JPH09246439A - Cooling mechanism for heating component - Google Patents

Cooling mechanism for heating component

Info

Publication number
JPH09246439A
JPH09246439A JP5576396A JP5576396A JPH09246439A JP H09246439 A JPH09246439 A JP H09246439A JP 5576396 A JP5576396 A JP 5576396A JP 5576396 A JP5576396 A JP 5576396A JP H09246439 A JPH09246439 A JP H09246439A
Authority
JP
Japan
Prior art keywords
heat
component
generating
shape
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5576396A
Other languages
Japanese (ja)
Inventor
Toshio Chiyoshima
敏夫 千代島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PFU Ltd
Original Assignee
PFU Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PFU Ltd filed Critical PFU Ltd
Priority to JP5576396A priority Critical patent/JPH09246439A/en
Publication of JPH09246439A publication Critical patent/JPH09246439A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize uniform thermal conductivity and improvement in cooling efficiency, by using a thermal conduction component made of a shape memory metal memorizing a shape corresponding to a predetermined temperature as a heat medium between a heating component and a radiation component. SOLUTION: Shape memory metals, for example, of rectangular-columnar shape, may be changed in height by causing the cross section to change from a rhombic shape to a square at a predetermined modification temperature so that the angle made by each side becomes a right angle. Such shape memory metals are connected in parallel to form a flat plate. A thermal conduction component 1 made of the shape memory metal memorizing a shape corresponding to a predetermined temperature is used as a heat medium between a heating component 2 and a radiation component 3, so as to conduct the heat of the heating component 2 to the radiation component 3. By this means, a change in height of the thermal conduction component 1 of the shape memory metal along with a rise in temperature increases the contact stress between the heating component 2 and the radiation component 3, and elastic deformation increases the contact area. Thus, the thermal resistance between the heating component and the radiation component is reduced, thereby enabling efficient thermal conduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の発熱部
品の冷却機構に関し、熱伝導効率の高い冷却機構を提供
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling mechanism for heat-generating components of electronic equipment, and provides a cooling mechanism having high heat conduction efficiency.

【0002】[0002]

【従来の技術】近年、電子機器に搭載される部品は性能
の向上に伴って部品から発生する熱量も増加する傾向が
多く、その冷却機構の設置は電子機器の信頼性を確保す
るための重要な技術課題となっている。従来の冷却機構
は、図7(a)に示すように弾性を持つ熱伝導シート2
1を発熱部品22と放熱部品23との間に挿入して発熱
部品22と放熱部品23との間の熱伝導を高め、熱抵抗
の低下をはかって発熱部品22の冷却を行っていた。
2. Description of the Related Art In recent years, the amount of heat generated from components mounted on electronic equipment tends to increase with the improvement in performance, and the installation of a cooling mechanism is important for ensuring the reliability of electronic equipment. Has become a technical issue. As shown in FIG. 7 (a), the conventional cooling mechanism has a heat conductive sheet 2 having elasticity.
1 is inserted between the heat-generating component 22 and the heat-radiating component 23 to enhance heat conduction between the heat-generating component 22 and the heat-radiating component 23, and to reduce the thermal resistance to cool the heat-generating component 22.

【0003】[0003]

【発明が解決しようとする課題】このような従来の冷却
機構では、図7(b)に示すように部品点数の削減と製
造能率向上のために複数の発熱部品を一括して単一放熱
部品で冷却を行おうとすると、発熱部品の仕上がり高さ
あるいは部品のリードのはんだ量やリードの平面度に起
因する寸法公差により接触圧力の不均等が発生し、熱伝
導性の均等化が困難であり、全体的な温度バランスを調
整することが困難であるという問題点があった。
In such a conventional cooling mechanism, as shown in FIG. 7 (b), a plurality of heat-generating components are collectively formed into a single heat-radiating component in order to reduce the number of components and improve manufacturing efficiency. If you try to cool with, the contact pressure becomes uneven due to the dimensional tolerance resulting from the finished height of the heat-generating component, the solder amount of the component lead, and the flatness of the lead, making it difficult to equalize thermal conductivity. However, there is a problem that it is difficult to adjust the overall temperature balance.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、発熱部品と放熱部品との熱媒体として、
所定の温度に対応する形状を記憶した形状記憶金属で成
る熱伝導部品で、温度の上昇により形状が変化し、発熱
部品と放熱部品との接触圧力を増加させ、熱伝導性を高
めて発熱部品の熱を放熱部品に熱伝導させる。という技
術手段を採用し、熱伝導性の均等化や冷却効率の向上そ
して発熱部品間の温度調整の可能な冷却機構を提供す
る。
In order to solve the above problems, the present invention provides a heat medium for a heat-generating component and a heat-radiating component,
A heat-conducting component made of a shape-memory metal that memorizes a shape corresponding to a predetermined temperature. The shape changes when the temperature rises, the contact pressure between the heat-generating component and the heat-radiating component increases, and the heat conductivity increases to increase the heat-generating component. The heat of the heat is conducted to the heat dissipation component. By adopting such technical means, we provide a cooling mechanism that can equalize thermal conductivity, improve cooling efficiency, and control the temperature between heat-generating components.

