. 2 is a cross-sectional view of the heat transfer tube according to the same embodiment in a tube axis direction. . 1 and 2, reference numeral 4 denotes a main groove provided on the inner surface of the heat transfer tube, which is continuously provided in a spiral shape in the tube axis direction. A plurality of fine auxiliary grooves 5 connect the main grooves 4 to each other, which are connected in the pipe axial direction. The width of the auxiliary groove 5 is smaller than that of the main groove 4, and the cross-sectional area of the flow path is smaller than that of the main groove 4.

【0018】以上のように構成された伝熱管について、
蒸発器として使用される場合を例に取り、以下その動作
を説明する。
Regarding the heat transfer tube constructed as described above,
The operation will be described below by taking the case of use as an evaporator as an example.

【0019】図3は実施の形態1の伝熱管を用いた蒸発
器を示している。図3において、2は一定間隔で平行に
並べられたフィンで、従来の構成と同じものである。6
は本実施の形態の伝熱管で、フィン2に直角に挿入され
ている。この蒸発器では、従来の構成と同様にフィン2
の間を流れる気流と伝熱管6の管内を水平方向に流れる
冷媒との間で熱交換が行なわれる。そして、気流は冷媒
に熱を奪われて冷却され、冷媒は気流から熱を得て蒸発
し、液から蒸気に相変化する。このとき、水平な伝熱管
6の管内を流れる液冷媒は、重力の影響で管底部を流れ
るようとするが、表面張力によって主溝4や補助溝5に
保持されるため、伝熱管6と伝熱に有効な液冷媒とが接
する有効伝熱面積が増大する。また冷媒の乾き度が小さ
く液冷媒が多い領域では、冷媒の速度が小さいので補助
溝5で液膜を形成するのに障害となる余剰液冷媒は主溝
4を流れ、冷媒の乾き度が大きく液冷媒が少ない領域で
は、冷媒の速度が大きくなるので液冷媒のほとんどは補
助溝5を液膜を形成しながら流れることになる。従っ
て、冷媒の乾き度の大小にかかわらず、常に適量の液冷
媒が補助溝5を流れることになり、冷媒と伝熱管6との
間の熱伝達率が向上する。
FIG. 3 shows an evaporator using the heat transfer tube of the first embodiment. In FIG. 3, reference numeral 2 denotes fins arranged in parallel at regular intervals, which has the same structure as the conventional structure. 6
Is a heat transfer tube of the present embodiment, which is inserted into the fin 2 at a right angle. In this evaporator, the fin 2 is used as in the conventional configuration.
Heat exchange is performed between the air flow flowing between the heat transfer tubes 6 and the refrigerant flowing horizontally in the heat transfer tubes 6. Then, the airflow is cooled by the heat taken by the refrigerant, and the refrigerant obtains heat from the airflow and evaporates, and the phase changes from liquid to vapor. At this time, the liquid refrigerant flowing in the horizontal heat transfer tube 6 tries to flow at the bottom of the tube due to the influence of gravity, but is held in the main groove 4 and the auxiliary groove 5 by the surface tension, so that the heat transfer tube 6 and the heat transfer tube 6 are transferred. The effective heat transfer area in contact with the heat-effective liquid refrigerant increases. Further, in a region where the degree of dryness of the refrigerant is small and the amount of liquid refrigerant is large, the speed of the refrigerant is low, and therefore excess liquid refrigerant which is an obstacle to forming a liquid film in the auxiliary groove 5 flows through the main groove 4 and the degree of dryness of the refrigerant is high. In the region where the amount of liquid refrigerant is small, the speed of the refrigerant is high, so most of the liquid refrigerant will flow through the auxiliary groove 5 while forming a liquid film. Therefore, an appropriate amount of liquid refrigerant always flows through the auxiliary groove 5 regardless of the degree of dryness of the refrigerant, and the heat transfer coefficient between the refrigerant and the heat transfer tube 6 is improved.

