JPS63230595A - Yttrium-iron garnet single crystal and production thereof - Google Patents

Yttrium-iron garnet single crystal and production thereof

Info

Publication number
JPS63230595A
JPS63230595A JP6083187A JP6083187A JPS63230595A JP S63230595 A JPS63230595 A JP S63230595A JP 6083187 A JP6083187 A JP 6083187A JP 6083187 A JP6083187 A JP 6083187A JP S63230595 A JPS63230595 A JP S63230595A
Authority
JP
Japan
Prior art keywords
yig
single crystal
raw material
ions
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6083187A
Other languages
Japanese (ja)
Inventor
Kazuto Yamazawa
和人 山沢
Yoshikazu Narumiya
成宮 義和
Daisuke Ikeda
大輔 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6083187A priority Critical patent/JPS63230595A/en
Publication of JPS63230595A publication Critical patent/JPS63230595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the titled garnet single crystal easy to grow and having high light-transmittance and uniform characteristics over the whole crystal, by using a Y-iron garnet composition containing a specific amount of one or more Ni, Co, Cu and Cr ions. CONSTITUTION:A Y-iron garnet (YIG) single crystal is produced preferably by TSFZ process as follows. Y2O3, Fe2O3 and Ga2O3 each having a purity of >=99.9% are weighed at a ratio Y2O3:(Fe2O3+Ga2O3)=3.5 to obtain a YIG raw material. The YIG raw material is added and mixed with one or more Ni, Co, Cu and Cr ions at a molar ratio of 0.1X10<-3>-3.8X10<-3> and the mixture is formed and sintered at >=1,500 deg.C in O2 atmosphere. The sintered rod of the raw material and a seed crystal are placed in a focused infrared heating furnace inserting a solvent material between the raw material and the seed crystal and melted by heating to form a floating zone. The sintered raw material rod and the seed crystal are rotated usually in opposite directions and transferred at a prescribed speed to obtain the objective YIG single crystal.

Description

【発明の詳細な説明】 ■ 発明の背景 技術分野 本発明は、光部品用等のイツトリウム鉄系ガーネット単
結晶およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Background of the Invention Technical Field The present invention relates to a yttrium iron-based garnet single crystal for use in optical components, etc., and a method for producing the same.

先行技術とその問題点 従来、イツトリウム鉄系ガーネット(以下、YIGと略
記する)単結晶の製造方法としては、結晶品質の均一性
および再現性の点で、トラベリング・ソルベント・フロ
ーティング・ゾーン法(以下、TSFZ法と略記する)
が用いられている。
Prior art and its problems Conventionally, the traveling solvent floating zone method (hereinafter referred to as YIG) has been used as a method for producing single crystals of yttrium iron garnet (hereinafter abbreviated as YIG) in terms of uniformity and reproducibility of crystal quality. , abbreviated as TSFZ method)
is used.

しかし、TS FZ法は本質的には上記の特徴を有する
が、高純度材料(99,99%以上)を用いて作製した
YIG単結晶では1.34帯での光透過率が理論値の7
5%に対して60%以下しか得られず、また、結晶の成
長方向の位置による光透過率の変動が大きくなってしま
う。 これは、TSFZ法においては結晶の成長温度が
高く酸素分圧不足となりYIG単結晶内に酸素空孔を生
じ、その結果、本来3価であるべきFeイオンが一部F
e”となるためと考えられている。
However, although the TS FZ method essentially has the above-mentioned characteristics, the light transmittance in the 1.34 band of YIG single crystal produced using high-purity material (99.99% or more) is lower than the theoretical value of 7.
Only 60% or less can be obtained compared to 5%, and the light transmittance varies greatly depending on the position in the crystal growth direction. This is because in the TSFZ method, the crystal growth temperature is high and the oxygen partial pressure is insufficient, creating oxygen vacancies in the YIG single crystal, and as a result, some of the Fe ions, which should be trivalent, become F
It is thought that this is because it becomes "e".

このような問題点を解決するため、原料となるYIG組
成物中にCa% pbおよびZnイオンのうちの−・種
を添加し、Fe2+の発生を抑制することが提案されて
おり、光透過率の向上をみている(特公昭61−263
3号公報、特開昭59−69498号公報)。
In order to solve these problems, it has been proposed to add - species of Ca%pb and Zn ions to the raw material YIG composition to suppress the generation of Fe2+, and the light transmittance (Tokuko Sho 61-263)
No. 3, JP-A-59-69498).

