JPH09255494A - Production of neodymium gallium garnet single crystal - Google Patents

Production of neodymium gallium garnet single crystal

Info

Publication number
JPH09255494A
JPH09255494A JP7166596A JP7166596A JPH09255494A JP H09255494 A JPH09255494 A JP H09255494A JP 7166596 A JP7166596 A JP 7166596A JP 7166596 A JP7166596 A JP 7166596A JP H09255494 A JPH09255494 A JP H09255494A
Authority
JP
Japan
Prior art keywords
gallium oxide
single crystal
content
neodymium
ngg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7166596A
Other languages
Japanese (ja)
Inventor
Shinji Makikawa
新二 牧川
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7166596A priority Critical patent/JPH09255494A/en
Publication of JPH09255494A publication Critical patent/JPH09255494A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a neodymium gallium garnet(NGG) single crystal having low dislocation content in the single crystal, small compositional fluctuation and high quality by suppressing the content of β-gallium oxide in the molten liquid of NGG below a prescribed level. SOLUTION: A neodymium gallium garnet single crystal is produced by suppressing the content of β-gallium oxide in the molten liquid of the substance to <=0.1wt.%. The number of dislocations in the obtained NGG single crystal can be decreased and a highqualaty crystal can be produced by suppessing the β-gallium oxide content in the molten liquid to <=0.1wt.%. The β-gallium oxide content in the molten liquid can be decreased to <=0.1wt.% by decreasing the β-gallium oxide content in the starting gallium oxide to <=10wt.%. The average particle diameter of the gallium oxide to be used as a raw material is preferably adjusted to <=1mm since gallium oxide having an average particle diameter of >=1mm forms a coagulum in melting to hinder the reaction with neodymium oxide and increase the ratio of β-gallium oxide rearranged from gallium oxide at a high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はネオジムガリウムガ
ーネット単結晶の製造方法、特には光アイソレーター、
光磁気センサーなどに利用する基板材料となるネオジム
ガリウムガーネット単結晶の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a neodymium gallium garnet single crystal, particularly an optical isolator,
The present invention relates to a method for producing a neodymium gallium garnet single crystal which is a substrate material used for a magneto-optical sensor or the like.

【0002】[0002]

【従来の技術】ネオジムガリウムガーネット単結晶(Nd3
Ga5O12) は光アイソレーター、光磁気センサーの基板材
料として使用されているが、該単結晶酸化ネオジムと酸
化ガリウムを化学量論組成に計り取り、混合、焼成して
イリジウムるつぼに入れたのち、融解温度 1,650℃以上
に加熱して融解し、引き上げ法で単結晶を育成している
(ジャーナル・オブ・クリスタルグロウス、12(197
2)、P.3)。なお、この結晶の高品質化については組
成を酸化ネオジム側にずらす方法(特開昭62-19602号公
報参照)、フローティング・ゾーン法(FZ法)での結
晶育成法(日本結晶成長学会誌、14(1987)、P.29)な
どが知られている。
2. Description of the Related Art Neodymium gallium garnet single crystal (Nd 3
Ga 5 O 12 ) is used as a substrate material for optical isolators and magneto-optical sensors, but the single crystal neodymium oxide and gallium oxide are weighed to a stoichiometric composition, mixed, baked and put in an iridium crucible. , Melting temperature of 1,650 ℃ or more to melt and grow single crystal by pulling method (Journal of Crystal Grouse, 12 (197
2), P.3). In order to improve the quality of this crystal, a method of shifting the composition to the neodymium oxide side (see JP-A-62-19602) and a crystal growth method by the floating zone method (FZ method) (Journal of Japan Society for Crystal Growth, 14 (1987), P.29) are known.