【0005】[0005]

【発明の実施の形態】まず、図1においては、好ましい
形態として例えば角柱で所定の変態温度で断面が菱形
(図1a )から方形に変化して各辺間の角度が直角にな
ることで、高さを変える(図1b )ことのできる形状記
憶金属を並行に連結して平板状とし、この所定の温度に
対応する形状を記憶した形状記憶金属で成る熱伝導部品
1を発熱部品2と放熱部品3との熱媒体として、発熱部
品2の熱を放熱部品3に熱伝導させるように構成した。
この手段により温度上昇に伴い形状記憶金属で成る熱伝
導部品1の高さの変化で、発熱部品2と放熱部品3との
間の接触圧力を増加させ、弾性変形により接触面積も増
加する。従って発熱部品と放熱部品との間の熱抵抗が減
少するようになり熱伝導の効率化をはかる作用を得る。
なお、発熱部品2と放熱部品3との固定をするクランプ
4との併用も後述するように可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in FIG. 1, as a preferred embodiment, for example, a prism is used, and the cross section changes from a rhombus (FIG. 1a) to a square at a predetermined transformation temperature, and the angles between the sides become right angles. The shape-memory metal whose height can be changed (Fig. 1b) is connected in parallel to form a flat plate, and the heat-conducting component 1 made of the shape-memory metal that memorizes the shape corresponding to the predetermined temperature is radiated with the heat-generating component 2. As a heat medium with the component 3, the heat of the heat generating component 2 is configured to be conducted to the heat radiating component 3.
By this means, the contact pressure between the heat-generating component 2 and the heat-dissipating component 3 is increased due to the change in the height of the heat-conducting component 1 made of a shape memory metal as the temperature rises, and the contact area is also increased by elastic deformation. Therefore, the thermal resistance between the heat generating component and the heat radiating component is reduced, and the effect of improving the efficiency of heat conduction is obtained.
It is also possible to use the clamp 4 for fixing the heat generating component 2 and the heat radiating component 3 together, as described later.

【0006】次に、図2においては、所定の変態温度で
断面形状と高さとを変えることのできる形状記憶金属を
並行に連結して平板状とし、この所定の温度に対応する
形状を記憶した形状記憶金属で成る熱伝導部品1を単独
の発熱部品2と単独の放熱部品3との間に熱媒体として
配置して、単独の発熱部品2の熱を単独の放熱部品3に
熱伝導させるように構成した。この手段により温度上昇
に伴い形状記憶金属で成る熱伝導部品1の高さの変化で
単独の発熱部品2と単独の放熱部品3との間の接触圧力
を増加させ、弾性変形により接触面積も増加する。従っ
て単独の発熱部品と単独の放熱部品との間の熱抵抗が減
少するようになり熱伝導の効率化をはかる作用を得る。
Next, in FIG. 2, shape memory metals whose cross-sectional shape and height can be changed at a predetermined transformation temperature are connected in parallel to form a flat plate, and the shape corresponding to this predetermined temperature is stored. The heat conducting component 1 made of a shape memory metal is arranged as a heat medium between the single heat generating component 2 and the single heat radiating component 3 so that the heat of the single heat generating component 2 is conducted to the single heat radiating component 3. Configured to. By this means, the contact pressure between the single heat-generating component 2 and the single heat-radiating component 3 is increased due to the change in the height of the heat-conducting component 1 made of shape memory metal as the temperature rises, and the contact area is also increased by elastic deformation. To do. Therefore, the thermal resistance between the single heat-generating component and the single heat-radiating component is reduced, and the effect of increasing the efficiency of heat conduction is obtained.

【0007】また、図3においては、所定の変態温度で
断面形状と高さとを変えることのできる形状記憶金属を
並行に連結して平板状とし、この所定の温度に対応する
形状を記憶した形状記憶金属で成る熱伝導部品1を発熱
特性の同様な複数の発熱部品2と単一放熱部品6との間
に熱媒体として配置して、発熱特性の同様な複数の発熱
部品2の熱を単一放熱部品6に熱伝導させるように構成
した。この手段により温度上昇に伴い形状記憶金属で成
る熱伝導部品1の高さの変化で発熱特性の同様な複数の
発熱部品2と単一放熱部品6との間の接触圧力を増加さ
せ、弾性変形により接触面積も増加する。従って熱抵抗
が減少するようになり熱伝導の効率化と均等化をはかる
作用を得る。
Further, in FIG. 3, a shape-memory metal whose cross-sectional shape and height can be changed at a predetermined transformation temperature is connected in parallel to form a flat plate shape, and a shape corresponding to the predetermined temperature is memorized. The heat-conducting component 1 made of a memory metal is arranged as a heat medium between a plurality of heat-generating components 2 having similar heat-generating properties and a single heat-radiating component 6 so that heat of the plurality of heat-generating components 2 having similar heat-generating properties is isolated. One heat dissipation component 6 is configured to conduct heat. By this means, the contact pressure between the plurality of heat-generating components 2 having a similar heat-generating characteristic and the single heat-radiating component 6 is increased by the change of the height of the heat-conducting component 1 made of shape memory metal with the temperature rise, and the elastic deformation is caused. This also increases the contact area. Therefore, the thermal resistance is reduced, and the effect of increasing the efficiency and equalizing the heat conduction is obtained.