また、特開昭61−215297号公報では、Mg%C
a、Sr、Ba、Pb、Zn、Cdのうち2種以上のイ
オンを同様に添加することが提案されているが、その主
たる作用および効果は上記と同様なものである。
Furthermore, in Japanese Patent Application Laid-Open No. 61-215297, Mg%C
Although it has been proposed to similarly add two or more ions of a, Sr, Ba, Pb, Zn, and Cd, the main actions and effects thereof are the same as those described above.

しかし、これらのイオンの添加ではFe”の生成防止の
みしか期待できずFe’+の生成は防止できないため、
添加量が過剰であるとFe4+の生成を誘発し光の透過
率損失が増大してしまう。 しかも、光の透過率増大、
すなわちFe2ゝの生成の抑制に実効のあるイオン添加
■範囲が狭く、また、添加するイオン種によっては蒸発
により添加時と単結晶生成時のイオン存在量が異なるた
め、このような危険性はより一層増大する。
However, the addition of these ions can only be expected to prevent the formation of Fe'', but not Fe'+, so
If the amount added is excessive, it will induce the production of Fe4+ and increase the loss of light transmittance. Moreover, the light transmittance increases,
In other words, the range of ion addition that is effective in suppressing the production of Fe2 is narrow, and depending on the ion species added, the amount of ions present during addition and during single crystal formation differs due to evaporation, so this risk is even greater. It will further increase.

また、2価イオンを添加してFe2+にょる吸収を抑え
ようとする場合、YIG原料が高純度であるほど添加量
を増す必要があるが、特に上記のアルカリ土類金属イオ
ンを用いると、イオン半径の差によりYと置換しにくく
、しがもこれは添加量が増えるほど顕著となる。 この
ため、特にYIG原料が高純度であるときは、これらの
イオンを必要とされる量置換することは困難である。 
その結果、上記のアルカリ土類金属イオンを添加したY
IG組成物では、YIG単結晶の直径を大きくしようと
すると、結晶成長時に液ダレ現象やセルグロースを生じ
結晶の育成が困難となる。
In addition, when adding divalent ions to suppress Fe2+ absorption, the higher the purity of the YIG raw material, the greater the amount of addition needs to be. Due to the difference in radius, it is difficult to replace Y, and this problem becomes more pronounced as the amount added increases. Therefore, it is difficult to replace these ions in the required amount, especially when the YIG raw material is of high purity.
As a result, Y containing the above alkaline earth metal ions was found.
In an IG composition, when attempting to increase the diameter of a YIG single crystal, a liquid dripping phenomenon and cell growth occur during crystal growth, making it difficult to grow the crystal.

■ 発明の目的 本発明の目的は、上記の問題点を解決し、光透過率が高
く結晶全体にわたフて特性が均一であり、かつ育成が容
易で従来にくらべ直径の大きな単結晶が得られ、しかも
製造が容易でバラつきの少ないイツトリウム鉄系ガーネ
ット単結晶およびその製造方法を提供することにある。
■ Purpose of the Invention The purpose of the present invention is to solve the above-mentioned problems and to provide a single crystal that has high light transmittance, uniform properties throughout the crystal, is easy to grow, and has a larger diameter than conventional methods. The object of the present invention is to provide a yttrium iron-based garnet single crystal that is easy to produce and has little variation, and a method for producing the same.

■ 発明の開示 このような目的は以下の本発明によって達成される。■Disclosure of invention These objects are achieved by the following invention.

すなわち、第1の発明は、イツトリウム鉄系ガーネット
組成物を単結晶化してなるイツトリウム鉄系ガーネット
単結晶において、 前記イツトリウム鉄系ガーネット組成物中に、Ni、C
o、CuおよびCrイオンのうちの1種以上を合計でイ
ツトリウム鉄′系ガーネットに対しモル比で0.1xl
O−3〜3.8×10−’含むことを特徴とするイツト
リウム鉄系ガーネット単結晶である。
That is, the first invention provides a yttrium iron garnet single crystal formed by single crystallizing a yttrium iron garnet composition, wherein the yttrium iron garnet composition contains Ni and C.
o, Cu and Cr ions in a total molar ratio of 0.1xl to yttrium iron' garnet.
It is a yttrium iron-based garnet single crystal characterized by containing O-3 to 3.8×10-'.