【0003】[0003]

【発明が解決しようとする課題】ネオジムガリウムガー
ネット単結晶(以下NGGと略記する)は、光アイソレ
ーターや光磁気センサーの基板材料として注目されてい
る。最近はこの結晶の高品質化が要求されており、単結
晶中の転位が少なく、組成変動の極めて小さいものが求
められている。しかし、NGGはガーネット構造をとる
酸化物単結晶であるが、ネオジムイオンはイオン半径が
大きいためにガーネット構造の正12面体中心にしか入り
にくく、結晶組成に対して融液組成が化学量論的に一致
するため、非常に固液領域が狭いという問題点がある。
Neodymium gallium garnet single crystal (hereinafter abbreviated as NGG) has been attracting attention as a substrate material for optical isolators and magneto-optical sensors. Recently, there has been a demand for higher quality of this crystal, and there is a demand for a crystal that has few dislocations and extremely small composition fluctuation. However, although NGG is an oxide single crystal having a garnet structure, neodymium ions have a large ionic radius, so it is difficult to enter the center of the dodecahedron of the garnet structure, and the melt composition is stoichiometric with respect to the crystal composition. Therefore, there is a problem that the solid-liquid region is very narrow.

【0004】そのため、融液組成をネオジム側にずらす
方法で高品質化をはかることも提案されているが(特開
昭62-19602号公報参照)、NGG融液中でミクロでの組
成均一が必ずしも均一に保たれているとは限らないとい
う難点がある。また、NGGは固溶領域が狭いので、F
Z法でも結晶組成の均一化が可能であるが、直径25mm以
上のNGG単結晶を製造するのは困難であるという問題
点もある。
Therefore, it has been proposed to improve the quality by shifting the melt composition to the neodymium side (see Japanese Patent Application Laid-Open No. 62-19602), but it is possible to obtain a uniform composition in the NGG melt. There is a drawback that it is not always kept uniform. In addition, since NGG has a small solid solution region, F
Although the crystal composition can be made uniform even by the Z method, there is a problem that it is difficult to produce an NGG single crystal having a diameter of 25 mm or more.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決するため、NGG単結晶の製造方法に
おいて、該単結晶の融液中に含有されるβ型酸化ガリウ
ムの含有量を 0.1重量%以下とすることを特徴とするも
のである。
In order to solve such disadvantages and problems, the present invention provides a method for producing an NGG single crystal, wherein the content of β-type gallium oxide contained in the melt of the single crystal is Is 0.1% by weight or less.

【0006】[0006]

【発明の実施の形態】本発明によるNGG単結晶の製造
においては、NGG単結晶の融点が 1,650℃であるのに
対し、酸化ガリウムの融点が 1,740℃であるから、原料
溶融時に酸化ガリウムが融解しないまま融液中に存在す
ることが考えられ、酸化ガリウムがそのままNGG単結
晶に取りこまれると、微少領域で組成変動を起し、また
そこから転位も生じてしまう。他方、酸化ガリウムは高
温ではβ型の晶形に変化して酸およびアルカリに不溶な
化合物となることが考慮された。NGG単結晶の融液中
のβ型の酸化ガリウムを測定する方法として、融液を一
度室温まで冷却したのち、所定量の固形物を採取し、そ
のサンプルを60℃以上の濃塩酸に加温溶解した際の不溶
解残渣の重量を測定することで求めることができる。し
たがって、本発明により酸化ネオジムと酸化ガリウムと
を化学量論比で秤取して融解したNGG単結晶の融液に
ついて、上記方法でβ型酸化ガリウム量を測定した結
果、この融液中のβ型酸化ガリウムの含有量を 0.1重量
%以下とすれば、得られたNGG単結晶中の転位数を少
なくでき、結晶を高品質とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of NGG single crystal according to the present invention, the melting point of NGG single crystal is 1,650 ° C., whereas the melting point of gallium oxide is 1,740 ° C. If gallium oxide is taken into the NGG single crystal as it is, it is possible that it will be present in the melt without doing so, and composition change will occur in a minute region, and dislocation will also occur from there. On the other hand, it was considered that gallium oxide changes into β-type crystal form at high temperature to become a compound insoluble in acid and alkali. As a method for measuring β-type gallium oxide in the melt of NGG single crystal, the melt was once cooled to room temperature, a predetermined amount of solid matter was collected, and the sample was heated in concentrated hydrochloric acid at 60 ° C or higher. It can be determined by measuring the weight of the undissolved residue when dissolved. Therefore, the amount of β-type gallium oxide was measured by the above method for the melt of NGG single crystal obtained by weighing neodymium oxide and gallium oxide in a stoichiometric ratio and melting them according to the present invention. When the content of type gallium oxide is 0.1% by weight or less, the number of dislocations in the obtained NGG single crystal can be reduced, and the crystal can be made high quality.

