JPS61186298A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS61186298A
JPS61186298A JP60027667A JP2766785A JPS61186298A JP S61186298 A JPS61186298 A JP S61186298A JP 60027667 A JP60027667 A JP 60027667A JP 2766785 A JP2766785 A JP 2766785A JP S61186298 A JPS61186298 A JP S61186298A
Authority
JP
Japan
Prior art keywords
flux
single crystal
crystal
pulling
bi2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60027667A
Other languages
Japanese (ja)
Inventor
Haruo Haba
羽場 春夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60027667A priority Critical patent/JPS61186298A/en
Publication of JPS61186298A publication Critical patent/JPS61186298A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a large-sized single crystal of Y3-xBixFe5O12 having high quality, in a short time, by the flux pulling-up method using a BaO-Bi2O3-B2O3 flux. CONSTITUTION:A Y3-xBixFe5O12 single crystal is produced by flux pulling-up method comprising the growth and pulling-up of a single crystal from flux using a seed crystal while decreasing the temperature. In the above process, BaO-Bi2O3-B2O3 is used as the flux. A single crystal having desired plane direction can be produced by the above process by properly selecting the plane direction of the seed crystal, and the diameter of the single crystal can be controlled arbitrarily by controlling the rate of pulling and the rate of temperature decrease. Accordingly a large-sized single crystal of Y3-xBixFe5O12 having high quality can be produced in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Y 3.−XBTX 1+’esOtz  
単結晶の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to Y3. -XBTX 1+'esOtz
This invention relates to a method for producing a single crystal.

〔従来の技術〕[Conventional technology]

y3r85o12 (以下Y工Gと略す)は、近赤外領
域の光(波長1.5〜5μm)に対して吸収係数が0.
26 dB/cm  と小さく、比ファラデー回転能が
270°/cfn  と大きいことから光アイソレータ
等の光機能繁子に利用される。こi−気光学結晶である
Y工GのY位置の一部を、B1で置換した結晶、Y 3
−zBiX ? e s O,xz  (以下BiY工
Gと略す)において比ファラデー回転能(偏光面の回転
角)の増加することが報告されている。(atTake
uchj、 et al 、 ” Faraday r
otationand optical absorp
tion of ih−singlecrystal 
of bismuth−substituted ga
d。
y3r85o12 (hereinafter abbreviated as Y-G) has an absorption coefficient of 0.0 for light in the near-infrared region (wavelength 1.5 to 5 μm).
Since it has a small specific Faraday rotation ability of 26 dB/cm and a large specific Faraday rotation of 270°/cfn, it is used for optical function components such as optical isolators. This is a crystal in which part of the Y position of Y-G, which is an optical crystal, is replaced with B1, Y3
-zBiX? It has been reported that the specific Faraday rotation power (rotation angle of the plane of polarization) increases in e s O,xz (hereinafter abbreviated as BiY-G). (atTake
uchj, et al, ” Faraday r
rotation and optical absorption
tion of ih-single crystal
of bismuth-substituted ga
d.

11n1.umiron garhet”、J、Api
pl、Phys、 44゜一般に、望みのイオンを望み
の量で置換ができ、そのうえ良質な大型単結晶が得られ
るような製造方法としては、ひきあげ法が考えられる。
11n1. umiron garhet”, J, Api
pl, Phys, 44° In general, the pulling method can be considered as a manufacturing method that allows replacement of desired ions in desired amounts and also provides high-quality large-sized single crystals.

しかしBiY工Gは十数百度で分解溶融するのでこのひ
きあげ法等の直接溶融法で製造するのは困難である。そ
のため単結晶の製造には、フラックス法が用いられる。
However, since BiY-G decomposes and melts at a temperature of 10-100 degrees, it is difficult to produce it by a direct melting method such as the pulling method. Therefore, the flux method is used to manufacture single crystals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来のフラックス法による単結晶の製造では、磁
性酸化物のかなり大きい単結晶が製造できるようになっ
た利点はあるが、■大型単結晶を得るのに長時間かかる
 ■単結晶育成後に方位を決定する操作が必要になる 
という問題点があった。そこで本発明は、このような問
題点を解決するもので、その目的は、高品質の大型Bi
Y工G単結晶を短時間に製造する方法を提供することに
ある。
However, manufacturing single crystals using the conventional flux method has the advantage of being able to manufacture fairly large single crystals of magnetic oxide, but ■It takes a long time to obtain large single crystals.■It takes a long time to obtain large single crystals. Requires an operation to determine
There was a problem. The present invention is intended to solve these problems, and its purpose is to provide high-quality large-sized Bi
It is an object of the present invention to provide a method for manufacturing Y/G single crystal in a short time.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、BiY工G単結晶の製造方法としてBaO−
Bi2O3−B2O3系を用いたフラックスひきあげ法
を利用することを特徴とする。
The present invention provides a method for producing a BiY engineered G single crystal.
It is characterized by utilizing a flux pulling method using the Bi2O3-B2O3 system.

