JPS6278195A - Method of growing garnet ferrite single crystal - Google Patents

Method of growing garnet ferrite single crystal

Info

Publication number
JPS6278195A
JPS6278195A JP21461685A JP21461685A JPS6278195A JP S6278195 A JPS6278195 A JP S6278195A JP 21461685 A JP21461685 A JP 21461685A JP 21461685 A JP21461685 A JP 21461685A JP S6278195 A JPS6278195 A JP S6278195A
Authority
JP
Japan
Prior art keywords
single crystal
garnet
garnet ferrite
growing
ferrite single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21461685A
Other languages
Japanese (ja)
Inventor
Shiyunji Nomura
俊自 野村
Senji Shimanuki
島貫 専治
Susumu Hashimoto
進 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21461685A priority Critical patent/JPS6278195A/en
Publication of JPS6278195A publication Critical patent/JPS6278195A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain single crystal having uniform composition and structure free from admixture of impurities, inexpensively by growing garnet ferrite single crystal by the use of a container made of a sintered polycrystal having the same composition as that of the single crystal. CONSTITUTION:In growing garnet ferrite single crystal by flux method or liquid- phase epitaxial method, a growth container consisting of a sintered garnet ferrite polymcrystal having the same composition as that of the garnet ferrite single crystal or a composition of its garnet ferrite single crystal derivative is used. The garnet single crystal derivative means a compound obtained by replacing partially substitution element of the aimed yttrium or rare earth element-substituted iron garnet with another metallic ion. Usually cylindrical or square pillar shape, etc., are preferable as the shape of the growth container.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気光学材料として有用なガーネットフェラ
イト単結晶の育成方法に関し、更に詳しくは、光通信に
用いられる半導体レーザーの戻り光を防止するための光
アイソレータ等に適用するのに好適なファラデー効果を
有するガー矛ノドフェライト単結晶の育成方法に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for growing a garnet ferrite single crystal useful as a magneto-optical material, and more specifically, to a method for growing a garnet ferrite single crystal useful as a magneto-optical material, and more specifically, a method for growing a garnet ferrite single crystal useful as a magneto-optical material. The present invention relates to a method for growing a ferrite single crystal having a Faraday effect suitable for application to optical isolators and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気光学材料として有用なガーネットフェライト単結晶
を育成するのに、従来、フラックス法または液相エピタ
キシー法(LPE法と略称する)が最も多く利用されて
いる。
Conventionally, the flux method or liquid phase epitaxy method (abbreviated as LPE method) has been most commonly used to grow garnet ferrite single crystals useful as magneto-optical materials.

フラックス法によるガーネットフェライト単結晶の育成
においては、イツトリウム(Y)または希土類鉄ガーネ
ット原料と酸化鉛(PbO) 、フッ化鉛(PbFz 
) 、酸化ホウ素(B2Oヨ)、酸化ビスマス(Bi2
03 )等からなるフラックスとをルツボに入れ、均一
に融解した後、徐冷またはフラックスの蒸発によりガー
ネット単結晶を成長させていた。
When growing garnet ferrite single crystals using the flux method, yttrium (Y) or rare earth iron garnet raw materials, lead oxide (PbO), lead fluoride (PbFz
), boron oxide (B2Oyo), bismuth oxide (Bi2
A garnet single crystal was grown by slow cooling or evaporation of the flux after uniformly melting it by putting it in a crucible and melting it uniformly.

またLPE法によるガーネットフェライト単結晶の育成
においては、上述したようなガーネット原料とフラック
スとをルツボで均一に岸解しfこ後、非磁性ガーネット
単結晶を基板としてガーネットフェライトの単結晶をエ
ピタキシャル成長させていた。
In addition, in growing a garnet ferrite single crystal by the LPE method, the above-mentioned garnet raw material and flux are uniformly decomposed in a crucible, and then a garnet ferrite single crystal is epitaxially grown using a nonmagnetic garnet single crystal as a substrate. was.