【0007】なお、β型酸化ガリウムは酸化ガリウムが
高温になったときに生成するのであるが、原料の酸化ガ
リウム中に含まれているβ型酸化ガリウムの含有量が10
重量%以上となると融液中におけるβ型酸化ガリウムの
含有量も増加するので、融液中におけるβ型酸化ガリウ
ムの含有量を 0.1重量%以下とするためには原料の酸化
ガリウム中のβ型酸化ガリウムの含有量を10重量%以下
とするとよいことが見出された。
Although β-type gallium oxide is produced when gallium oxide reaches a high temperature, the content of β-type gallium oxide contained in the raw material gallium oxide is 10%.
Since the content of β-type gallium oxide in the melt increases when the content is more than 10% by weight, the β-type gallium oxide in the raw material must be β-type gallium oxide in order to reduce the content of β-type gallium oxide in the melt to 0.1% by weight or less. It was found that the gallium oxide content should be 10% by weight or less.

【0008】また、原料の酸化ガリウムの平均粒子径
は、1mm以上では融解するときに、凝集しているので容
易に酸化ネオジムとは反応せず、高温時にβ型酸化ガリ
ウムに転位する比率が高くなるので、平均粒子径を1mm
以下とするのがよいことが確認された。
Further, when the average particle diameter of the gallium oxide as the raw material is 1 mm or more, it does not easily react with neodymium oxide because it aggregates when it melts, and the proportion of dislocation to β-type gallium oxide at a high temperature is high. Therefore, the average particle size is 1 mm
It was confirmed that the following is recommended.

【0009】[0009]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1 4N(純度99.99 %、以下同じ)の酸化ネオジム1,745g
と4Nの酸化ガリウム1,255gを秤取し、これらを混合し
て 1,000℃で焼成したのち、直径 100mm、高さ100mmの
イリジウムるつぼに入れ、高周波加熱により 1,650℃以
上に加熱してこれを融解した。
Next, examples of the present invention and comparative examples will be described. Example 1 1,745 g of 4N neodymium oxide having a purity of 99.99% (the same applies hereinafter)
1,255 g of 4N gallium oxide were weighed out, mixed and baked at 1,000 ° C, then placed in an iridium crucible with a diameter of 100 mm and a height of 100 mm and heated to 1,650 ° C or higher by high frequency heating to melt it. .

【0010】ついで、この融液を一旦常温まで冷却して
固化させて5.0gのサンプルを採取し、これを濃塩酸50ml
に入れ、 100℃で加熱溶解し、その際に生じた不溶性残
渣を重量測定したところ 2.4mg(0.048 重量%)であっ
た。つぎに、この冷却固形体を 1,650℃以上に再加熱し
て融液とし、これから直径50mmφ、長さ60mmのNGG単
結晶を引上げ速度3mm/時で引き上げ、この単結晶から
評価用ウエハを切り出し、熱リン酸でエッチングしてこ
のウエハの転位数をしらべたところ5個だけであった。
Next, the melt was once cooled to room temperature and solidified to obtain 5.0 g of a sample, which was concentrated in 50 ml of concentrated hydrochloric acid.
The solution was heated and dissolved at 100 ° C., and the insoluble residue produced at that time was weighed to find 2.4 mg (0.048% by weight). Next, this cooled solid body is reheated to 1,650 ° C. or more to form a melt, and an NGG single crystal having a diameter of 50 mmφ and a length of 60 mm is pulled up at a pulling rate of 3 mm / hour, and a wafer for evaluation is cut out from this single crystal. When the number of dislocations in this wafer was examined by etching with hot phosphoric acid, it was only 5.