【0020】(実施の形態2)図4は、本発明の実施の
形態2の伝熱管の管軸と垂直方向の断面図、図5は、同
実施の形態の伝熱管の管軸方向の断面図である。図4と
図5において、7は伝熱管の内面に設けられた主溝で、
管軸方向に対して螺旋状に連続して設けられている。8
は主溝7相互を連結する複数の微細な補助溝で、主溝7
の連続する方向と管軸に対して逆の傾斜方向に連結して
いる。また、補助溝8は、その幅が主溝7の幅よりも小
さく、流路断面積が主溝7よりも小さい構成になってい
る。
(Second Embodiment) FIG. 4 is a sectional view of a heat transfer tube according to a second embodiment of the present invention in a direction perpendicular to the tube axis, and FIG. 5 is a cross section of the heat transfer tube according to the second embodiment in the tube axis direction. It is a figure. 4 and 5, 7 is a main groove provided on the inner surface of the heat transfer tube,
It is continuously provided in a spiral shape in the tube axis direction. 8
Is a plurality of fine auxiliary grooves that connect the main grooves 7 to each other.
Are connected in a continuous inclination direction and an inclination direction opposite to the pipe axis. The width of the auxiliary groove 8 is smaller than that of the main groove 7, and the cross-sectional area of the flow path is smaller than that of the main groove 7.

【0021】以上のように構成された伝熱管について、
蒸発器として使用される場合を例に取り、以下その動作
を説明する。
Regarding the heat transfer tube constructed as described above,
The operation will be described below by taking the case of use as an evaporator as an example.

【0022】図6は実施の形態2の伝熱管を用いた蒸発
器を示している。図6において、2は一定間隔で平行に
並べられたフィンで、従来の構成と同じものである。9
は本実施の形態の伝熱管で、フィン2に直角に挿入され
ている。この蒸発器では、従来の構成と同様にフィン2
の間を流れる気流と伝熱管9の管内を水平方向に流れる
冷媒との間で熱交換が行なわれる。そして、気流は冷媒
に熱を奪われて冷却され、冷媒は気流から熱を得て蒸発
し、液から蒸気に相変化する。このとき、水平な伝熱管
9の管内を流れる液冷媒は、重力の影響で管底部を流れ
るようとするが、表面張力によって主溝7や補助溝8に
保持されるため、伝熱管9と伝熱に有効な液冷媒とが接
する有効伝熱面積が増大する。また冷媒の乾き度が小さ
く液冷媒が多い領域では、冷媒の速度が小さいので補助
溝8で液膜を形成するのに障害となる余剰液冷媒は主溝
7を流れ、冷媒の乾き度が大きく液冷媒が少ない領域で
は、冷媒の速度が大きくなるので液冷媒のほとんどは補
助溝8を液膜を形成しながら流れることになる。従っ
て、冷媒の乾き度の大小にかかわらず、常に適量の液冷
媒が補助溝8を流れることになり、冷媒と伝熱管9との
間の熱伝達率が向上する。また、伝熱管9内を流れる液
冷媒は主溝7から補助溝8への分岐と補助溝8から主溝
7への合流とを繰り返して蛇行しながら流れるので、補
助溝8に形成される液膜は乱れが促進されることにな
り、このことによっても、冷媒と伝熱管9との間の熱伝
達率が向上する。
FIG. 6 shows an evaporator using the heat transfer tube of the second embodiment. In FIG. 6, reference numeral 2 designates fins arranged in parallel at regular intervals, which is the same as the conventional structure. 9
Is a heat transfer tube of the present embodiment, which is inserted into the fin 2 at a right angle. In this evaporator, the fin 2 is used as in the conventional configuration.
Heat is exchanged between the airflow flowing between the heat transfer tubes 9 and the refrigerant flowing horizontally in the heat transfer tubes 9. Then, the airflow is cooled by the heat taken by the refrigerant, and the refrigerant obtains heat from the airflow and evaporates, and the phase changes from liquid to vapor. At this time, the liquid refrigerant flowing in the horizontal heat transfer tube 9 tries to flow at the bottom of the tube due to the influence of gravity, but is held in the main groove 7 and the auxiliary groove 8 by the surface tension, so that the heat transfer tube 9 and the heat transfer tube 9 are transferred. The effective heat transfer area in contact with the heat-effective liquid refrigerant increases. Further, in a region where the dryness of the refrigerant is low and the liquid refrigerant is high, the speed of the refrigerant is low, so that the excess liquid refrigerant that is an obstacle to forming a liquid film in the auxiliary groove 8 flows through the main groove 7 and the dryness of the refrigerant is high. In the region where the amount of liquid refrigerant is small, the speed of the refrigerant is high, so most of the liquid refrigerant flows through the auxiliary groove 8 while forming a liquid film. Therefore, an appropriate amount of liquid refrigerant always flows through the auxiliary groove 8 regardless of the degree of dryness of the refrigerant, and the heat transfer coefficient between the refrigerant and the heat transfer tube 9 is improved. Further, since the liquid refrigerant flowing in the heat transfer tube 9 flows while meandering by repeatedly branching from the main groove 7 to the auxiliary groove 8 and merging from the auxiliary groove 8 to the main groove 7, the liquid refrigerant formed in the auxiliary groove 8 is formed. Turbulence is promoted in the film, and this also improves the heat transfer coefficient between the refrigerant and the heat transfer tube 9.