【0008】さらに、図4においては、所定の変態温度
で断面形状と高さを変えることのできる形状記憶金属を
並行に連結して平板状とし、この所定の温度に対応する
形状を記憶した形状記憶金属で成り、かつ変態温度のそ
れぞれ異なる複数の熱伝導部品1a 、1b 、1c を、発
熱特性がそれぞれ異なる複数の発熱部品2a 、2b 、2
c に対応して、単一放熱部品6との間に熱媒体として配
置して、発熱特性がそれぞれ異なる複数の発熱部品2a
、2b 、2c の熱を単一放熱部品6に熱伝導させるよ
うに構成した。この手段により温度上昇に伴い形状記憶
金属で成る熱伝導部品1a 、1b 、1c の高さの変化で
発熱部品2a 、2b 、2c と単一放熱部品6との間の接
触圧力を増加させ、弾性変形により接触面積も増加す
る。従って熱抵抗が減少するようになり熱伝導の効率化
と均等化をはかり、さらに特に温度上昇が早く急激な特
性を持つ発熱部品2b に対しては変態温度の低い方の形
状記憶金属で成る熱伝導部品1b を配置させ、当初単一
放熱部品6全体で放熱をはかり、その他の発熱部品2a
、2c との放熱バランス調整を可能とする作用を得
る。
Further, in FIG. 4, a shape-memory metal whose cross-sectional shape and height can be changed at a predetermined transformation temperature is connected in parallel to form a flat plate shape, and the shape corresponding to the predetermined temperature is memorized. A plurality of heat-conducting components 1a, 1b, 1c made of a memory metal and having different transformation temperatures are used as a plurality of heat-generating components 2a, 2b, 2 having different heat-generating characteristics.
Corresponding to c, it is arranged as a heat medium between the single heat dissipation component 6 and a plurality of heat dissipation components 2a having different heat generation characteristics.
The heat of 2b, 2c is conducted to the single heat dissipation component 6. By this means, the contact pressure between the heat-generating components 2a, 2b, 2c and the single heat-dissipating component 6 is increased by the change in the height of the heat-conducting components 1a, 1b, 1c made of shape memory metal as the temperature rises, and the elasticity is increased. The deformation also increases the contact area. Therefore, the thermal resistance is reduced, the efficiency of heat conduction is improved and equalized, and especially for the heat-generating component 2b having a rapid temperature rise and abrupt characteristics, the heat of the shape memory metal having the lower transformation temperature is used. The conductive component 1b is arranged so that the entire single heat-dissipating component 6 initially radiates heat, and the other heat-generating component 2a.
The effect that enables the adjustment of the heat radiation balance with 2c is obtained.

【0009】次に、図5においては、好ましい形態とし
て例えば角柱から成り所定の変態温度で形状を中間が曲
がったくの字形状から真っ直ぐな形状に変化させること
のできる支持部7と、角柱から成り例えば前記支持部7
と同様な形状変化をさせることのできる支柱部8とを固
着し、発熱部品2と放熱部品3との熱伝導と固定とを兼
用するクランプ4を構成した。この手段により温度上昇
に伴い発熱部品2と放熱部品3との間の接触圧力を支持
部7および支柱部8の形状を中間が曲がったくの字形状
から真っ直ぐな形状に変化させることで発熱部品2と放
熱部品3との間隔の変化により発熱部品2と放熱部品3
との間の接触圧力を増加させ、熱伝導シート5の弾性変
形により発熱部品2と放熱部品3との間の接触面積も増
加する。従って熱抵抗が減少するようになり熱伝導性の
効率化をはかる作用を得る。なおクランプ4は発熱部品
2と放熱部品3との押さえつけを行う支持部7のみが形
状記憶金属であっても、二つの支持部の間の所定間隔を
確保する支柱部8のみが形状記憶金属であっても、さら
に発熱部品2と放熱部品3との間に形状記憶金属で成る
熱伝導部品1を配置することとの併用であってもよい。
Next, in FIG. 5, as a preferred form, for example, a prism is composed of a support 7 which is composed of, for example, a prism and is capable of changing its shape from a bent shape in the middle to a straight shape at a predetermined transformation temperature. For example, the support portion 7
A column portion 8 capable of changing the same shape as the above is fixed, and a clamp 4 that serves as both heat conduction and fixing between the heat generating component 2 and the heat radiating component 3 is configured. By this means, as the temperature rises, the contact pressure between the heat-generating component 2 and the heat-radiating component 3 changes the shape of the support portion 7 and the support portion 8 from a bent dogleg shape in the middle to a straight shape. And the heat radiating component 3 change due to the change in the distance between
The contact pressure between the heat generating component 2 and the heat dissipating component 3 also increases due to the elastic deformation of the heat conducting sheet 5. Therefore, the thermal resistance is reduced and the effect of improving the efficiency of thermal conductivity is obtained. It should be noted that in the clamp 4, even if only the support portion 7 that holds down the heat-generating component 2 and the heat-radiating component 3 is made of shape memory metal, only the column portion 8 that secures a predetermined distance between the two support portions is made of shape memory metal. Alternatively, the heat conducting component 1 made of a shape memory metal may be additionally disposed between the heat generating component 2 and the heat radiating component 3.