【0011】実施例2 4Nの酸化ガリウムを 1,000℃で焼成し、これから5.0g
のサンプルを採取し、50mlの濃塩酸に入れ 100℃で加熱
溶解したのち、このときに生じた不溶解残渣の重量を測
定したところ、 300mg(6重量%)であった。ついで、
4Nの酸化ネオジム1,745gと上記の4Nの酸化ガリウム
1,255gを秤取し、これらを混合して 1,000℃で焼成し、
この3,000gを直径 100mmφ、高さ 100mmのイリジウムる
つぼに入れ、高周波加熱により 1,650℃以上に加熱して
これを融解した。
Example 2 4N gallium oxide was calcined at 1,000 ° C. to obtain 5.0 g
The sample was sampled, put in 50 ml of concentrated hydrochloric acid and dissolved by heating at 100 ° C., and the weight of the insoluble residue produced at this time was measured to be 300 mg (6% by weight). Then
1,745 g of 4N neodymium oxide and the above 4N gallium oxide
Weigh 1,255g, mix these and bake at 1,000 ℃,
This 3,000 g was put into an iridium crucible having a diameter of 100 mmφ and a height of 100 mm, and was heated to 1,650 ° C. or higher by high frequency heating to melt it.

【0012】つぎに、この融液を冷却固化してサンプル
5.0gを採取し、これを50mlの濃塩酸に入れ、 100℃で加
熱溶解し、その不溶性残渣の重量を測定したところ、
2.7mg(0.054 重量%)であったので、この固形体を 1,
650℃以上に再加熱して融液とし、これから直径50mm
φ、長さ60mmのNGG単結晶を引き上げ速度3mm/時で
引き上げ、この単結晶から評価用ウエハを切り出し、熱
リン酸でエッチングしてウエハの転位数をしらべたとこ
ろ7個しか存在していなかった。
Next, the melt was cooled and solidified to obtain a sample.
5.0g was collected, put in 50ml concentrated hydrochloric acid, dissolved by heating at 100 ℃, the weight of the insoluble residue was measured,
It was 2.7 mg (0.054% by weight).
Reheat to 650 ℃ or higher to obtain a melt, and the diameter is 50mm
A φ, 60 mm long NGG single crystal was pulled at a pulling rate of 3 mm / hour, a wafer for evaluation was cut out from this single crystal, and the number of dislocations in the wafer was examined by etching with hot phosphoric acid. It was

【0013】実施例3 4Nの酸化ガリウムを1mmメッシュに通したのち、1mm
メッシュ以下のものを分取し、これを 1,000℃で焼成し
てからサンプル5.0gを採取し、これを50mlの濃塩酸に入
れ、 100℃で加熱溶解したのちその不溶性残渣の重量を
測定したところ320mg(6.4 重量%)であった。つい
で、4Nの酸化ネオジム1,745gと上記分取した4Nの酸
化ガリウム1,255gを秤取し、これを 1,000℃で焼成し、
この3,000gを直径 100mmφ、高さ 100mmのイリジウムる
つぼに入れ、高周波加熱により 1,650℃以上に加熱し融
解した。
Example 3 After passing 4N gallium oxide through a 1 mm mesh, 1 mm
A sample below the mesh was sampled, baked at 1,000 ° C, sampled at 5.0 g, put in 50 ml of concentrated hydrochloric acid, dissolved by heating at 100 ° C, and the weight of the insoluble residue was measured. It was 320 mg (6.4% by weight). Then, 1,745 g of 4N neodymium oxide and 1,255 g of 4N gallium oxide that had been dispensed above were weighed and baked at 1,000 ° C.
This 3,000 g was put into an iridium crucible having a diameter of 100 mmφ and a height of 100 mm, and was heated to 1650 ° C. or higher by high frequency heating to melt.