しかしながらこれら従来行われているガー矛ノドフェラ
イト単結晶の育成方法においては、育成容器として、一
般に、白金または白金ロジウムからなるルツボが用いら
れており、このような貴金属ルツボを使用する場合、以
下に列挙するような問題点が生ずる。
However, in these conventional methods for growing ferrite single crystals, a crucible made of platinum or platinum-rhodium is generally used as the growth container. When using such a noble metal crucible, the following The following problems arise.

(1)、大型のガーネットフェライト単結晶を得ようと
すれば、それに見合うだけの大きな貴金属ルツボを必要
とする。従って、当然のことながら製造コスト上望まし
くない。
(1) In order to obtain a large garnet ferrite single crystal, a correspondingly large precious metal crucible is required. Therefore, as a matter of course, this is not desirable in terms of manufacturing cost.

(2)、フラックス法により結晶を育成する場合、融液
からガーネットフェライト結晶が晶出するにつれ、融液
中に残存するガーネット成分の濃度が漸次低下し、特に
誘導棒組・成のガーネット単結晶育成においては、晶出
する結晶の組成が各温度で変動し、均一な結晶組成を得
ることが難しい。
(2) When growing crystals by the flux method, as garnet ferrite crystals crystallize from the melt, the concentration of the garnet component remaining in the melt gradually decreases, especially when the garnet single crystal with the guide rod composition During growth, the composition of crystals to be crystallized varies at each temperature, making it difficult to obtain a uniform crystal composition.

(3)、ルツボの構成成分が融液に溶出し、例えば白金
ルツボを使用した場合には、ガーネットフェライト結晶
中にPt4+のような3価以外の不純物イオンが混入し
、その結果、得られるガーネットフェライト結晶の光吸
収特性が低下する。
(3) When the constituent components of the crucible are eluted into the melt, for example, when a platinum crucible is used, impurity ions other than trivalent ions such as Pt4+ are mixed into the garnet ferrite crystal, and as a result, the resulting garnet The light absorption properties of the ferrite crystal deteriorate.

(4)、例えば、ビスマス置換鉄ガーネットは、ビスマ
ス置換量を大きくするとファラデー効果が大きくなり、
従ってこのために、フラックスとしてBi203または
Bi203  B203などが用いられる。しかしなが
らこのようなフラックスでは、融液の均一化のため保持
温度を高くすると、フラックス成分のBi20ヨが還元
され、ルツボの構成成分との間に、例えばPt  Bi
のような金属間化合物が生成し、貴金属ルツボを脆化さ
せ、貴金属ルツボにクランクやピンホールを生ずる。
(4) For example, in bismuth-substituted iron garnet, the Faraday effect increases as the amount of bismuth substitution increases;
Therefore, for this purpose, Bi203 or Bi203 B203 or the like is used as a flux. However, with such a flux, when the holding temperature is raised to make the melt uniform, the Bi20 of the flux component is reduced and, for example, Pt, Bi, etc.
Intermetallic compounds such as are generated, which embrittles the precious metal crucible and causes cranks and pinholes in the precious metal crucible.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した問題点を解消すべくなされたもので
あり、安価でかつ育成容器からの不純物の混入もなく、
結晶の育成期間を通して晶出する結晶に含まれる置換元
素の分布および含有率の変動がなく、均一な組成および
構造を有するガーネットフェライト単結晶を生成するた
めの育成方法を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and is inexpensive, free from contamination with impurities from the growth container, and
The purpose of the present invention is to provide a growth method for producing a garnet ferrite single crystal having a uniform composition and structure without fluctuations in the distribution and content of substitutional elements contained in crystals crystallized throughout the crystal growth period. .