【0010】次に、図6においては、好ましい形態とし
て例えば所定の変態温度で6面体などの多面体から球形
や球形に近い形状に変化することで、高さと表面積を変
えることのできる形状記憶金属で成る熱伝導体9を発熱
部品2と放熱部品3との間に配置され弾性を持つ熱伝導
シート5に混入させ形成した。この手段により温度上昇
に伴い形状記憶金属で成る熱伝導体9の高さの変化で発
熱部品2と放熱部品3との間の接触圧力を増加させ、弾
性変形により発熱部品2と放熱部品3との間の接触面積
も増加する。従って熱伝導シート単体より熱抵抗が減少
するように、また熱伝導表面積が拡大でき、熱伝導性の
効率化をはかる作用を得る。なお熱伝導シート5に混入
させる形状記憶金属で成る熱伝導体9の数の増減で配置
密度に変化を加えることで、熱伝導の可変性を加え発熱
部品2相互の放熱バランス調整が可能となる。
Next, referring to FIG. 6, as a preferred form, a shape memory metal whose height and surface area can be changed by changing from a polyhedron such as a hexahedron to a spherical shape or a shape close to a spherical shape at a predetermined transformation temperature. The formed heat conductor 9 is formed by mixing it with the elastic heat conductive sheet 5 arranged between the heat generating component 2 and the heat radiating component 3. By this means, the contact pressure between the heat generating component 2 and the heat radiating component 3 is increased by the change in the height of the heat conductor 9 made of shape memory metal with the temperature rise, and the heat generating component 2 and the heat radiating component 3 are elastically deformed. The contact area between the two also increases. Therefore, the heat resistance can be reduced and the heat conduction surface area can be increased as compared with the case of using the heat conduction sheet alone, and the effect of improving the efficiency of heat conductivity can be obtained. By changing the arrangement density by increasing or decreasing the number of the heat conductors 9 made of shape memory metal to be mixed in the heat conducting sheet 5, it is possible to add variability in heat conduction and adjust the heat radiation balance between the heat generating components 2. .

【0011】[0011]

【実施例】以下、図1ないし図6の本発明に関わる形状
記憶金属で成る熱伝導部品1利用の冷却機構の実施例を
図面に基づいて説明する。図1は、本発明の原理の冷却
機構の構造図である。同図において、角柱で所定の変態
温度で断面が菱形(図1a )から方形に変化して各辺間
の角度が直角になることで、高さを変える(図1b )こ
とのできる形状記憶金属を並行に連結して平板状とし、
この所定の温度に対応する形状を記憶した形状記憶金属
で成る熱伝導部品1を発熱部品2と放熱部品3との熱媒
体として発熱部品2の熱を放熱部品3に熱伝導させるよ
うに構成した。そこで発熱部品2を搭載したプリント回
路板と放熱部品3との、ねじ止めによる固定(図1に図
示せず)で発熱部品2の熱を放熱部品3に熱伝導させる
ことを、温度上昇に伴い熱抵抗が減少するように形状記
憶金属で成る熱伝導部品1の高さの変化で接触圧力を増
加させて、熱伝導の作用の促進をした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling mechanism using a heat conducting component 1 made of shape memory metal according to the present invention shown in FIGS. 1 to 6 will be described below with reference to the drawings. FIG. 1 is a structural diagram of a cooling mechanism according to the principle of the present invention. In the figure, the shape memory metal is a prism whose cross section changes from a rhombus (Fig. 1a) to a square at a predetermined transformation temperature and the angles between the sides become right angles, so that the height can be changed (Fig. 1b). Are connected in parallel to form a flat plate,
The heat conducting component 1 made of a shape memory metal that stores the shape corresponding to the predetermined temperature is used as a heat medium between the heat generating component 2 and the heat radiating component 3 to conduct the heat of the heat generating component 2 to the heat radiating component 3. . Therefore, it is necessary to fix the screwing (not shown in FIG. 1) between the printed circuit board on which the heat-generating component 2 is mounted and the heat-radiating component 3 so that the heat of the heat-generating component 2 is conducted to the heat-radiating component 3 as the temperature rises. The contact pressure was increased by changing the height of the heat-conducting component 1 made of a shape memory metal so as to reduce the heat resistance, thereby promoting the action of heat conduction.

【0012】図2は、第1実施例の冷却機構の構造図で
ある。同図において、前記の所定の変態温度で断面形状
と高さとを変えることのできる形状記憶金属を、並行に
連結して平板状とし、この所定の温度に対応する形状を
記憶した形状記憶金属で成る熱伝導部品1を発熱部品2
と放熱部品3との間に配置して発熱部品2の熱を放熱部
品3に熱伝導させるように構成した。そこで発熱部品2
を搭載したプリント回路板と放熱部品3との、ねじ止め
による固定(図2に図示せず)で発熱部品2の熱を放熱
部品3に熱伝導させることを、温度上昇に伴い熱抵抗が
減少するように形状記憶金属で成る熱伝導部品1の高さ
の変化で接触圧力を増加させて熱伝導の作用の促進をし
た。
FIG. 2 is a structural view of the cooling mechanism of the first embodiment. In the figure, a shape memory metal whose cross-sectional shape and height can be changed at the above-mentioned predetermined transformation temperature is connected in parallel to form a flat plate, and a shape-memory metal that remembers the shape corresponding to this predetermined temperature is used. The heat-conducting component 1 consisting of
It is arranged between the heat dissipating component 3 and the heat dissipating component 3 so that the heat of the heat generating component 2 is conducted to the heat dissipating component 3. Therefore, heat-generating component 2
The heat resistance of the heat-radiating component 3 is reduced by heat conduction of the heat of the heat-generating component 2 to the heat-radiating component 3 by fixing (not shown in FIG. 2) the printed circuit board on which the heat-radiating component 3 is mounted by screwing. As described above, the contact pressure is increased by changing the height of the heat-conducting component 1 made of shape memory metal to promote the action of heat conduction.