【0014】つぎに、この融液を冷却固化してサンプル
5.0gを採取し、これを50mlの濃塩酸に入れ、 100℃で加
熱溶解し、不溶性残渣の重量を測定したところ、 2.1mg
(0.042 重量%)であったので、この固形体を 1,650℃
以上に再加熱し融液とし、これから直径50mmφ、長さ60
mmのNGG単結晶を引き上げ速度3mm/時で引き上げ、
この単結晶から評価用ウエハを切り出し、熱リン酸でエ
ッチングしてこのウエハの転位数をしらべたところ3個
しか認められなかった。
Next, the melt was cooled and solidified to obtain a sample.
5.0 g was taken, put it in 50 ml concentrated hydrochloric acid, dissolved by heating at 100 ° C, and weighed the insoluble residue.
(0.042% by weight), so this solid was
Reheat to the above temperature to obtain a melt. From this, diameter 50 mmφ, length 60
mm NGG single crystal is pulled at a pulling rate of 3 mm / hour,
When a wafer for evaluation was cut out from this single crystal and etched with hot phosphoric acid, the number of dislocations in this wafer was examined, and only three were found.

【0015】比較例1 4Nの酸化ネオジム1,745gと4Nの酸化ガリウム1,255g
を秤取し、これを混合し、 1,200℃で焼成したのち、直
径 100mmφ、高さ 100mmのイリジウムるつぼに入れ、高
周波加熱により 1,650℃以上に加熱して融解し、これを
一度冷却して固化させ、サンプル5.0gを採取し、50mlの
濃塩酸に入れ 100℃で加熱溶解し、不溶性残渣の重量を
測定したところ 6.0mg(0.12重量%)であった。
Comparative Example 1 4N neodymium oxide 1,745 g and 4N gallium oxide 1,255 g
Weigh this, mix it, and bake at 1,200 ° C, then put it in an iridium crucible with a diameter of 100 mmφ and a height of 100 mm, heat it by high frequency heating to 1,650 ° C or higher to melt it, and once cool it to solidify. A 5.0 g sample was taken, placed in 50 ml of concentrated hydrochloric acid, dissolved by heating at 100 ° C., and the weight of the insoluble residue was measured to be 6.0 mg (0.12% by weight).

【0016】ついで、この固形体を再度 1,650℃以上に
加熱して融液とし、これから直径50mmφ、長さ60mmのN
GG単結晶を引上げ速度3mm/時で引き上げ、この単結
晶から評価用ウエハを切り出し、熱リン酸でエッチング
して転位数をしらべたところ30個存在していた。
Next, the solid body is heated again to 1,650 ° C. or higher to form a melt, and N having a diameter of 50 mmφ and a length of 60 mm is formed from the melt.
A GG single crystal was pulled at a pulling rate of 3 mm / hour, an evaluation wafer was cut out from this single crystal, and the number of dislocations was found by etching with hot phosphoric acid to find 30 dislocations.

【0017】比較例2 4Nの酸化ガリウムを 1,200℃で焼成し、これから5.0g
のサンプルを採取し、これを50mlの濃塩酸に入れ、 100
℃で加熱溶解し、不溶性残渣の重量を測定したところ 6
00mg(12重量%)であった。ついで、4Nの酸化ネオジ
ム1,745gと上記の4N酸化ガリウム1,255gを秤取し、こ
れらを混合し、 1,200℃で焼成したのち、この3,000gを
直径 100mmφ、高さ100mmのイリジウムるつぼに入れ、
高周波加熱により 1,650℃以上に加熱して融解した。
Comparative Example 2 4N gallium oxide was calcined at 1,200 ° C.
Take a sample of this, put it in 50 ml of concentrated hydrochloric acid, and
It was dissolved by heating at ℃, and the weight of the insoluble residue was measured.
It was 00 mg (12% by weight). Then, 1,745 g of 4N neodymium oxide and 1,255 g of the above 4N gallium oxide were weighed, mixed and baked at 1,200 ° C., and 3,000 g of this was put in an iridium crucible having a diameter of 100 mmφ and a height of 100 mm,
It was heated to over 1,650 ℃ by high frequency heating and melted.