〔発明の概要〕[Summary of the invention]

本発明のガーネットフェライト単結晶の育成方法は、フ
ラックス法または液相エピタキシー法による結晶の育成
に際し、該ガーネットフェライト単結晶と同一の組成か
または該ガーネットフェライト単結晶の誘導体としての
組成を有するガーネットフェライト多結晶の焼結体で構
成した育成容器を用いることを特徴とする。
The method for growing a garnet ferrite single crystal of the present invention involves growing a garnet ferrite single crystal using a flux method or a liquid phase epitaxy method, in which a garnet ferrite having the same composition as the garnet ferrite single crystal or a composition as a derivative of the garnet ferrite single crystal is grown. It is characterized by using a growth container made of a polycrystalline sintered body.

ここでガーネット単結晶の誘導体とは、目的とするイツ
トリウムまたは希土類置換鉄ガーネットの置換元素の一
部を他の金属イオンで一部置換したものをいう。
Here, the garnet single crystal derivative refers to a target yttrium or rare earth substituted iron garnet in which some of the substituent elements are partially substituted with other metal ions.

本発明のガーネットフェライト単結晶の育成方法は、従
来の単結晶の育成方法における問題点の1つとされてい
た育成容器からのその構成成分の溶出を低減させるとと
もに、構成成分の溶出をむしろ積極的に活用せんとした
ものである。即ち、融解状態からガーネットフェライト
単結晶が晶出する場合、結晶核が生成し、結晶核の成長
に伴ない融液中のガーネット成分の濃度が低下するが、
育成容器を育成しようとする単結晶と同一の組成かその
誘導体組成で構成しておくと、育成容器からガーネット
成分が溶出し、ガーネットフェライト単結晶育成中の融
液の組成変動が抑えられ、均一なガーネットフェライト
単結晶を得ることができる。また、例えば、ファラデー
効果の大きなりi置換希土類鉄ガーネット単結晶を育成
する場合のように、置換元素がBi20Bのようなフラ
ックスから供給される場合には、育成容器は、置換元素
を含まない希土類鉄ガーネットのみで構成することもで
きる。
The method for growing garnet ferrite single crystals of the present invention not only reduces the elution of constituent components from the growth container, which was one of the problems in conventional single crystal growing methods, but also actively prevents the elution of constituent components. It was intended to be used for this purpose. That is, when a garnet ferrite single crystal crystallizes from a molten state, crystal nuclei are generated, and as the crystal nuclei grow, the concentration of the garnet component in the melt decreases,
If the growth container is configured with the same composition as the single crystal to be grown or its derivative composition, the garnet component will be eluted from the growth container, suppressing compositional fluctuations in the melt during the growth of the garnet ferrite single crystal, and ensuring uniformity. garnet ferrite single crystal can be obtained. In addition, for example, when the replacement element is supplied from a flux such as Bi20B, as in the case of growing i-substituted rare earth iron garnet single crystals with a large Faraday effect, the growth container may contain a rare earth iron garnet that does not contain the replacement element. It can also be composed only of iron garnet.

本発明のガーネットフェライト単結晶の育成に用いる育
成容器は、一般に、次のようにして製造される。即ち、
目的とするガーネットフェライト単結晶と同一の組成ま
たは誘導体組成のガーネットフェライト原料、特にBi
置換希土類鉄ガーネ・ノド単結晶の場合にはフラックス
から供給される置換元素以外のガーネットフェライト原
料を混合後火気中600〜1200℃の温度で1〜12
時間仮焼し、目的とするガーネットフェライト単結晶と
同一組成または誘導体組成の乾燥粉末を得る。
The growth container used for growing the garnet ferrite single crystal of the present invention is generally manufactured as follows. That is,
Garnet ferrite raw material having the same composition or derivative composition as the target garnet ferrite single crystal, especially Bi
In the case of a substituted rare earth iron garnet single crystal, after mixing the garnet ferrite raw materials other than the substituted elements supplied from the flux, it is heated in a flame at a temperature of 600 to 1200°C for 1 to 12 hours.
Calcination is performed for a period of time to obtain a dry powder having the same composition or derivative composition as the desired garnet ferrite single crystal.