【0013】図3は、第2実施例の冷却機構の構造図で
ある。同図において、前記の所定の変態温度で断面形状
と高さを変えることのできる形状記憶金属を、並行に連
結して平板状とし、この所定の温度に対応する形状を記
憶した形状記憶金属で成る熱伝導部品1を発熱特性が同
様な複数の発熱部品2と単一放熱部品6との間に配置し
て発熱特性が同様な複数の発熱部品2の熱を単一放熱部
品6に熱伝導させるように構成した。そこで発熱部品2
を搭載したプリント回路板と単一放熱部品6との、ねじ
止めによる固定(図3に図示せず)で発熱部品2の熱を
単一放熱部品6に熱伝導させることを、温度上昇に伴い
熱抵抗が減少するように形状記憶金属で成る熱伝導部品
1の高さの変化で接触圧力を増加させて熱伝導の作用の
促進をした。
FIG. 3 is a structural view of the cooling mechanism of the second embodiment. In the figure, the shape memory metal whose cross-sectional shape and height can be changed at the predetermined transformation temperature is connected in parallel to form a flat plate shape, and the shape memory metal that remembers the shape corresponding to this predetermined temperature is used. The heat-conducting component 1 is arranged between the plurality of heat-generating components 2 having the same heat-generating property and the single heat-radiating component 6, and the heat of the plurality of heat-generating components 2 having the same heat-generating property is conducted to the single heat-radiating component 6. Configured to let. Therefore, heat-generating component 2
Conducting heat transfer from the heat generating component 2 to the single heat radiating component 6 by fixing (not shown in FIG. 3) the screw mounting the printed circuit board on which the heat radiating component 6 is mounted together with the temperature rise. The contact pressure was increased by changing the height of the heat-conducting component 1 made of shape memory metal so as to reduce the heat resistance, thereby promoting the action of heat conduction.

【0014】図4は、第3実施例の冷却機構の構造図で
ある。同図において、前記の所定の変態温度で断面形状
と高さを変化することのできる形状記憶金属を、それぞ
れ並行に連結して平板状とし、所定の温度に対応する形
状を記憶した変態温度のそれぞれ異なる複数の形状記憶
金属で成る熱伝導部品1a 、1b 、1c を発熱特性のそ
れぞれ異なる複数の発熱部品2a 、2b 、2cに対応し
て、単一放熱部品6との間に配置して発熱部品2a 、2
b 、2c の熱を単一放熱部品6に熱伝導させるように構
成した。そこで発熱部品2a 、2b 、2c を搭載したプ
リント回路板と単一放熱部品6とのねじ止めによる固定
(図4に図示せず)で発熱部品2の熱を単一放熱部品6
に熱伝導させることを、温度上昇に伴い熱抵抗が減少す
るようにして形状記憶金属で成る熱伝導部品1a 、1b
、1c の高さの変化で接触圧力を増加させて熱伝導の
促進をした。特に温度上昇が早く急激な特性を持つ発熱
部品2b に対しては変態温度の低い方の形状記憶金属で
成る熱伝導部品1b を配置させて当初単一放熱部品6全
体で放熱をはかり、その他の発熱部品2a 、2c との放
熱バランス調整を可能とした。
FIG. 4 is a structural view of the cooling mechanism of the third embodiment. In the figure, shape memory metals capable of changing the cross-sectional shape and the height at the predetermined transformation temperature are connected in parallel to form a flat plate, and the shape corresponding to the predetermined temperature Heat is generated by arranging heat conducting parts 1a, 1b, 1c made of a plurality of different shape memory metals between a single heat radiating part 6 corresponding to a plurality of heat generating parts 2a, 2b, 2c having different heat generating characteristics. Parts 2a, 2
The heat of b and 2c is conducted to the single heat dissipation component 6. Therefore, by fixing the printed circuit board on which the heat-generating components 2a, 2b, 2c are mounted and the single heat-radiating component 6 by screwing (not shown in FIG. 4), the heat of the heat-generating component 2 is transferred to the single heat-radiating component 6.
The heat conducting parts 1a, 1b made of a shape memory metal so that the heat resistance is reduced as the temperature rises.
The contact pressure was increased by changing the height of 1c to promote heat conduction. Especially for the heat-generating component 2b having a rapid temperature rise and abrupt characteristics, the heat-conducting component 1b made of the shape memory metal having a lower transformation temperature is arranged to initially radiate heat by the single heat-radiating component 6 and other components. It is possible to adjust the heat radiation balance with the heat generating parts 2a, 2c.