また、第2の発明は、イツトリウム鉄系ガーネット組成
物を単結晶化してなるイツトリウム鉄系ガーネット単結
晶の製造方法に場いて、前記イツトリウム鉄系ガーネッ
ト組成物中に、Ni、Co、CuおよびCrイオンのう
ちの114以上を合計でイツトリウム鉄系ガーネットに
対しモル比で0.1xlO−3〜3,8×10−3含む
ように調整し、トラベリング・ソルベント・フローティ
ング・ゾーン法により単結晶化させることを特徴とする
イツトリウム鉄系ガーネット単結晶の製造方法である。
A second invention provides a method for producing a yttrium iron garnet single crystal by single crystallizing a yttrium iron garnet composition, wherein the yttrium iron garnet composition contains Ni, Co, Cu, and Cr. Adjust so that a total of 114 or more of the ions are contained in a molar ratio of 0.1xlO-3 to 3,8x10-3 with respect to yttrium iron-based garnet, and single crystallize by the traveling solvent floating zone method. This is a method for producing a yttrium iron-based garnet single crystal, which is characterized by the following.

■ 発明の具体的構成 本発明のYIG単結晶は、原料のYIG組成物中にNi
、Co、CuおよびCrイオンのうちの1種以上を合計
でYIGに対しモル比で0、 1 x 10−3〜3.
8X l O−3含むように調整し、これを単結晶化し
て得られる。
■ Specific structure of the invention The YIG single crystal of the present invention contains Ni in the raw YIG composition.
, Co, Cu and Cr ions in a total molar ratio of 0.1 x 10-3 to YIG.
It is adjusted to contain 8X 1 O-3 and is obtained by single crystallizing it.

本発明のYIG単結晶は、Y3FesO+2で表わされ
る純粋なYIG単結晶のみでなく、Yの少なくとも−・
部をNd、Sm、Gd、Tb、 Dy等の他の希土類元
素で置換したもの、あるいはFeの一部をGaまたはA
Iで置換したものであってもよい。 これらのうち、特
にGa置換YIGが好ましい。 この場合、FeとGa
の好ましいモル比はFe : Ga=4−5:0.5〜
5.0:0である。
The YIG single crystal of the present invention is not only a pure YIG single crystal represented by Y3FesO+2 but also at least -
Fe is partially replaced with other rare earth elements such as Nd, Sm, Gd, Tb, Dy, etc., or Fe is partially replaced with Ga or A.
It may be substituted with I. Among these, Ga-substituted YIG is particularly preferred. In this case, Fe and Ga
The preferred molar ratio is Fe:Ga=4-5:0.5~
5.0:0.

添加するイオンとしてNi、Co、CuおよびCrイオ
ンを用いるのは、これらの遷移金属イオンはFeサイト
に置換するが、これらのイオンのイオン半径はFeイオ
ンのイオン半径に近く、また、Feサイトは6配位と4
配位があるためイオン半径の許容幅が大きいためである
。 このため、これらのイオンはFeイオンとの置換が
容易であり、液ダレ現象か発生することな〈従来のアル
カリ土類金属イオンを添加する場合にくらべ2倍以上の
直径である16mm以上の単結晶かえられ、しかも単結
晶の直径方向、長さ方向のいずれも特性が均一である。
Ni, Co, Cu, and Cr ions are used as ions to be added because these transition metal ions substitute at Fe sites, but the ionic radius of these ions is close to that of Fe ions, and the Fe sites are 6 coordination and 4
This is because the permissible range of ionic radius is large due to coordination. Therefore, these ions can be easily replaced with Fe ions, and no liquid dripping phenomenon occurs. The crystals are changed, and the characteristics are uniform in both the diameter and length directions of the single crystal.