【0018】つぎに、これを一度冷却して固化させて、
サンプル5.0gを採取してこれを50mlの濃塩酸に入れ、 1
00℃で加熱溶解して不溶性残渣の重量を測定したところ
7.2mg(0.144 重量%)であったが、この固形体を再度
1,650℃以上に加熱して融液とし、これから直径50mm
φ、長さ60mmのNGG単結晶を引上げ速度3mm/時で引
き上げ、この単結晶から評価用ウエハを切り出し、熱リ
ン酸でエッチングしてこのウエハの転位数をしらべたと
ころ50個以上存在していた。
Next, this is once cooled and solidified,
Take 5.0g sample and put it in 50ml concentrated hydrochloric acid, 1
The weight of the insoluble residue was measured by heating and melting at 00 ℃.
It was 7.2 mg (0.144% by weight).
It is heated to 1,650 ℃ or higher to form a melt, and the diameter is 50mm.
A φ, 60 mm long NGG single crystal was pulled at a pulling rate of 3 mm / hr, a wafer for evaluation was cut out from this single crystal, and the number of dislocations in this wafer was examined by etching with hot phosphoric acid. It was

【0019】比較例3 4Nの酸化ガリウムを1mmメッシュを通して、1mmメッ
シュよりも大きいものを分取し、これを 1,200℃で焼成
し、これから5.0gのサンプルを採取し、これを50mlの濃
塩酸に入れ、 100℃で加熱溶解し、このときの不溶性残
渣の重量を測定したところ 1,200mg(24重量%)であっ
た。ついで、4Nの酸化ネオジム1,745gと上記の4Nの
酸化ガリウム1,255gを秤取し、これらを混合し、 1,250
℃で焼成してこの3,000gを直径 100mmφ、高さ 100mmの
イリジウムるつぼに入れ、高周波加熱により 1,650℃以
上に加熱して融解した。
Comparative Example 3 4N gallium oxide having a size larger than 1 mm mesh was taken out through a 1 mm mesh and calcined at 1,200 ° C., and 5.0 g of a sample was taken from this, which was added to 50 ml of concentrated hydrochloric acid. The mixture was put in, dissolved by heating at 100 ° C., and the weight of the insoluble residue at this time was measured to be 1,200 mg (24% by weight). Then, 1,745 g of 4N neodymium oxide and 1,255 g of the above 4N gallium oxide were weighed and mixed to obtain 1,250
After calcination at ℃, 3,000g of this was put into an iridium crucible having a diameter of 100 mmφ and a height of 100 mm, and heated to 1650 ° C or higher by high frequency heating to melt.

【0020】つぎに、これを一度冷却し固化させてこれ
からサンプル5.0gを採取し、これを50mlの濃塩酸に入
れ、 100℃で加熱溶解し、不溶性残渣の重量を測定した
ところ、 8.0mg(0.16重量%)であった。この固形体を
再度 1,650℃以上に加熱して融液とし、これから直径50
mmφ、長さ60mmのNGG単結晶を引き上げ速度3mm/時
で引き上げ、この単結晶から評価用ウエハを切り出し、
熱リン酸でエッチングしてこのウエハの転位数をしらべ
たところ50個以上存在していた。
Next, this was once cooled and solidified to obtain 5.0 g of a sample, which was put in 50 ml of concentrated hydrochloric acid and dissolved by heating at 100 ° C., and the weight of the insoluble residue was measured. 0.16% by weight). The solid body is heated again to 1,650 ° C or higher to form a melt, and the diameter of 50
An NGG single crystal of mmφ and a length of 60 mm was pulled at a pulling rate of 3 mm / hour, and a wafer for evaluation was cut out from this single crystal,
When the number of dislocations in this wafer was examined by etching with hot phosphoric acid, there were 50 or more.