【0015】図5は、第4実施例の冷却機構の構造図で
ある。同図において、角柱から成り所定の変態温度で形
状を中間が曲がったくの字形状から真っ直ぐな形状に変
化させることのできる支持部7と、角柱から成り前記支
持部7と同様な形状変化をさせることのできる支柱部8
とをねじ止めなどで固着し、発熱部品2と放熱部品3と
の熱伝導と固定とを兼用するクランプ4を構成した。そ
こで温度上昇に伴い支持部7と支柱部8の形状を中間が
曲がったくの字形状から真っ直ぐな形状に変化させるこ
とで、発熱部品2と放熱部品3との間の間隔の変化によ
り熱抵抗が減少するように接触圧力を増加させて熱伝導
作用の促進をした。なおクランプ4は発熱部品2や放熱
部品3との押さえつけ支持部7のみが形状記憶金属であ
っても、二つの支持部の間で所定間隔を確保する支柱部
8のみが形状記憶金属であっても、さらに発熱部品2と
放熱部品3と間に形状記憶金属で成る熱伝導部品1を配
置することの併用であってもよい。
FIG. 5 is a structural view of the cooling mechanism of the fourth embodiment. In the figure, a support portion 7 formed of a prism and capable of changing its shape from a bent shape in the middle to a straight shape at a predetermined transformation temperature, and a support portion 7 formed of a prism and having the same shape change as the support portion 7 described above. Supporting pillar 8
Are fixed by screwing or the like to form a clamp 4 which serves as both heat conduction and fixing between the heat generating component 2 and the heat radiating component 3. Therefore, by changing the shape of the support portion 7 and the support portion 8 from a bent shape in the middle to a straight shape as the temperature rises, the thermal resistance changes due to the change in the distance between the heat generating component 2 and the heat radiating component 3. The contact pressure was increased so as to decrease the thermal conductivity. Even if only the support portion 7 for pressing the heat-generating component 2 and the heat-dissipating component 3 into the clamp 4 is made of shape memory metal, only the column portion 8 which secures a predetermined distance between the two support portions is made of shape memory metal. Alternatively, the heat conducting component 1 made of a shape memory metal may be additionally disposed between the heat generating component 2 and the heat radiating component 3.

【0016】図6は、第5実施例の冷却機構の構造図で
ある。同図において、所定の変態温度で6面体などの多
面体から球形や球形に近い形状に変化することで、高さ
と表面積を変化する形状記憶金属で成る熱伝導体9を発
熱部品2と放熱部品3との間に配置される弾性を持つ熱
伝導シート5に混入させた。そこで発熱部品2を搭載し
たプリント回路板と放熱部品3との、ねじ止めによる固
定(図6に図示せず)で発熱部品2の熱を放熱部品3に
熱伝導させることを、温度上昇に伴い熱抵抗が減少する
ように熱伝導体9の高さの変化で接触圧力を増加させて
促進をした。なお熱伝導シート5に混入させる形状記憶
金属で成る熱伝導体9の数を増減して配置密度を発熱部
品2の発熱特性に対応して変化をさせてもよい。
FIG. 6 is a structural view of the cooling mechanism of the fifth embodiment. In the figure, a heat conductor 9 made of a shape memory metal whose height and surface area are changed by changing from a polyhedron such as a hexahedron to a spherical shape or a shape close to a spherical shape at a predetermined transformation temperature is used as the heat generating component 2 and the heat radiating component 3. It was mixed in the heat conductive sheet 5 having elasticity arranged between the and. Therefore, the heat conduction of the heat of the heat generating component 2 to the heat radiating component 3 by fixing the printed circuit board on which the heat generating component 2 is mounted and the heat radiating component 3 by screwing (not shown in FIG. 6) is accompanied by a temperature rise. The contact pressure was increased and promoted by changing the height of the heat conductor 9 so that the heat resistance was decreased. The arrangement density may be changed in accordance with the heat generation characteristics of the heat generating component 2 by increasing or decreasing the number of the heat conductors 9 made of shape memory metal mixed in the heat conductive sheet 5.

【0017】[0017]

【発明の効果】以上説明した本発明の効果について,請
求項順に説明する。請求項1記載の構成を備えた冷却機
構では、所定の温度に対応する形状を記憶した形状記憶
金属で成る熱伝導部品を発熱部品と放熱部品との熱媒体
として、発熱部品の熱を放熱部品に熱伝導させるので、
この熱伝導部品は金属製であり熱伝導シートより熱伝導
効果を向上できる。さらに熱伝導シートを使用しないの
で熱ストレスによる経年変化が少ない。
The effects of the present invention described above will be described in the order of claims. In the cooling mechanism having the configuration according to claim 1, the heat of the heat-generating component is radiated by using the heat-conductive component made of a shape-memory metal that stores a shape corresponding to a predetermined temperature as a heat medium of the heat-generating component and the heat-radiating component. Because it conducts heat to
This heat conducting part is made of metal and can improve the heat conducting effect more than the heat conducting sheet. Furthermore, since no heat conductive sheet is used, there is little change over time due to heat stress.

【0018】請求項2記載の構成を備えた冷却機構で
は、形状記憶金属で成る熱伝導部品を発熱部品と放熱部
品との間に配置して、発熱部品の熱を放熱部品に熱伝導
させるので、請求項1項の効果に加え、組立や部品交換
が容易になる。
In the cooling mechanism having the structure according to the second aspect of the present invention, the heat conducting component made of a shape memory metal is arranged between the heat generating component and the heat radiating component to conduct the heat of the heat generating component to the heat radiating component. In addition to the effects of the first aspect, the assembly and the replacement of parts are facilitated.