〔作用〕[Effect]

本発明の上記の構成によれば種結晶の方位を任意に選ぶ
ことにより望みの方向の単結晶が得られ、また結晶径は
、ひきあげ速度と降温速度の調整により望みの大きさの
単結晶が得られる。一般のフラックスひきあげ法では、
ふたをすることができないため、フラックス法による磁
性酸化物単結晶の製造に最も使用されている、PbOお
よび(または) P b F 2のような蒸気圧が高い
フラックスは、不適である。またpbofpb]lrz
系を用いたフラックス法の場合には、PbイオンがFθ
イオンと一部置換してしまいBiY工G単結晶の光吸収
係数を劣化してしまう。
According to the above configuration of the present invention, a single crystal in a desired direction can be obtained by arbitrarily selecting the orientation of the seed crystal, and the crystal diameter can be adjusted to a desired size by adjusting the pulling rate and cooling rate. can get. In the general flux pulling method,
Fluxes with high vapor pressure, such as PbO and/or PbF2, which are most used in the production of magnetic oxide single crystals by the flux method, are unsuitable because they cannot be capped. Also pbofpb]lrz
In the case of the flux method using a system, Pb ions are Fθ
This partially replaces the ions and deteriorates the optical absorption coefficient of the BiY-G single crystal.

一方、Bi2O3もフラックスとして利用されており、
Y工Gの結晶合成も報告されている。
On the other hand, Bi2O3 is also used as a flux.
Crystal synthesis of Y-G has also been reported.

(J 、W、N1elsen:、T、Appl、Phy
s、 、 29 、390(195B)) 本発明は、BiY工Gの製造を目的とするのであるから
このB’12O3をフラックスとして用いるのが妥当で
あろう。
(J, W, N1elsen:, T, Appl, Phy
s, , 29, 390 (195B)) Since the purpose of the present invention is to manufacture BiY-G, it would be appropriate to use this B'12O3 as a flux.

しかし、Bi2Oaのみを使用すると、このBi2O3
は、容易に還元されて金属ビスマスとなり、るつぼの白
金と化合して低融点合金となる。つまり、るつぼを侵し
、しかもるつぼの成分が育成結晶中へ混入して吸収特性
を劣化してしまう。このるつぼに対する腐蝕性を改善す
るためには、Bi2O3のみの替りに本発明の上記の構
成で用いるBaO−Bi2O3−B2O3系を利用する
のが最も適している。
However, if only Bi2Oa is used, this Bi2O3
is easily reduced to metal bismuth, which combines with platinum in the crucible to form a low melting point alloy. In other words, the crucible is attacked, and the components of the crucible are mixed into the grown crystal, deteriorating the absorption properties. In order to improve the corrosivity of this crucible, it is most suitable to use the BaO-Bi2O3-B2O3 system used in the above configuration of the present invention instead of only Bi2O3.

またBaO−Bi2O3−B2O3糸フラツクスは、ガ
ーネットと比重差が小さく、粘性も大きい。その上、不
揮発性であるので、BiY工G単結晶のフラックスひき
あげ法による製造に最も適している。
Moreover, the BaO-Bi2O3-B2O3 yarn flux has a small difference in specific gravity from garnet and has a high viscosity. Furthermore, since it is non-volatile, it is most suitable for producing BiY-G single crystals by the flux pulling method.