【0023】(実施の形態3)図7は、本発明の実施の
形態3の伝熱管の管軸と垂直方向の断面図、図8は、同
実施の形態の伝熱管の管軸方向の断面図である。図7と
図8において、10は伝熱管の内面に設けられた主溝
で、管軸方向に対して螺旋状に連続して設けられてい
る。11は主溝10相互を連結する複数の微細な補助溝
で、主溝10の連続する方向と管軸に対して同じ傾斜方
向に連結している。また、補助溝11は、その幅が主溝
10の幅よりも小さく、流路断面積が主溝10よりも小
さい構成になっている。
(Third Embodiment) FIG. 7 is a sectional view of a heat transfer tube according to a third embodiment of the present invention in a direction perpendicular to the tube axis, and FIG. 8 is a cross section of the heat transfer tube according to the third embodiment in the tube axis direction. It is a figure. In FIGS. 7 and 8, 10 is a main groove provided on the inner surface of the heat transfer tube, which is continuously provided in a spiral shape in the tube axis direction. A plurality of fine auxiliary grooves 11 connect the main grooves 10 to each other, and connect the main grooves 10 in the same inclination direction with respect to the continuous direction of the main grooves 10. The width of the auxiliary groove 11 is smaller than that of the main groove 10, and the cross-sectional area of the flow path is smaller than that of the main groove 10.

【0024】以上のように構成された伝熱管について、
蒸発器として使用される場合を例に取り、以下その動作
を説明する。
Regarding the heat transfer tube constructed as described above,
The operation will be described below by taking the case of use as an evaporator as an example.