【0019】請求項3記載の構成を備えた冷却機構で
は、形状記憶金属で成る熱伝導部品を複数の発熱部品と
単一放熱部品との間に配置して、複数の発熱部品の熱を
単一放熱部品に熱伝導させるので、請求項1項の効果に
加え、部品点数が減少し製造能率も向上する。
According to another aspect of the cooling mechanism having the structure of the present invention, the heat-conducting component made of a shape memory metal is arranged between the plurality of heat-generating components and the single heat-dissipating component so that the heat of the plurality of heat-generating components is isolated. Since heat is conducted to one heat dissipation component, the number of components is reduced and manufacturing efficiency is improved in addition to the effect of the first aspect.

【0020】請求項4記載の構成を備えた冷却機構で
は、変態温度のそれぞれ異なる複数の形状記憶金属で成
る熱伝導部品で発熱特性がそれぞれ異なる複数の発熱部
品の熱を単一放熱部品に熱伝導させるので、請求項1項
の効果に加え、特に温度上昇が早く急激な特性を持つ発
熱部品に対しては当初単一放熱部品全体で放熱をはか
り、その他の発熱部品との温度バランスの調整が可能と
なる。
In the cooling mechanism having the structure according to the fourth aspect, the heat of a plurality of heat-generating components made of a plurality of shape memory metals having different transformation temperatures and having different heat-generating characteristics is converted into a single heat-radiating component. In addition to the effect of claim 1, since heat is conducted, heat is initially radiated by the single heat radiating component as a whole, especially for heat generating components with rapid temperature rise and abrupt characteristics, and temperature balance with other heat generating components is adjusted. Is possible.

【0021】請求項5記載の構成を備えた冷却機構で
は、形状記憶金属を発熱部品と放熱部品との熱伝導と固
定とを行うクランプに用いてクランプの形状変化により
発熱部品と放熱部品との間の接触圧力を増加させて熱抵
抗を減少させるので、請求項1項の効果に加え、ねじ止
め固定の削減が可能である。
In the cooling mechanism having the structure according to the fifth aspect, the shape memory metal is used as a clamp for conducting and fixing heat between the heat-generating component and the heat-radiating component, and the shape-changing of the clamp causes the heat-generating component and the heat-radiating component to change. Since the contact pressure between them is increased to reduce the thermal resistance, it is possible to reduce the screw fixing in addition to the effect of the first aspect.

【0022】請求項6記載の構成を備えた冷却機構で
は、発熱部品と放熱部品との間に配置された熱伝導シー
トに前記形状記憶金属で成る熱伝導体を混入させ形成す
るので、熱伝導表面積が拡大でき、請求項1項の効果に
加え、発熱部品相互の温度バランス調整が可能である。
In the cooling mechanism having the structure according to the sixth aspect of the present invention, the heat conducting sheet made of the shape memory metal is mixed and formed in the heat conducting sheet disposed between the heat generating component and the heat radiating component. The surface area can be expanded, and in addition to the effect of claim 1, the temperature balance between the heat-generating components can be adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図。FIG. 1 is a principle diagram of the present invention.

【図2】本発明の第1実施例の構造図。FIG. 2 is a structural diagram of the first embodiment of the present invention.

【図3】本発明の第2実施例の構造図。FIG. 3 is a structural diagram of a second embodiment of the present invention.

【図4】本発明の第3実施例の構造図。FIG. 4 is a structural diagram of a third embodiment of the present invention.

【図5】本発明の第4実施例の構造図。FIG. 5 is a structural diagram of a fourth embodiment of the present invention.

【図6】本発明の第5実施例の構造図。FIG. 6 is a structural diagram of a fifth embodiment of the present invention.