〔実施例〕〔Example〕

Y2O3,Fe2O2をY3’Fθ5012 の組成比
となるよう秤量し、加剰Fe2O3をY工G: F e
 2O3” 5 : 1で加えたものを原料とした。フ
ラックスとしては、BaOは水と反応して発熱したり、
空気中の炭酸ガスと化合したりするので安定なりaO0
3を用いてBaO:Bi2O3:B2O3=50:15
:35となるよう秤量した。これらを7ラツクス:原料
=60:40に充分混合した後、順次溶融しつつ白金る
つぼに充填し、種結晶を液面真上につむした後に130
0℃で24時間保持した。
Y2O3 and Fe2O2 are weighed to have a composition ratio of Y3'Fθ5012, and the excess Fe2O3 is
The raw material was 2O3" added at a ratio of 5:1. As a flux, BaO reacts with water to generate heat,
It is stable because it combines with carbon dioxide gas in the air.
3 using BaO:Bi2O3:B2O3=50:15
:35. After thoroughly mixing these at a ratio of 7 lac: raw material = 60:40, they were sequentially melted and filled into a platinum crucible, and seed crystals were placed directly above the liquid surface.
It was held at 0°C for 24 hours.

炉床部と炉上部で温度差を25℃つけて徐冷し、115
0℃になったところで種結晶を125 rpmで回転し
つつ液面下はぼ51Trmの7ラツクス中へ入れ結晶径
が約10閣になるまで1.25 mm/ dayで育成
、ひきあげを行った。この時の成長固液界面の温度は、
約1130℃であった。1030℃までの徐冷が終了し
たらフラックスから単結晶を離し、熱衝撃を緩和するた
めに100℃/hの速度で室温まで徐冷した。この育成
中に蒸発したフラックスの量は、約Z5%であった。
The temperature difference between the hearth and the upper part of the furnace is 25℃, and the temperature is gradually cooled to 115℃.
When the temperature reached 0° C., the seed crystal was placed in a 7-lux chamber with approximately 51 Trm below the liquid surface while rotating at 125 rpm, and was grown and pulled up at a rate of 1.25 mm/day until the crystal diameter reached approximately 10 mm. The temperature of the growing solid-liquid interface at this time is
The temperature was approximately 1130°C. After the slow cooling to 1030° C. was completed, the single crystal was separated from the flux and slowly cooled to room temperature at a rate of 100° C./h to alleviate thermal shock. The amount of flux evaporated during this growth was approximately Z5%.

スペクトル分析により、育成された単結晶への不純物の
混入量を調べたところ、[L00o1〜C1,。
When the amount of impurities mixed into the grown single crystal was investigated by spectral analysis, it was found that [L00o1~C1,.

01%のMn、Dy、Or、Yb、Os、Al。01% Mn, Dy, Or, Yb, Os, Al.

B 、 S i 、 Ou 、 T i 、 M g 
、 M Oが検出され、0、0001%以下のNi、O
a、Ba、Srが検出された。、また育成された結晶中
のY、Bi。
B, S i, Ou, T i, M g
, MO detected, less than 0,0001% Ni, O
a, Ba, and Sr were detected. , and Y and Bi in the grown crystal.

ll1eの組成分布をEMX (エレクトロン、マイク
ロプローブX線アナライザー)を使用して測定した。そ
の連続分析の結果、育成されたBiY工G単結晶の組成
分布は、底部から頂部に渡り均質であった。育成された
BiY工G単結晶の成長面である(110)而の熱リン
酸及び希塩酸による腐食像を観察した。熱リン酸腐食の
場合、1oμ程度のエッチ、ビットが偏在し、そのエッ
チビット濃度の平均値は、103〜104個/cdであ
った。希塩酸腐食の場合、1μ以下のエッチビットが1
03〜104個/dの閾度で全体に平均してあった。
The composition distribution of ll1e was measured using EMX (Electron, Microprobe X-ray analyzer). As a result of the continuous analysis, the composition distribution of the grown BiY-G single crystal was homogeneous from the bottom to the top. Corrosion images of the (110) growth surface of the grown BiY-G single crystal by hot phosphoric acid and dilute hydrochloric acid were observed. In the case of hot phosphoric acid corrosion, etch bits of about 1 μm were unevenly distributed, and the average value of the etch bit concentration was 10 3 to 10 4 bits/cd. In the case of dilute hydrochloric acid corrosion, the etch bit of 1μ or less is 1
The overall average was a threshold of 03 to 104 pieces/d.