これらのイオンを合計で原料YIGに対しモル比で0.
1x10−3〜3.8X10弓となるように添加するの
は、原料YIGの純度が99.9%以上である場合、こ
の範囲であれば1.3−における光透過率を68%以上
に維持できるからである。
The total molar ratio of these ions to the raw material YIG is 0.
If the purity of the raw material YIG is 99.9% or more, adding it in an amount of 1x10-3 to 3.8x10 will maintain the light transmittance at 1.3-3 to 68% or more in this range. Because you can.

さらに詳述すれば、原料YIGの純度が例えば99.9
%である場合には、0.1×10−3〜2.8xlO−
3程度が好ましく、原料YIGの純度が例えば99.9
9%である場合には、1.Ox 10−3〜3.8x 
10−3程度が好ましい。 従って、イオン添加量は、
原料YIGの純度により上記範囲内で適宜選定すること
ができる。
More specifically, the purity of the raw material YIG is, for example, 99.9.
%, 0.1x10-3 to 2.8xlO-
The purity of the raw material YIG is preferably about 3, for example, 99.9.
If it is 9%, then 1. Ox 10-3~3.8x
About 10-3 is preferable. Therefore, the amount of ions added is
It can be appropriately selected within the above range depending on the purity of the raw material YIG.

このような範囲内で添加してYIG単結晶を製造する場
合、製造が容易でかつバラつきも少ない。
When producing a YIG single crystal by adding within such a range, production is easy and there is little variation.

次に、製造方法について説明する。Next, the manufacturing method will be explained.

本発明のYIG単結晶は、上記のようなYIG組成物を
単結晶化して得られる。
The YIG single crystal of the present invention is obtained by single crystallizing the YIG composition as described above.

単結晶化の方法としてはTS FZ法が好ましい。As the single crystallization method, the TSFZ method is preferable.

以下、TSFZ法による単結晶化について説明する。Hereinafter, single crystallization by the TSFZ method will be explained.

純度99.9%以上のY2O3、 Fe2O3、Ga2O3を用い、Y2O3:(Fe20
3 +Ga203 )=3 : 5となるように秤量し
YIG原料とする。 こ れ に 、Ni、Co、Cu
およびCrイオンの一種以トをモル比で0.lX10−
3〜3.8X10−’となるように加える。 これらの
イオンはFeサイトに置換されるため、この分について
Y2O3を加え補正する。 これらを混合、成形し、酸
素雰囲気丁にて1500”C以トで焼結させ原料焼結棒
とする。 この原料焼結棒と種結晶とを赤外線加熱集光
炉内へ設置し、両者の間に溶媒材料を挿入して加熱溶融
させ、浮遊帯を形成させる。 そして原料焼結棒と種結
晶とを、通常逆方向に回転させながら1.0mm/時以
下程度の速度で移動させ、結晶化させる。
Y2O3:(Fe20
3 + Ga203 ) = 3:5 and used as a YIG raw material. In this case, Ni, Co, Cu
and one or more Cr ions in a molar ratio of 0. lX10-
Add so that it becomes 3 to 3.8 x 10-'. Since these ions are substituted into Fe sites, Y2O3 is added to compensate for this. These are mixed, molded, and sintered at 1500"C or higher in an oxygen atmosphere to produce a raw material sintered rod. This raw material sintered rod and a seed crystal are placed in an infrared heating concentrator furnace, and both A solvent material is inserted between them and heated and melted to form a floating zone.Then, the raw material sintered rod and the seed crystal are moved at a speed of about 1.0 mm/hour or less, usually while rotating in opposite directions, to form a crystal. to become

このようにして得られるYIG単結晶には、通常、上記
添加イオンが添加量どおり含有されるものである。 そ
して、1.34において68%以上の光透過率を存し、
また、直径16mm以上のものまで作製可能でありかつ
単結晶全体にわたって特性が均一・である。
The YIG single crystal thus obtained usually contains the above-mentioned additive ions in the same amount. and has a light transmittance of 68% or more at 1.34,
Furthermore, it is possible to manufacture crystals with a diameter of 16 mm or more, and the characteristics are uniform throughout the single crystal.

このようにして得られたYIG単結晶は、通常ウェハに
切出され両端面が鏡面研磨されて元素f用等に用いられ
る。 なお、このような場合、両端面にはSiO2,S
iO等からなる反射防止膜が設けられることが好ましい
The YIG single crystal thus obtained is usually cut into wafers, both end faces are polished to a mirror finish, and used for element f, etc. In addition, in such a case, SiO2, S
Preferably, an antireflection film made of iO or the like is provided.