【図7】従来例の構造図。FIG. 7 is a structural diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 熱伝導部品 2 発熱部品 3 放熱部品 4 クランプ 5 熱伝導シート 6 単一放熱部品 7 支持部 8 支柱部 9 熱伝導体 1 heat conduction part 2 heat generation part 3 heat dissipation part 4 clamp 5 heat conduction sheet 6 single heat dissipation part 7 support part 8 support part 9 heat conductor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発熱部品と放熱部品との熱媒体として、
所定の温度に対応する形状を記憶した形状記憶金属で成
る熱伝導部品(1)を用いたことを特徴とする発熱部品
の冷却機構。
1. A heat medium for a heat-generating component and a heat-radiating component,
A cooling mechanism for a heat-generating component, comprising a heat-conducting component (1) made of a shape-memory metal that stores a shape corresponding to a predetermined temperature.
【請求項2】 前記熱伝導部品(1)を、発熱部品
(2)と放熱部品(3)との間に配置したことを特徴と
する請求項1記載の発熱部品の冷却機構。
2. The cooling mechanism for a heat-generating component according to claim 1, wherein the heat-conducting component (1) is arranged between the heat-generating component (2) and the heat-radiating component (3).
【請求項3】 前記熱伝導部品(1)を、発熱特性の同
様な複数の発熱部品(2)と単一放熱部品(6)との間
に配置したことを特徴とする請求項1または請求項2記
載の発熱部品の冷却機構。
3. The heat conducting component (1) is arranged between a plurality of heat generating components (2) having similar heat generating characteristics and a single heat radiating component (6). Item 2. A cooling mechanism for a heat-generating component according to item 2.
【請求項4】 前記熱伝導部品(1)は、発熱特性がそ
れぞれ異なる複数の発熱部品(2a 、2b 、2c )に対
応して配置された、変態温度のそれぞれ異なる複数の形
状記憶金属で成る熱伝導部品(1a 、1b 、1c )であ
ることを特徴とする請求項1記載の発熱部品の冷却機
構。
4. The heat conducting component (1) is made of a plurality of shape memory metals having different transformation temperatures, which are arranged corresponding to a plurality of heat generating components (2a, 2b, 2c) having different heat generating characteristics. The cooling mechanism for a heat-generating component according to claim 1, which is a heat-conducting component (1a, 1b, 1c).
【請求項5】 前記熱伝導部品(1)を、発熱部品
(2)と放熱部品(3)との熱伝導と固定とを行う部品
のクランプ(4)に用いたことを特徴とする請求項1記
載の発熱部品の冷却機構。
5. The heat conducting component (1) is used as a clamp (4) for a component for conducting and fixing heat between a heat generating component (2) and a heat radiating component (3). 1. A cooling mechanism for heat-generating components as described in 1.
【請求項6】 前記熱伝導部品(1)は、前記形状記憶
金属で成る熱伝導体(9)を発熱部品(2)と放熱部品
(3)との間に配置された熱伝導シート(5)に混入さ
せて形成したことを特徴とする請求項1記載の発熱部品
の冷却機構。
6. The heat-conducting component (1) comprises a heat-conducting sheet (5) in which a heat conductor (9) made of the shape memory metal is arranged between a heat-generating component (2) and a heat-dissipating component (3). The cooling mechanism for the heat-generating component according to claim 1, wherein the cooling mechanism is formed by being mixed with (1).
JP5576396A 1996-03-13 1996-03-13 Cooling mechanism for heating component Pending JPH09246439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5576396A JPH09246439A (en) 1996-03-13 1996-03-13 Cooling mechanism for heating component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5576396A JPH09246439A (en) 1996-03-13 1996-03-13 Cooling mechanism for heating component

Publications (1)

Publication Number Publication Date
JPH09246439A true JPH09246439A (en) 1997-09-19

Family

ID=13007899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5576396A Pending JPH09246439A (en) 1996-03-13 1996-03-13 Cooling mechanism for heating component

Country Status (1)

Country Link
JP (1) JPH09246439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216259B2 (en) 2004-04-28 2007-05-08 Via Telecom Co., Ltd. Increment power saving in battery powered wireless system with software configuration
JP2007111828A (en) * 2005-10-20 2007-05-10 Kawada Kogyo Kk Structure for radiating heat of mobile robot
JP2008021810A (en) * 2006-07-13 2008-01-31 Shinko Electric Ind Co Ltd Semiconductor module and radiation plate
US7610678B2 (en) 2004-08-19 2009-11-03 Fujitsu Limited Heat transfer sheet, heat transfer structural body and manufacturing method of the heat transfer structural body
US11175100B2 (en) 2019-05-07 2021-11-16 International Business Machines Corporation Heat sinks using memory shaping materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216259B2 (en) 2004-04-28 2007-05-08 Via Telecom Co., Ltd. Increment power saving in battery powered wireless system with software configuration
US7610678B2 (en) 2004-08-19 2009-11-03 Fujitsu Limited Heat transfer sheet, heat transfer structural body and manufacturing method of the heat transfer structural body
JP2007111828A (en) * 2005-10-20 2007-05-10 Kawada Kogyo Kk Structure for radiating heat of mobile robot
JP2008021810A (en) * 2006-07-13 2008-01-31 Shinko Electric Ind Co Ltd Semiconductor module and radiation plate
US11175100B2 (en) 2019-05-07 2021-11-16 International Business Machines Corporation Heat sinks using memory shaping materials

Similar Documents

Publication Publication Date Title
US7619893B1 (en) Heat spreader for electronic modules
WO2019049781A1 (en) Circuit block assembly
KR20100039719A (en) Heat sink for electric and electronic products with propagation heat
JP4438526B2 (en) Power component cooling system
JP2019075538A (en) Semiconductor thermal-conductive heat sink structure
JPH09246439A (en) Cooling mechanism for heating component
JPH10256764A (en) Heat-dissipating material
JPH08204070A (en) Electronic part cooling structure
JP4404855B2 (en) Heat dissipation member, and apparatus, casing, computer support, and heat dissipation member manufacturing method using the heat dissipation member
JP2003198171A (en) Heat sink and radiator
JPH10107192A (en) Heat sink
WO2016095508A1 (en) Heat conduction pad, heat dissipator and heat dissipation component
JP4380061B2 (en) Heat dissipation structure
JPH06283874A (en) Heat dissipating member and heat dissipating auxiliary pin
JP2001244669A (en) Heat dissipating structure of electronic component
CN100409274C (en) Radiator for flat display device
WO2018003958A1 (en) Heat sink structure
JP2007073668A (en) Heat-transfer device for heat conduction, and electronic equipment mounted therewith
JP2001244675A (en) Housing structure for information processor
CN219205084U (en) Heat abstractor and electronic equipment that electronic equipment was used
CN217160294U (en) Metal substrate electronic component with radiator
JP4384024B2 (en) heatsink
CN106873739B (en) Heat radiator
WO2008082042A1 (en) Cooling system for memory module
JP3888031B2 (en) Radiator