【0021】[0021]

【発明の効果】本発明これによれば、融液中におけるミ
クロの均一化がはかられ、転移数の少ない高品質のNG
G単結晶を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, high-quality NG having a small number of transitions can be obtained by achieving micro homogenization in the melt.
A G single crystal can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ネオジムガリウムガーネット単結晶の製
造方法において、該単結晶の融液中に含有されるβ型酸
化ガリウムの含有量を 0.1重量%以下とすることを特徴
とするネオジムガリウムガーネット単結晶の製造方法。
1. A method for producing a neodymium gallium garnet single crystal, wherein the content of β-type gallium oxide contained in the melt of the single crystal is 0.1 wt% or less. Manufacturing method.
【請求項2】 該単結晶の原料である酸化ガリウムに含
有されているβ型酸化ガリウムの含有量が10重量%以下
である請求項1に記載したネオジムガリウムガーネット
単結晶の製造方法。
2. The method for producing a neodymium gallium garnet single crystal according to claim 1, wherein the content of β-type gallium oxide contained in gallium oxide which is a raw material of the single crystal is 10% by weight or less.
【請求項3】 該単結晶の原料である酸化ガリウムが平
均粒子径1mm以下のものである請求項1に記載したネオ
ジムガリウムガーネット単結晶の製造方法。
3. The method for producing a neodymium gallium garnet single crystal according to claim 1, wherein gallium oxide which is a raw material of the single crystal has an average particle diameter of 1 mm or less.
JP7166596A 1996-03-27 1996-03-27 Production of neodymium gallium garnet single crystal Pending JPH09255494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7166596A JPH09255494A (en) 1996-03-27 1996-03-27 Production of neodymium gallium garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7166596A JPH09255494A (en) 1996-03-27 1996-03-27 Production of neodymium gallium garnet single crystal

Publications (1)

Publication Number Publication Date
JPH09255494A true JPH09255494A (en) 1997-09-30

Family

ID=13467132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7166596A Pending JPH09255494A (en) 1996-03-27 1996-03-27 Production of neodymium gallium garnet single crystal

Country Status (1)

Country Link
JP (1) JPH09255494A (en)

Similar Documents

Publication Publication Date Title
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
KR20000076212A (en) Lanthanum gallium silicate disc and its preparation method
US3341302A (en) Flux-melt method for growing single crystals having the structure of beryl
JPH09255494A (en) Production of neodymium gallium garnet single crystal
US3975308A (en) Preparation of pyrophosphates
JPH09328396A (en) Garnet crystal for substrate of magnetooptic element and its production
JPH0235717B2 (en)
JP3183192B2 (en) Method for producing oxide single crystal and oxide single crystal
JP4292565B2 (en) Garnet single crystal substrate and manufacturing method thereof
US3674455A (en) Process for the synthesis of glass and single crystal germanates of identical composition
JPH07206577A (en) Process for growing rare earth-gallium-perovskite single crystal
JPS59169995A (en) Preparation of single crystal of hgcdte
JP2741747B2 (en) Oxide single crystal and method for producing the same
JPH05310494A (en) Growth of single crystal
JPH01138199A (en) Lead-tin-tellurium based semiconductor single crystal
JPH0474317B2 (en)
JPH07115996B2 (en) Neodymium gallium garnet single crystal and method for producing the same
RU2011644C1 (en) Glass for glass ceramic material
JPS61186298A (en) Production of single crystal
JP2003137691A (en) Method of producing single crystal
JPH0380194A (en) Rare earth-gallium-perovskite single crystal and production thereof
JP2714403B2 (en) Method for producing single crystals of gallotitanogallate
JPH0232238B2 (en) GADORINIUMUTETSUGAANETSUTOTANKETSUSHONOSEIZOHOHO
JPS61201696A (en) Production of compound semiconductor single crystal
JPH0319199B2 (en)