マイクロ波用共鳴素子としての特性を確認するため、強
磁性共鳴吸収幅(以下ΔHと記す)を測定した。この9
2O0MbzcXバンド2におけるΔHはボンド法によ
り作製された約0.9 rrrmφの球状結晶で1.2
Os  であった。また波長0.8μに対する吸収係数
は、90 cm−”程度であった。組成比分析結果より
、育成されたBiY工G単結晶のBi[換量Xは、X=
1.05で、この時のファラデー回転角(θF)は、波
長0.8μmに対して82O0 deg/l:m に達
していた。
In order to confirm the characteristics as a microwave resonance element, the ferromagnetic resonance absorption width (hereinafter referred to as ΔH) was measured. This 9
ΔH in 2O0MbzcX band 2 is 1.2 for a spherical crystal of approximately 0.9 rrrmφ made by the bond method.
It was Os. In addition, the absorption coefficient at a wavelength of 0.8 μ was approximately 90 cm-”. From the composition ratio analysis results, the Bi[exchange amount
1.05, and the Faraday rotation angle (θF) at this time reached 82O0 deg/l:m for a wavelength of 0.8 μm.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によればフラックスひきあげ法
においてフラックスとしてBaO−Bi2O3−B2O
S系を用いることにより、高品質の大型BiY工G単結
晶が短時間に製造できるという効果を有する。
As described above, according to the present invention, BaO-Bi2O3-B2O is used as the flux in the flux pulling method.
The use of the S-based material has the effect that high-quality, large-sized BiY-G single crystals can be produced in a short time.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] フラックス(融剤)から種子結晶を使って温度を下げな
がら単結晶を育成・ひきあげる、フラックスひきあげ法
によるY_3_−_XBTX Fe5O12単結晶の製
造方法において、フラックスとしてBaO−BT2O3
−B2O3系を用いることを特徴とする単結晶の製造方
法。
In the method for producing Y_3_-_XBTX Fe5O12 single crystal by the flux pulling method, which uses seed crystals from flux (fluxing agent) to grow and pull up single crystals while lowering the temperature, BaO-BT2O3 is used as the flux.
- A method for producing a single crystal, characterized by using a B2O3 system.
JP60027667A 1985-02-15 1985-02-15 Production of single crystal Pending JPS61186298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027667A JPS61186298A (en) 1985-02-15 1985-02-15 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027667A JPS61186298A (en) 1985-02-15 1985-02-15 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS61186298A true JPS61186298A (en) 1986-08-19

Family

ID=12227296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027667A Pending JPS61186298A (en) 1985-02-15 1985-02-15 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS61186298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182339A (en) * 2021-10-29 2022-03-15 中国科学院福建物质结构研究所 Method for growing rare earth doped yttrium iron garnet single crystal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182339A (en) * 2021-10-29 2022-03-15 中国科学院福建物质结构研究所 Method for growing rare earth doped yttrium iron garnet single crystal material

Similar Documents

Publication Publication Date Title
Linares Growth of Yttrium‐Iron Garnet from Molten Barium Borate
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JP5337011B2 (en) Terbium oxide crystals for magneto-optic elements
CN109928640B (en) Inorganic lead-cesium halide nanocrystalline composite chalcogenide glass ceramic material and preparation method thereof
EP0000720B1 (en) Process for producing single crystal of yttrium-iron garnet solid solution
Chedzey et al. A study of the melt growth of single-crystal thiogallates
JPS61186298A (en) Production of single crystal
JPH05504328A (en) Doped crystalline compositions and methods for producing them
JP2011190138A (en) Method for producing multiferroic single crystal
Houlton et al. A study of growth defects in lead germanate crystals
US4792377A (en) Flux growth of sodium beta" alumina
US4708763A (en) Method of manufacturing bismuth germanate crystals
CN115341283B (en) Lithium barium terbium borate magneto-optical crystal and preparation method and application thereof
US3043671A (en) Zinc oxide crystal growth method
JPS61191598A (en) Preparation of single crystal
JPH0478593B2 (en)
JPS6278195A (en) Method of growing garnet ferrite single crystal
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP6819862B2 (en) Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film
JP2017149613A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JPS61186299A (en) Production of single crystal
US3894142A (en) Method for producing gadolinium molybdate single crystals having high transparency
JPH03143985A (en) Preparation of phosphor
JP5717207B2 (en) Terbium oxide crystals for magneto-optic elements
JPS63230595A (en) Yttrium-iron garnet single crystal and production thereof