【0025】図9は実施の形態3の伝熱管を用いた蒸発
器を示している。図9において、2は一定間隔で平行に
並べられたフィンで、従来の構成と同じものである。1
2は本実施の形態の伝熱管で、フィン2に直角に挿入さ
れている。この蒸発器では、従来の構成と同様にフィン
2の間を流れる気流と伝熱管12の管内を水平方向に流
れる冷媒との間で熱交換が行なわれる。そして、気流は
冷媒に熱を奪われて冷却され、冷媒は気流から熱を得て
蒸発し、液から蒸気に相変化する。このとき、水平な伝
熱管12の管内を流れる液冷媒は、重力の影響で管底部
を流れるようとするが、表面張力によって主溝10や補
助溝11に保持されるため、伝熱管12と伝熱に有効な
液冷媒とが接する有効伝熱面積が増大する。また冷媒の
乾き度が小さく液冷媒が多い領域では、冷媒の速度が小
さいので補助溝11で液膜を形成するのに障害となる余
剰液冷媒は主溝10を流れ、冷媒の乾き度が大きく液冷
媒が少ない領域では、冷媒の速度が大きくなるので液冷
媒のほとんどは補助溝11を液膜を形成しながら流れる
ことになる。従って、冷媒の乾き度の大小にかかわら
ず、常に適量の液冷媒が補助溝11を流れることにな
り、冷媒と伝熱管12との間の熱伝達率が向上する。ま
た、伝熱管12内を流れる液冷媒は主溝10から補助溝
11への分岐と補助溝11から主溝10への合流とを繰
り返して流れるが、主溝10と補助溝11が管軸に対し
て同じ方向に傾斜しているために、補助溝11の角度を
比較的小さくして圧力損失を抑えながら冷媒の旋回流れ
を強く得ることができ、補助溝11に形成される薄い液
膜は周方向に均一に分布することになり、このことによ
っても、冷媒と伝熱管12との間の熱伝達率が向上す
る。
FIG. 9 shows an evaporator using the heat transfer tube of the third embodiment. In FIG. 9, reference numeral 2 denotes fins arranged in parallel at regular intervals, which has the same structure as the conventional structure. 1
Reference numeral 2 denotes the heat transfer tube of this embodiment, which is inserted into the fin 2 at a right angle. In this evaporator, heat exchange is performed between the airflow flowing between the fins 2 and the refrigerant flowing horizontally in the heat transfer tube 12 as in the conventional configuration. Then, the airflow is cooled by the heat taken by the refrigerant, and the refrigerant obtains heat from the airflow and evaporates, and the phase changes from liquid to vapor. At this time, the liquid refrigerant flowing inside the horizontal heat transfer tube 12 tries to flow at the bottom of the tube due to the influence of gravity, but since it is held in the main groove 10 and the auxiliary groove 11 by the surface tension, the liquid refrigerant and the heat transfer tube 12 are transferred. The effective heat transfer area in contact with the heat-effective liquid refrigerant increases. Further, in a region where the degree of dryness of the refrigerant is low and the amount of liquid refrigerant is high, the velocity of the refrigerant is low, and therefore excess liquid refrigerant that is an obstacle to forming a liquid film in the auxiliary groove 11 flows through the main groove 10 and the dryness of the refrigerant is high. In the region where the amount of liquid refrigerant is small, the speed of the refrigerant is high, so most of the liquid refrigerant will flow through the auxiliary groove 11 while forming a liquid film. Therefore, an appropriate amount of liquid refrigerant always flows through the auxiliary groove 11 regardless of the degree of dryness of the refrigerant, and the heat transfer coefficient between the refrigerant and the heat transfer tube 12 is improved. Further, the liquid refrigerant flowing in the heat transfer tube 12 repeatedly flows by branching from the main groove 10 to the auxiliary groove 11 and merging from the auxiliary groove 11 to the main groove 10, but the main groove 10 and the auxiliary groove 11 serve as a tube axis. On the other hand, since they are inclined in the same direction, the angle of the auxiliary groove 11 can be made relatively small and the swirling flow of the refrigerant can be strongly obtained while suppressing the pressure loss, and the thin liquid film formed in the auxiliary groove 11 It is evenly distributed in the circumferential direction, and this also improves the heat transfer coefficient between the refrigerant and the heat transfer tube 12.

【0026】さらに、主溝10の流路断面積が補助溝1
1の流路断面積よりも大きいため、補助溝11で高い熱
伝達率が得られる薄い液膜を形成しながら、主溝10で
は、複数の補助溝11に対して余剰な液冷媒を排水しか
つ液冷媒を十分に混合でき、冷媒と伝熱管12との間の
熱伝達率がさらに向上する。
Furthermore, the cross-sectional area of the main groove 10 is equal to the auxiliary groove 1.
Since it is larger than the flow passage cross-sectional area of 1, the auxiliary groove 11 forms a thin liquid film capable of obtaining a high heat transfer coefficient, while the main groove 10 drains excess liquid refrigerant to the plurality of auxiliary grooves 11. Moreover, the liquid refrigerant can be sufficiently mixed, and the heat transfer coefficient between the refrigerant and the heat transfer tube 12 is further improved.