■ 発明の作用効果 本発明によれば、YIG組成物中に所定のイオンを含有
させこれを単結晶化させるため、得られるYIG単結晶
は光透過率が高く、直径の大きな単結晶が得られかつ単
結晶全体にわたって特性が均一である。
■ Effects of the Invention According to the present invention, predetermined ions are contained in the YIG composition and this is single-crystallized, so that the resulting YIG single crystal has high light transmittance and a large diameter. Moreover, the characteristics are uniform throughout the single crystal.

しかも、このような効果を実現するためのイオン含有量
の範囲が比較的広いため、製造が容易でありかつ製品の
バラつきも少ない。
Moreover, since the range of ion content for realizing such effects is relatively wide, manufacturing is easy and there is little variation in the product.

そして、本発明の単結晶を切断して両端面を鏡面研磨し
必要に応じて反射防止膜を設ければ、光素子用として有
用であり、また、マイクロ波用等にも好適に用いること
ができる。
If the single crystal of the present invention is cut, mirror-polished on both end faces, and an antireflection film is provided as necessary, it is useful for optical devices, and can also be suitably used for microwave applications. can.

■ 発明の具体的実施例 以ド、本発明を具体的実施例を挙げて詳細に説明する。■Specific embodiments of the invention Hereinafter, the present invention will be explained in detail by giving specific examples.

[実施例1] 純度99.99%のY203 、F e 203、Ga
2O3を用い、”203  ’ (Fe2o、+Ga2
03)=3:5となるように秤量しYIG原料とした。
[Example 1] Y203, Fe203, Ga with a purity of 99.99%
Using 2O3, "203 ' (Fe2o, +Ga2
03) = 3:5 and used as a YIG raw material.

 なお、  Fe : Ga=4.9:0.1とした。Note that Fe:Ga=4.9:0.1.

このYIG原料に対して種々のモル比でNiイオンを添
加し、この分についてY2O3を加え補正した。 これ
らを混合、成形し、酸素雰囲気下にて1500℃で焼結
させ原料焼結棒とした。 この原料焼結棒と種結晶とを
赤外線加熱集光炉内へ設置し、両者の間に溶媒材料を挿
入して加熱溶融させ、浮遊帯を形成させた。
Ni ions were added to this YIG raw material at various molar ratios, and Y2O3 was added to compensate for this amount. These were mixed, molded, and sintered at 1500° C. in an oxygen atmosphere to obtain a raw material sintered rod. This raw material sintered rod and the seed crystal were placed in an infrared heating concentrator furnace, and a solvent material was inserted between the two and heated and melted to form a floating zone.

そして原料焼結棒と種結晶とを、逆方向に30回/分で
回転させながら1.0mm/時の速度で移動させ、単結
晶を育成した。 得られた単結晶の直径は16mmであ
り、長手方向に径の均一・な9.5cm長のものが得ら
れた。
Then, the raw material sintered rod and the seed crystal were moved at a speed of 1.0 mm/hour while rotating in opposite directions at a rate of 30 times/minute to grow a single crystal. The diameter of the obtained single crystal was 16 mm, and the diameter was uniform in the longitudinal direction and the length was 9.5 cm.

この単結晶に切出して両端面を鏡面研磨し、1.3−に
て光透過率を測定した。
This single crystal was cut out, both end faces were mirror polished, and the light transmittance was measured at 1.3-.

結果を第1図に示す。 なお、光透過率の最大値はNi
イオンをモル比で2.0xlO−’添加したときに得ら
れ、このときの値は73%以上であった。
The results are shown in Figure 1. Note that the maximum value of light transmittance is Ni
This was obtained when ions were added at a molar ratio of 2.0xlO-', and the value at this time was 73% or more.

[実施例2] Y[G原料の純度を99.9%とした他は実施例1と同
様にしてYIG単結晶を作製し、光透過率を測定した。
[Example 2] A YIG single crystal was produced in the same manner as in Example 1 except that the purity of the Y[G raw material was 99.9%, and the light transmittance was measured.