この粉末にバインダー、例えばポリビニルアルコ−る水
溶液等を加えて、成形後、成形した容器を酸素フロー中
1000〜1600℃の温度で0.5〜24時間焼結し
、ガーネットフェライト多結晶体からなる育成容器を得
ることができる。
A binder, such as an aqueous solution of polyvinyl alcohol, is added to this powder, and after molding, the molded container is sintered at a temperature of 1000 to 1600°C for 0.5 to 24 hours in an oxygen flow, and is made of garnet ferrite polycrystal. You can get a growing container.

この育成容器の形状については、特に限定されるもので
はないが、通常円柱状、角柱状等の形状とするのが好ま
しい。
The shape of this growth container is not particularly limited, but it is usually preferable to have a cylindrical shape, a prismatic shape, or the like.

〔発明の実施例〕[Embodiments of the invention]

実施例1 (1)育成容器の作製 YZ 03 、 CaC0B 、 Fe00)1 、 
 ZrJを秤量、調合し、湿式ボールミルで24時間粉
砕、混合した。次いで、この混合物を′乾燥し、すりつ
ぶして粉末とし、粉末を混合した後、アルミナ(Ajz
 Oa )ルツボを用い大気中1100℃で4時間仮焼
し、その後湿式ボールミルでの粉砕、混合、乾燥を経て
、Y 2.9 Ca O,I F 64.9012の組
成式で示される粉末を得た。
Example 1 (1) Production of growth container YZ 03 , CaC0B , Fe00) 1 ,
ZrJ was weighed, prepared, ground and mixed in a wet ball mill for 24 hours. This mixture is then 'dried and ground into powder, and after mixing the powder, alumina (Ajz
Oa) Calcined in the air at 1100°C for 4 hours using a crucible, then crushed in a wet ball mill, mixed, and dried to obtain a powder having the composition formula Y 2.9 Ca O, IF 64.9012. Ta.

上記組成の粉末にバインダーとしてポリビニルアルコー
ル水熔掩を加えてラバープレスした後、内径50mm、
高さ100I、厚さ5m111の円柱状容器に成形し、
この成形した容器を酸素フロー中1450℃で8時間焼
結し、育成用容器を作製した。
After adding polyvinyl alcohol solution as a binder to the powder of the above composition and rubber pressing, the inner diameter was 50 mm.
Formed into a cylindrical container with a height of 100I and a thickness of 5m111,
This molded container was sintered at 1450° C. for 8 hours in an oxygen flow to produce a growth container.

なお、Ca、7.r置換インドリウム鉄ガーネット組成
の焼結体を作製したのは、電気的中性を保つためと、更
には、焼結性を向上させて高密度の育成容器を作製し、
ガーネットフェライト単結晶育成時のフラックスの漏出
を防止するためである。
In addition, Ca, 7. A sintered body with an r-substituted indium iron garnet composition was created in order to maintain electrical neutrality, and also to improve sinterability and create a high-density growth container.
This is to prevent leakage of flux during the growth of garnet ferrite single crystals.

(2)ガーネットフェライト単結晶の育成Y2 03 
 44.5g、   Fez  Oa 80.2g  
、  Bi203478gを秤量し、混合した後、(1
)で作製した育成容器に入れ、電気炉中1200℃の温
度に24時間保持した0次いで融液を攪拌しながら1℃
/Hの冷却速度で900℃まで徐冷し、単結晶を育成し
た。
(2) Growth of garnet ferrite single crystal Y2 03
44.5g, Fez Oa 80.2g
, After weighing and mixing Bi203478g, (1
) and kept at 1200°C for 24 hours in an electric furnace.Then, the melt was heated to 1°C while stirring.
The mixture was slowly cooled to 900° C. at a cooling rate of /H to grow a single crystal.