【0027】[0027]

【発明の効果】以上のように本発明によれば、冷媒の乾
き度が小さく液冷媒が多い領域では、冷媒の速度が小さ
いので補助溝で液膜を形成するのに障害となる余剰液冷
媒は主溝を流れ、冷媒の乾き度が大きく液冷媒が少ない
領域では、冷媒の速度が大きくなるので液冷媒のほとん
どは補助溝を流れることになる。従って、冷媒の乾き度
の大小にかかわらず、常に適量の液冷媒が補助溝を液膜
の状態で流れることになり、冷媒と伝熱管との間の熱伝
達率が向上するという有利な効果が得られる。
As described above, according to the present invention, in a region where the degree of dryness of the refrigerant is small and the amount of the liquid refrigerant is large, the speed of the refrigerant is small, and thus the excess liquid refrigerant which is an obstacle to forming the liquid film in the auxiliary groove. Flows in the main groove, and in a region where the degree of dryness of the refrigerant is high and the amount of liquid refrigerant is low, the speed of the refrigerant increases, so that most of the liquid refrigerant flows in the auxiliary groove. Therefore, regardless of the degree of dryness of the refrigerant, an appropriate amount of liquid refrigerant will always flow in the auxiliary groove in the state of a liquid film, which has the advantageous effect of improving the heat transfer coefficient between the refrigerant and the heat transfer tube. can get.

【0028】また,伝熱管内を流れる液冷媒は主溝から
補助溝への分岐と補助溝から主溝への合流とを繰り返し
て蛇行しながら流れるので、補助溝に形成される液膜の
乱れが促進されることになり、このことによって,さら
に冷媒と伝熱管との間の熱伝達率が向上するという有利
な効果が得られる。
Further, since the liquid refrigerant flowing in the heat transfer tube flows while meandering by repeatedly branching from the main groove to the auxiliary groove and merging from the auxiliary groove to the main groove, the liquid film formed in the auxiliary groove is disturbed. Is promoted, which has the advantageous effect of further improving the heat transfer coefficient between the refrigerant and the heat transfer tube.

【0029】さらに,主溝と補助溝が管軸に対して同じ
方向に傾斜しているために、補助溝の角度を比較的小さ
くして圧力損失を抑えながら冷媒の旋回流れを強く得る
ことができ、補助溝に形成される薄い液膜を周方向に均
一に分布させることができることになり、このことによ
って、さらに冷媒と伝熱管との間の熱伝達率が向上する
という有利な効果が得られる。
Further, since the main groove and the auxiliary groove are inclined in the same direction with respect to the pipe axis, it is possible to obtain a strong swirling flow of the refrigerant while suppressing the pressure loss by making the angle of the auxiliary groove relatively small. Therefore, the thin liquid film formed in the auxiliary groove can be uniformly distributed in the circumferential direction, which has an advantageous effect of further improving the heat transfer coefficient between the refrigerant and the heat transfer tube. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1による伝熱管の管軸と垂
直方向の断面図
FIG. 1 is a sectional view of a heat transfer tube according to a first embodiment of the present invention in a direction perpendicular to a tube axis.

【図2】同実施の形態による伝熱管の管軸方向の断面図FIG. 2 is a cross-sectional view of the heat transfer tube in the tube axis direction according to the same embodiment.

【図3】同実施の形態による伝熱管を用いた蒸発器の斜
視図
FIG. 3 is a perspective view of an evaporator using a heat transfer tube according to the same embodiment.

【図4】本発明の実施の形態2による伝熱管の管軸と垂
直方向の断面図
FIG. 4 is a sectional view of a heat transfer tube according to a second embodiment of the present invention in a direction perpendicular to a tube axis.

【図5】同実施の形態による伝熱管の管軸方向の断面図FIG. 5 is a sectional view of the heat transfer tube according to the embodiment, taken along the tube axis direction.

【図6】同実施の形態による伝熱管を用いた蒸発器の斜
視図
FIG. 6 is a perspective view of an evaporator using a heat transfer tube according to the same embodiment.

【図7】本発明の実施の形態3による伝熱管の管軸と垂
直方向の断面図
FIG. 7 is a sectional view of a heat transfer tube according to a third embodiment of the present invention in a direction perpendicular to a tube axis.

【図8】同実施の形態による伝熱管の管軸方向の断面図FIG. 8 is a cross-sectional view of the heat transfer tube in the tube axis direction according to the same embodiment.

【図9】同実施の形態による伝熱管を用いた蒸発器の斜
視図
FIG. 9 is a perspective view of an evaporator using a heat transfer tube according to the same embodiment.