 YIG単結晶は、径が均一で直径16mmのものが得
られた。
A YIG single crystal with a uniform diameter of 16 mm was obtained.

結果を第1図に示す。 なお、光透過率の最大値はNi
イオンをモル比でo、9xto−’添加したときに得ら
れ、このときの値は73%以上であった。
The results are shown in Figure 1. Note that the maximum value of light transmittance is Ni
This was obtained when ions were added at a molar ratio of o, 9xto-', and the value at this time was 73% or more.

[実施例3] 実施例1のNiイオンに加えCoイオンを添加した。 
この場合も16mmの直径の径の均一なYIG単結晶が
得られ、得られたYIG単結晶の最大光透過率は71%
であった。
[Example 3] In addition to the Ni ions of Example 1, Co ions were added.
In this case as well, a uniform YIG single crystal with a diameter of 16 mm was obtained, and the maximum light transmittance of the obtained YIG single crystal was 71%.
Met.

このときのNiイオンの添加量は1.25X10−3、
Coイオンの添加量は0.63x10−3であった。
The amount of Ni ions added at this time was 1.25X10-3,
The amount of Co ions added was 0.63 x 10-3.

[実施例4] 添加するイオンをC01CuおよびCrのうちの一種と
し、他は実施例1と同様にしてYIGQI結晶を作製し
た。 直径16mmの均一な径のYIG単結晶が得られ
、これらはいずれも70%以上の光透過率を示した。
[Example 4] A YIGQI crystal was produced in the same manner as in Example 1 except that the ions to be added were one of CO1Cu and Cr. YIG single crystals with a uniform diameter of 16 mm were obtained, and all of them exhibited a light transmittance of 70% or more.

また、Ni、Co、CuおよびCrから2種以上を選ん
で添加し他は実施例1と同様にして作製したYIG単結
晶は、直径が16mmの径が均一なものが得られ、いず
れも72%以上の光透過率を示した。
In addition, YIG single crystals prepared in the same manner as in Example 1 except that two or more selected from Ni, Co, Cu, and Cr were added had a uniform diameter of 16 mm, and both had a uniform diameter of 72 mm. % or more.

[比較例1] 添加するイオンをCaに替え、補正のためにY2O3の
替わりにFe2O3を用いた他は実施例2と同様にして
YIG単結晶を作製した。
[Comparative Example 1] A YIG single crystal was produced in the same manner as in Example 2, except that the ions to be added were changed to Ca and Fe2O3 was used instead of Y2O3 for correction.

最大光透過率は72%が得られたが、単結晶育成時に液
ダレ現象が発生したため直径16mmのものは作製が不
可能であり、41られた最大径は8mmであった。
Although a maximum light transmittance of 72% was obtained, it was impossible to produce a crystal with a diameter of 16 mm because a liquid drip phenomenon occurred during single crystal growth, and the maximum diameter obtained was 8 mm.

以上の結果から、本発明の効果は明らかである。From the above results, the effects of the present invention are clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、YIG原料の純度が99.99%および99
.9%であるときの、添加したNiイオンのYIGに対
するモル比と、そのときのYIG単結晶の光透過率との
関係を示すグラフである°。 FIG、1
Figure 1 shows that the purity of the YIG raw material is 99.99% and 99.99%.
.. 9 is a graph showing the relationship between the molar ratio of added Ni ions to YIG when the ratio is 9% and the light transmittance of the YIG single crystal at that time. FIG.1

Claims (2)