分析の結果、得られた結晶はYI B11Fe50+□
の組成を有し、pt含有率は測定限界である1100p
p以下であった。また得られた単結晶を切断し、鏡面研
磨した後、波長1.3μmの光でファラデー回転角およ
び光吸収を測定したところ、光吸収係数はα−0,05
cm−”と小さく、性能指数θF/αは大きかった。
As a result of the analysis, the obtained crystal was YI B11Fe50+□
The pt content is 1100p, which is the measurement limit.
p or less. Furthermore, after cutting the obtained single crystal and mirror polishing, the Faraday rotation angle and light absorption were measured using light with a wavelength of 1.3 μm, and the light absorption coefficient was α-0.05.
cm-'', and the figure of merit θF/α was large.

比較例 実施例1と同様にYZ 0B 、 Fez Oa、 B
iz O3を秤量し、混合した後、白金ルツボに入れ、
同一の温度条件で単結晶を育成した。
Comparative Example Same as Example 1, YZ 0B, Fez Oa, B
After weighing and mixing iz O3, put it in a platinum crucible,
Single crystals were grown under the same temperature conditions.

分析の結果、得られた結晶はYZ B11Fe5012
の組成を有するが、pt含有率は500ppmであった
As a result of analysis, the obtained crystal was YZ B11Fe5012
However, the pt content was 500 ppm.

また得られた結晶を切断し、鏡面研磨した後、光吸収特
性を測定したところ、波長1.3μmの光で光吸収係数
はα= 1.3cm−’であった。
Further, the obtained crystal was cut and mirror-polished, and then its light absorption characteristics were measured, and the light absorption coefficient was α = 1.3 cm-' for light with a wavelength of 1.3 μm.

実施例2 実施例1と同一組成の円柱状容器を成形し、1500℃
の焼結温度で焼結することにより育成容器を作製した。
Example 2 A cylindrical container with the same composition as Example 1 was molded and heated at 1500°C.
A growth container was produced by sintering at a sintering temperature of .

この容器の組織観察を光学顕微鏡で行ったところ、粒成
長が起こっていて、粒子寸法的2mm程度の結晶粒が観
察された。
When the structure of this container was observed using an optical microscope, grain growth was observed, and crystal grains with a particle size of about 2 mm were observed.

次いで、この容器を用いて、実施例1と同様な組成のガ
ーネットフェライト原料およびフラックスから単結晶を
育成させた。得られた単結晶は、容器の壁面または底面
から成長していて、多結晶体からなる育成容器の結晶が
種晶となって結晶の成長に寄与していることが判明した
Next, using this container, a single crystal was grown from the garnet ferrite raw material and flux having the same composition as in Example 1. It was found that the obtained single crystal grew from the wall or bottom of the container, and the polycrystalline crystal in the growth container served as a seed crystal and contributed to the growth of the crystal.

1五舅主 Gdz  03  、  CaCO3、Fe00H,A
lz  03  、   ZrO2を秤量し、調合した
後、実施例1の(1)と同様の工程を経て、組成式Gd
2.9Cao、+Fe+、o A 12 o、5Zro
、+ 012で示される育成用容器を作製した。これと
は別に、Gd2 03 41.5g、CaCO32,O
g+  Fe203 64.2g。
1 Gdz 03, CaCO3, Fe00H,A
After weighing and blending lz 03 and ZrO2, the composition formula Gd
2.9Cao, +Fe+, o A 12 o, 5Zro
, +012 was prepared. Apart from this, Gd2 03 41.5g, CaCO32,O
g+ Fe203 64.2g.

Ajz 0ヨ 2.5gを秤量し、混合した。この混合
物を上記育成用容器に入れ、電気炉中1200℃の温度
に24時間保持した。次いで融液を攪拌しながら1℃/
Hの冷却速度で850℃まで徐冷し、単結晶を育成した
2.5 g of Ajz 0yo was weighed and mixed. This mixture was placed in the above growth container and maintained at a temperature of 1200° C. for 24 hours in an electric furnace. Then, while stirring the melt, the temperature was increased to 1℃/
The mixture was slowly cooled to 850° C. at a cooling rate of H to grow a single crystal.