【図10】従来の伝熱管の管軸と垂直方向の断面図FIG. 10 is a sectional view of a conventional heat transfer tube in a direction perpendicular to the tube axis.

【図11】従来の伝熱管の管軸方向の断面図FIG. 11 is a sectional view of a conventional heat transfer tube in the tube axis direction.

【図12】従来の伝熱管を用いた蒸発器の斜視図FIG. 12 is a perspective view of an evaporator using a conventional heat transfer tube.

【符号の説明】 4 主溝 5 補助溝 7 主溝 8 補助溝 10 主溝 11 補助溝[Explanation of reference numerals] 4 main groove 5 auxiliary groove 7 main groove 8 auxiliary groove 10 main groove 11 auxiliary groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 管軸方向に対して螺旋状に連続する主溝
と、前記主溝相互を連結する複数の微細な補助溝とを内
面に備えた伝熱管。
1. A heat transfer tube having, on its inner surface, a main groove spirally continuous in the tube axis direction, and a plurality of fine auxiliary grooves connecting the main grooves to each other.
【請求項2】 補助溝を管軸に対して主溝の連続する方
向と逆の方向に傾斜させた請求項1記載の伝熱管。
2. The heat transfer tube according to claim 1, wherein the auxiliary groove is inclined with respect to the tube axis in a direction opposite to the direction in which the main groove is continuous.
【請求項3】 補助溝を管軸に対して主溝の連続する方
向と同じ方向に傾斜させた請求項1記載の伝熱管。
3. The heat transfer tube according to claim 1, wherein the auxiliary groove is inclined with respect to the tube axis in the same direction as the main groove continues.
【請求項4】 主溝の流路断面積を補助溝の流路断面積
よりも大きくした請求項1記載の伝熱管。
4. The heat transfer tube according to claim 1, wherein the flow passage cross-sectional area of the main groove is larger than the flow passage cross-sectional area of the auxiliary groove.
JP6773996A 1996-03-25 1996-03-25 Heat transfer pipe Pending JPH09257385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6773996A JPH09257385A (en) 1996-03-25 1996-03-25 Heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6773996A JPH09257385A (en) 1996-03-25 1996-03-25 Heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH09257385A true JPH09257385A (en) 1997-10-03

Family

ID=13353627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6773996A Pending JPH09257385A (en) 1996-03-25 1996-03-25 Heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH09257385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005588A (en) * 2000-06-22 2002-01-09 Sumitomo Light Metal Ind Ltd Inner helically grooved tube and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005588A (en) * 2000-06-22 2002-01-09 Sumitomo Light Metal Ind Ltd Inner helically grooved tube and its manufacturing method
JP4632487B2 (en) * 2000-06-22 2011-02-16 住友軽金属工業株式会社 Internal grooved heat transfer tube and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS58217195A (en) Heat exchanger
JP4073850B2 (en) Heat exchanger
JPH04295599A (en) Heat exchanger
JP3322292B2 (en) Heat transfer tube
JP3284904B2 (en) Heat exchanger
US4175617A (en) Skewed turn coiled tube heat exchanger for refrigerator evaporators
JP3256634B2 (en) Heat exchanger
EP0857935A2 (en) Integral type heat exchanger
JP2004085168A (en) Heat exchanger
JP3811909B2 (en) Heat transfer tube and heat exchanger using the same
JPH09257385A (en) Heat transfer pipe
JP2001304719A (en) Module type multi-channel flat pipe evaporator
JPH06147784A (en) Heat exchanger tube
JPH06147532A (en) Air conditioner
JP2001133076A (en) Heat exchanger
JPS63197887A (en) Heat exchanger
CN212457513U (en) Heat exchanger and air conditioner
WO2022206765A1 (en) Heat exchanger and air conditioner system
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JP3130063B2 (en) Boiling heat transfer tube
JP2008101907A (en) Heat exchanger
JPH0949698A (en) Heat exchanger
JPS59115983A (en) Heat exchanger
CN111928539A (en) Heat exchanger and air conditioner
JPH02171525A (en) Heat exchanger for air conditioner