【特許請求の範囲】[Claims] (1)イットリウム鉄系ガーネット組成物を単結晶化し
てなるイットリウム鉄系ガーネット単結晶において、 前記イットリウム鉄系ガーネット組成物中 に、Ni、Co、CuおよびCrイオンのうちの1種以
上を合計でイットリウム鉄系ガーネットに対しモル比で
0.1×10^−^3〜3.8×10^−^3含むこと
を特徴とするイットリウム鉄系ガーネット単結晶。
(1) In a yttrium iron-based garnet single crystal formed by single crystallizing a yttrium iron-based garnet composition, the yttrium iron-based garnet composition contains one or more of Ni, Co, Cu, and Cr ions in total. A yttrium iron-based garnet single crystal containing 0.1 x 10^-^3 to 3.8 x 10^-^3 in molar ratio to yttrium iron-based garnet.
(2)イットリウム鉄系ガーネット組成物を単結晶化し
てなるイットリウム鉄系ガーネット単結晶の製造方法に
おいて、 前記イットリウム鉄系ガーネット組成物中 に、Ni、Co、CuおよびCrイオンのうちの1種以
上を合計でイットリウム鉄系ガーネットに対しモル比で
0.1×10^−^3〜3.8×10^−^3含むよう
に調整し、トラベリング・ソルベント・フローティング
・ゾーン法により単結晶化させることを特徴とするイッ
トリウム鉄系ガーネット単結晶の製造方法。
(2) A method for producing a yttrium iron garnet single crystal by single crystallizing a yttrium iron garnet composition, wherein one or more of Ni, Co, Cu, and Cr ions are present in the yttrium iron garnet composition. is adjusted to contain a total of 0.1 x 10^-^3 to 3.8 x 10^-^3 in molar ratio to yttrium iron-based garnet, and single crystallized by the traveling solvent floating zone method. A method for producing a yttrium iron-based garnet single crystal, characterized by:
JP6083187A 1987-03-16 1987-03-16 Yttrium-iron garnet single crystal and production thereof Pending JPS63230595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6083187A JPS63230595A (en) 1987-03-16 1987-03-16 Yttrium-iron garnet single crystal and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6083187A JPS63230595A (en) 1987-03-16 1987-03-16 Yttrium-iron garnet single crystal and production thereof

Publications (1)

Publication Number Publication Date
JPS63230595A true JPS63230595A (en) 1988-09-27

Family

ID=13153695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6083187A Pending JPS63230595A (en) 1987-03-16 1987-03-16 Yttrium-iron garnet single crystal and production thereof

Country Status (1)

Country Link
JP (1) JPS63230595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386956A (en) * 2021-05-24 2022-11-25 中国科学院上海硅酸盐研究所 Method for growing gadolinium gallium garnet crystal by moving flux floating zone method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386956A (en) * 2021-05-24 2022-11-25 中国科学院上海硅酸盐研究所 Method for growing gadolinium gallium garnet crystal by moving flux floating zone method
CN115386956B (en) * 2021-05-24 2023-09-08 中国科学院上海硅酸盐研究所 Method for growing gadolinium gallium garnet crystal by moving flux floating zone method

Similar Documents

Publication Publication Date Title
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
US4293371A (en) Method of making magnetic film-substrate composites
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
JPS63230595A (en) Yttrium-iron garnet single crystal and production thereof
KR0143799B1 (en) Single crystal growth method for bariumtitanikm oxide using noncrystalline solio growth
JP2011190138A (en) Method for producing multiferroic single crystal
US4135963A (en) Lithium tantalate single crystal growth from a platinum-rhodium crucible in an inert gas, nitrogen or reducing gas atmosphere
JPH09328396A (en) Garnet crystal for substrate of magnetooptic element and its production
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JPH09202697A (en) Production of bismuth-substituted type garnet
JPS63230596A (en) Yttrium-iron garnet single crystal and production thereof
JP2008143738A (en) Magnetic garnet single crystal and its manufacturing method
EP0018111B1 (en) Method of producing ferrite single crystals
Bruni Gadolinium gallium garnet
JPH0793212B2 (en) Oxide garnet single crystal
KR100509345B1 (en) A process for producing single crystals of blue colored cubic zirconia
KR100509346B1 (en) A process for producing single crystals of green colored cubic zirconia
CN117127262A (en) Nickel-doped bismuth rare earth iron garnet magneto-optical crystal with high transmittance, low temperature coefficient and low wavelength coefficient
JPH101397A (en) Garnet crystal for substrate of magneto-optical element and its production
US3894142A (en) Method for producing gadolinium molybdate single crystals having high transparency
KR100540449B1 (en) Manufacturing method of garnet single crystal and a garnet single crystal manufactured by the method
JPH04130094A (en) Yig single crystal for optical communication and its production
CN117265662A (en) Garnet crystal with strong magneto-optical effect, high Curie temperature and high bismuth-containing neodymium-doped rare earth iron suitable for 1310nm wave band
JPS61186298A (en) Production of single crystal
JPH025720B2 (en)