分析の結果、得られた結晶はGd2.5Cao、+Fe
+、o A 1゜9Zrt3.+0,2の組成を有し、
他の不純物混入は検出されなかった。波長1.3μmの
光で光吸収係数を測定したところα= 0 、03cm
−’で性能指数θF/αも白金ルツボを用いて結晶を育
成した場合に比べて大きかった。
As a result of analysis, the obtained crystal was Gd2.5Cao, +Fe
+, o A 1°9Zrt3. It has a composition of +0,2,
No other impurities were detected. When the optical absorption coefficient was measured using light with a wavelength of 1.3 μm, α = 0,03 cm.
-', the figure of merit θF/α was also larger than when crystals were grown using a platinum crucible.

本実施例においては、厚さ約4mmの育成容器を用いた
が、単結晶育成後においても育成容器は3mm以上の厚
さを保持し、育成容器の構成成分の溶出は白金ルツボに
比べて小さく、実用上育成容器の厚さは2mm以上であ
れば十分であることが判明した。
In this example, a growth container with a thickness of approximately 4 mm was used, but even after single crystal growth, the growth container maintains a thickness of 3 mm or more, and the elution of the constituent components of the growth container is smaller than that in a platinum crucible. It has been found that for practical purposes, it is sufficient that the thickness of the growth container is 2 mm or more.

以上実施例1および実施例2においては、イツトリウム
鉄ガーネット及びガドリニウム鉄ガーネットを例にとり
、詳述したが、本発明はこれらに限定されるものではな
(、イツトリウム、ガドリニウム以外の希土類鉄ガーネ
ットやイツトリウムおよび希土類元素からなる元素群の
中小なくとも一種以上の元素を含む複合鉄ガーネット単
結晶の育成方法においても同様の効果を奏するものであ
る。
In Example 1 and Example 2, yttrium iron garnet and gadolinium iron garnet have been described in detail as examples, but the present invention is not limited thereto (yttrium, rare earth iron garnet other than gadolinium, and yttrium iron garnet). Similar effects can also be achieved in a method for growing a composite iron garnet single crystal containing at least one element of the rare earth element group.

実施例4 Gdg Oa  8.0g、  Fe2O]22.4g
+ Biz 0a391.4g、  B 203 5.
Ogを秤量し混合した。次いでこの混合物を実施例3と
同一組成の育成容器に入れ、電気炉中1200℃の温度
に保持した後、急冷して900℃に保持した。然る後、
育成しようとする結晶と同一組成かつ同一結晶構造の非
磁性体からなる基板を入れ、ヘテロエピタキシャル法に
より単結晶を育成し、ビスマス置換希土類鉄ガーネット
を得た。
Example 4 Gdg Oa 8.0g, Fe2O] 22.4g
+ Biz 0a391.4g, B 203 5.
Og was weighed and mixed. Next, this mixture was placed in a growth container having the same composition as in Example 3, maintained at a temperature of 1200°C in an electric furnace, and then rapidly cooled and maintained at 900°C. After that,
A substrate made of a nonmagnetic material having the same composition and crystal structure as the crystal to be grown was placed, and a single crystal was grown by the heteroepitaxial method to obtain a bismuth-substituted rare earth iron garnet.

得られたガーネット単結晶の光吸収は、白金ルツボで単
結晶を育成した場合に比べて小さく、光吸収係数はα=
0.05cm−’であった。
The light absorption of the obtained garnet single crystal is smaller than that of a single crystal grown in a platinum crucible, and the light absorption coefficient is α=
It was 0.05 cm-'.

実施例5 Bi203 483g、  Fe20B  18.8g
を秤量し、混合した。次いでこの混合物を実施例1と同
一組成の育成容器に入れ、電気炉中1200℃の温度に
96時間保持した後、攪拌しながら1’C/Hの冷却速
度で900℃まで冷却し、単結晶を育成した。
Example 5 Bi203 483g, Fe20B 18.8g
were weighed and mixed. Next, this mixture was placed in a growth container having the same composition as in Example 1, kept at a temperature of 1200°C in an electric furnace for 96 hours, and then cooled to 900°C at a cooling rate of 1'C/H while stirring to form a single crystal. cultivated.

分析した結果、得られた結晶は、組成式Y 2 B o
9Cao、+Fe4.qZro、+ 012で示される
組成を有し、切断、鏡面研磐後、波長1.3μmの光で
ファラデー回転角および光吸収を測定したところ、光吸
収係数はα=0.08cm−’で光吸収係数の小さい単
結晶であった。
As a result of the analysis, the obtained crystal has the composition formula Y 2 B o
9Cao, +Fe4. It has a composition shown by qZro, +012, and after cutting and mirror polishing, the Faraday rotation angle and optical absorption were measured using light with a wavelength of 1.3 μm, and the optical absorption coefficient was α = 0.08 cm-'. It was a single crystal with a small absorption coefficient.

従って、ガーネット多結晶焼結体からなる育成容器を用
いてガーネットフェライト単結晶を育成する場合には、
原料としてイツトリウムおよび/または希土類元素を加
えなくともイツトリウムおよび/または希土類元素が育
成容器から供給されてフラックス成分および酸化第二鉄
と反応してガーネットフェライト単結晶が生成すること
が判明した。
Therefore, when growing a garnet ferrite single crystal using a growth container made of a garnet polycrystalline sintered body,
It has been found that even without adding yttrium and/or rare earth elements as raw materials, yttrium and/or rare earth elements are supplied from the growth container and react with the flux component and ferric oxide to produce garnet ferrite single crystals.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明のガーネットフェライト単結
晶の育成方法によれば、白金等の貴金属からなる育成容
器を使用しないために、安価でかつ不純物混入が少な(
、磁気光学的特性の優れたガーネットフェライト単結晶
の育成方法を提供することができる。
As detailed above, the method for growing garnet ferrite single crystals of the present invention is inexpensive and contains less impurities (
, it is possible to provide a method for growing a garnet ferrite single crystal with excellent magneto-optical properties.

Claims (1)

【特許請求の範囲】[Claims]  フラックス法または液相エピタキシー法によるガーネ
ットフェライト単結晶の育成に際し、該ガーネットフェ
ライト単結晶と同一の組成かまたは該ガーネットフェラ
イト単結晶の誘導体としての組成を有するガーネットフ
ェライト多結晶の焼結体で構成した育成容器を用いるこ
とを特徴とするガーネットフェライト単結晶の育成方法
When growing a garnet ferrite single crystal by flux method or liquid phase epitaxy method, a sintered body of garnet ferrite polycrystal having the same composition as the garnet ferrite single crystal or a composition as a derivative of the garnet ferrite single crystal is used. A method for growing a garnet ferrite single crystal, characterized by using a growth container.
JP21461685A 1985-09-30 1985-09-30 Method of growing garnet ferrite single crystal Pending JPS6278195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21461685A JPS6278195A (en) 1985-09-30 1985-09-30 Method of growing garnet ferrite single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21461685A JPS6278195A (en) 1985-09-30 1985-09-30 Method of growing garnet ferrite single crystal

Publications (1)

Publication Number Publication Date
JPS6278195A true JPS6278195A (en) 1987-04-10

Family

ID=16658672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21461685A Pending JPS6278195A (en) 1985-09-30 1985-09-30 Method of growing garnet ferrite single crystal

Country Status (1)

Country Link
JP (1) JPS6278195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702259A1 (en) * 1994-09-16 1996-03-20 Ngk Insulators, Ltd. Material for wide-band optical isolators and process for producing the same
JP2000001317A (en) * 1998-04-14 2000-01-07 Tdk Corp Controlling method of intermodulation product of irreversible circuit elements
JP2004206078A (en) * 2002-12-13 2004-07-22 Tdk Corp Faraday rotator and optical device equipped with the same
JP2015093800A (en) * 2013-11-12 2015-05-18 住友金属鉱山株式会社 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium, and method for manufacturing multiple-oxide material by using crucible made of platinum
JP2015093799A (en) * 2013-11-12 2015-05-18 住友金属鉱山株式会社 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium, and method for manufacturing multiple-oxide material by using crucible made of platinum

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702259A1 (en) * 1994-09-16 1996-03-20 Ngk Insulators, Ltd. Material for wide-band optical isolators and process for producing the same
US5584928A (en) * 1994-09-16 1996-12-17 Ngk Insulators, Ltd. Material for wide-band optical isolators and process for producing the same
JP2000001317A (en) * 1998-04-14 2000-01-07 Tdk Corp Controlling method of intermodulation product of irreversible circuit elements
JP4586215B2 (en) * 1998-04-14 2010-11-24 Tdk株式会社 Method for controlling intermodulation product of nonreciprocal circuit element, ferrimagnetic material, and nonreciprocal circuit element using the same
JP2004206078A (en) * 2002-12-13 2004-07-22 Tdk Corp Faraday rotator and optical device equipped with the same
JP2015093800A (en) * 2013-11-12 2015-05-18 住友金属鉱山株式会社 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium, and method for manufacturing multiple-oxide material by using crucible made of platinum
JP2015093799A (en) * 2013-11-12 2015-05-18 住友金属鉱山株式会社 Method for manufacturing multiple-oxide single crystal by using crucible made of iridium, and method for manufacturing multiple-oxide material by using crucible made of platinum

Similar Documents

Publication Publication Date Title
Linares Growth of Yttrium‐Iron Garnet from Molten Barium Borate
Wang Growth and characterization of spinel single crystals for substrate use in integrated electronics
US4721547A (en) Process for producing single crystal of garnet ferrite
Nassau et al. Strontium titanate: An index to the literature on properties and the growth of single crystals
JPS6278195A (en) Method of growing garnet ferrite single crystal
Damen et al. Calcium gallium germanium garnet as a substrate for magnetic bubble application
US3607752A (en) Process for the culture of large monocrystals of lithium niobate
US4202930A (en) Lanthanum indium gallium garnets
JP2011190138A (en) Method for producing multiferroic single crystal
Sasaura et al. Twin-free single crystal growth of NdGaO3
JPH09328396A (en) Garnet crystal for substrate of magnetooptic element and its production
US4499061A (en) Strontium ferrite borate
Grytsiv et al. Novel ytterbium-zinc-silicides and germanides grown from zinc-flux
US4792377A (en) Flux growth of sodium beta" alumina
LINARES Substitution of Aluminum and Gallium in Single‐Crystal Yttrium Iron Garnets
Layden et al. Phase equilibria and crystal growth in the system BaO YTaO4 B2O3
US3043671A (en) Zinc oxide crystal growth method
CN115341283B (en) Lithium barium terbium borate magneto-optical crystal and preparation method and application thereof
JPS5943424B2 (en) Compound having hexagonal layered structure represented by TmFeCuO↓4 and method for producing the same
US4954211A (en) Monocrystalline lanthanum orthogallate laser material
Rezlescu et al. Single crystals of cubic ferrite containing only Fe3+ as magnetic ions
JPH101397A (en) Garnet crystal for substrate of magneto-optical element and its production
JPH0793212B2 (en) Oxide garnet single crystal
CN117265662A (en) Garnet crystal with strong magneto-optical effect, high Curie temperature and high bismuth-containing neodymium-doped rare earth iron suitable for 1310nm wave band
JPH0471036B2 (en)